LRP3, an Apolipoprotein Receptor That Links Reelin Signalling and APP Expression, Is Affected in Alzheimer's Disease
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Imm Catalog.Pdf
$ Gene Symbol A B 3 C 4 D 9 E 10 F 11 G 12 H 13 I 14 J. K 17 L 18 M 19 N 20 O. P 22 R 26 S 27 T 30 U 32 V. W. X. Y. Z 33 A ® ® Gene Symbol Gene ID Antibody Monoclonal Antibody Polyclonal MaxPab Full-length Protein Partial-length Protein Antibody Pair KIt siRNA/Chimera Gene Symbol Gene ID Antibody Monoclonal Antibody Polyclonal MaxPab Full-length Protein Partial-length Protein Antibody Pair KIt siRNA/Chimera A1CF 29974 ● ● ADAMTS13 11093 ● ● ● ● ● A2M 2 ● ● ● ● ● ● ADAMTS20 80070 ● AACS 65985 ● ● ● ADAMTS5 11096 ● ● ● AANAT 15 ● ● ADAMTS8 11095 ● ● ● ● AATF 26574 ● ● ● ● ● ADAMTSL2 9719 ● AATK 9625 ● ● ● ● ADAMTSL4 54507 ● ● ABCA1 19 ● ● ● ● ● ADAR 103 ● ● ABCA5 23461 ● ● ADARB1 104 ● ● ● ● ABCA7 10347 ● ADARB2 105 ● ABCB9 23457 ● ● ● ● ● ADAT1 23536 ● ● ABCC4 10257 ● ● ● ● ADAT2 134637 ● ● ABCC5 10057 ● ● ● ● ● ADAT3 113179 ● ● ● ABCC8 6833 ● ● ● ● ADCY10 55811 ● ● ABCD2 225 ● ADD1 118 ● ● ● ● ● ● ABCD4 5826 ● ● ● ADD3 120 ● ● ● ABCG1 9619 ● ● ● ● ● ADH5 128 ● ● ● ● ● ● ABL1 25 ● ● ADIPOQ 9370 ● ● ● ● ● ABL2 27 ● ● ● ● ● ADK 132 ● ● ● ● ● ABO 28 ● ● ADM 133 ● ● ● ABP1 26 ● ● ● ● ● ADNP 23394 ● ● ● ● ABR 29 ● ● ● ● ● ADORA1 134 ● ● ACAA2 10449 ● ● ● ● ADORA2A 135 ● ● ● ● ● ● ● ACAN 176 ● ● ● ● ● ● ADORA2B 136 ● ● ACE 1636 ● ● ● ● ADRA1A 148 ● ● ● ● ACE2 59272 ● ● ADRA1B 147 ● ● ACER2 340485 ● ADRA2A 150 ● ● ACHE 43 ● ● ● ● ● ● ADRB1 153 ● ● ACIN1 22985 ● ● ● ADRB2 154 ● ● ● ● ● ACOX1 51 ● ● ● ● ● ADRB3 155 ● ● ● ● ACP5 54 ● ● ● ● ● ● ● ADRBK1 156 ● ● ● ● ACSF2 80221 ● ● ADRM1 11047 ● ● ● ● ACSF3 197322 ● ● AEBP1 165 ● ● ● ● ACSL4 2182 ● -
Datasheet Blank Template
SAN TA C RUZ BI OTEC HNOL OG Y, INC . LRP3 (E-13): sc-109956 BACKGROUND APPLICATIONS Members of the LDL receptor gene family, including LDLR (low density lipo- LRP3 (E-13) is recommended for detection of All LRP3 isoforms 1-3 of mouse, protein receptor), LRP1 (low density lipoprotein related protein), Megalin rat and human origin by Western Blotting (starting dilution 1:200, dilution (also designated GP330), VLDLR (very low density lipoprotein receptor) and range 1:100-1:1000), immunofluorescence (starting dilution 1:50, dilution ApoER2 are characterized by a cluster of cysteine-rich class A repeats, epi - range 1:50-1:500) and solid phase ELISA (starting dilution 1:30, dilution dermal growth factor (EGF)-like repeats, YWTD repeats and an O-linked sugar range 1:30-1:3000); non cross-reactive with other LRP family members. domain. Low-density lipoprotein receptor-related protein 3 (LRP3) is a 770 LRP3 (E-13) is also recommended for detection of All LRP3 isoforms 1-3 in amino acid protein that contains two CUB domains and four LDL-receptor additional species, including equine, canine, bovine and porcine. class A domains. LRP3 is widely expressed with highest expression in skele - tal muscle and ovary and lowest expression in testis, colon and leukocytes. Suitable for use as control antibody for LRP3 siRNA (h): sc-97441, LRP3 LRP3 is potentially a membrane receptor involved in the internalization of siRNA (m): sc-149048, LRP3 shRNA Plasmid (h): sc-97441-SH, LRP3 shRNA lipophilic molecules and/or signal transduction. Plasmid (m): sc-149048-SH, LRP3 shRNA (h) Lentiviral Particles: sc-97441-V and LRP3 shRNA (m) Lentiviral Particles: sc-149048-V. -
Supp Table 6.Pdf
Supplementary Table 6. Processes associated to the 2037 SCL candidate target genes ID Symbol Entrez Gene Name Process NM_178114 AMIGO2 adhesion molecule with Ig-like domain 2 adhesion NM_033474 ARVCF armadillo repeat gene deletes in velocardiofacial syndrome adhesion NM_027060 BTBD9 BTB (POZ) domain containing 9 adhesion NM_001039149 CD226 CD226 molecule adhesion NM_010581 CD47 CD47 molecule adhesion NM_023370 CDH23 cadherin-like 23 adhesion NM_207298 CERCAM cerebral endothelial cell adhesion molecule adhesion NM_021719 CLDN15 claudin 15 adhesion NM_009902 CLDN3 claudin 3 adhesion NM_008779 CNTN3 contactin 3 (plasmacytoma associated) adhesion NM_015734 COL5A1 collagen, type V, alpha 1 adhesion NM_007803 CTTN cortactin adhesion NM_009142 CX3CL1 chemokine (C-X3-C motif) ligand 1 adhesion NM_031174 DSCAM Down syndrome cell adhesion molecule adhesion NM_145158 EMILIN2 elastin microfibril interfacer 2 adhesion NM_001081286 FAT1 FAT tumor suppressor homolog 1 (Drosophila) adhesion NM_001080814 FAT3 FAT tumor suppressor homolog 3 (Drosophila) adhesion NM_153795 FERMT3 fermitin family homolog 3 (Drosophila) adhesion NM_010494 ICAM2 intercellular adhesion molecule 2 adhesion NM_023892 ICAM4 (includes EG:3386) intercellular adhesion molecule 4 (Landsteiner-Wiener blood group)adhesion NM_001001979 MEGF10 multiple EGF-like-domains 10 adhesion NM_172522 MEGF11 multiple EGF-like-domains 11 adhesion NM_010739 MUC13 mucin 13, cell surface associated adhesion NM_013610 NINJ1 ninjurin 1 adhesion NM_016718 NINJ2 ninjurin 2 adhesion NM_172932 NLGN3 neuroligin -
Cholesterol in the Pathogenesis of Alzheimer's
REVIEWS Cholesterol in the Pathogenesis of Alzheimer’s, Parkinson’s Diseases and Autism: Link to Synaptic Dysfunction A. M. Petrov*, M. R. Kasimov, A. L. Zefirov Kazan State Medical University, Normal Physiology department, Butlerova str. 49, Kazan, 420012, Russia *E-mail: [email protected] Received April 22, 2016; in final form, November 28, 2016 Copyright © 2017 Park-media, Ltd. This is an open access article distributed under the Creative Commons Attribution License,which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. ABSTRACT In our previous review, we described brain cholesterol metabolism in control conditions and in the case of some rare neurological pathologies linked to defects in the genes which are directly involved in the syn- thesis and/or traffic of cholesterol. Here, we have analyzed disruptions in cholesterol homeostasis in widespread neurodegenerative diseases (Alzheimer’s and Parkinson’s diseases) and autism spectrum disorders. We particu- larly focused on the synaptic dysfunctions that could arise from changes in both membrane cholesterol availa- bility and oxysterol production. Notably, alterations in the brain cholesterol metabolism and neurotransmission occur in the early stages of these pathologies and the polymorphism of the genes associated with cholesterol homeostasis and synaptic communication affects the risk of onset and severity of these diseases. In addition, pharmacological and genetic manipulations of brain cholesterol homeostasis in animal models frequently have marked effects on the progression of neurodegenerative diseases. Thus, the development of Alzheimer’s, Parkin- son’s and autism spectrum disorders may be partially associated with an imbalance of cholesterol homeostasis that leads to changes in the membrane cholesterol and oxysterol levels that, in turn, modulates key steps in the synaptic transmission. -
Human Induced Pluripotent Stem Cell–Derived Podocytes Mature Into Vascularized Glomeruli Upon Experimental Transplantation
BASIC RESEARCH www.jasn.org Human Induced Pluripotent Stem Cell–Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation † Sazia Sharmin,* Atsuhiro Taguchi,* Yusuke Kaku,* Yasuhiro Yoshimura,* Tomoko Ohmori,* ‡ † ‡ Tetsushi Sakuma, Masashi Mukoyama, Takashi Yamamoto, Hidetake Kurihara,§ and | Ryuichi Nishinakamura* *Department of Kidney Development, Institute of Molecular Embryology and Genetics, and †Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; ‡Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan; §Division of Anatomy, Juntendo University School of Medicine, Tokyo, Japan; and |Japan Science and Technology Agency, CREST, Kumamoto, Japan ABSTRACT Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator–like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in -
Megalin, an Endocytotic Receptor with Signalling Potential
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 116 Megalin, an Endocytotic Receptor with Signalling Potential MÅRTEN LARSSON ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6206 UPPSALA ISBN 91-554-6483-1 2006 urn:nbn:se:uu:diva-6585 !""# $% & ' & & ( ) & *+ , - . '+ / + !""#+ ' . 0 - 1' ' ( + 2 + #+ #" + + 314 56%%6#7 6+ ' ' ' -6 & + 3 & - ' & + 0 - 8 ' & ' ' + , & ' ' - 6 ' - - & ' + 2 ' && ' 5% )(165%* - & ' - (96 + 6 : ;.<6!5 8 & + , (165% (165 12("! - & ' - (9!6 ' & 12(5= + ' 2 , - & + ' - )41* - + 4 ' 8 - ' + , 6 & ' ' & - 8 + ' - & & + & '' ' ' & + 3 ' ' - 6 - + , '' ' & & ' ' - + ' ' - & ' ' - 8 68 ' ' - + 8 & ' )0(.* ' ' && + 1 ' & ' 0(. ' 8 - ;6 6 ' 8 ' - //6 & & ' 6 )02(* - ' & 8 & 0(.+ ' /0(6! ( 65% 0 6 ' >' ! " # $ " # % &'(" " )*+&,(- " ? @ / !""# 3114 #%6#!"# 314 56%%6#7 6 $ $$$ 6#%7% ) $AA +8+A B C $ $$$ 6#%7%* To Dr. John Pemberton List of original papers This thesis is based on the following -
Microrna-4739 Regulates Osteogenic and Adipocytic Differentiation of Immortalized Human Bone Marrow Stromal Cells Via Targeting LRP3
Stem Cell Research 20 (2017) 94–104 Contents lists available at ScienceDirect Stem Cell Research journal homepage: www.elsevier.com/locate/scr MicroRNA-4739 regulates osteogenic and adipocytic differentiation of immortalized human bone marrow stromal cells via targeting LRP3 Mona Elsafadi a,c, Muthurangan Manikandan a, Nehad M Alajez a,RimiHamama, Raed Abu Dawud b, Abdullah Aldahmash a,d,ZafarIqbale,MusaadAlfayeza,MoustaphaKassema,c,AmerMahmooda,⁎ a Stem Cell Unit, Department of Anatomy, College of Medicine,King Saud University, Riyadh 11461, Saudi Arabia b Department of Comparative Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia c KMEB, Department of Endocrinology, University Hospital of Odense, University of Southern Denmark, Winslowsparken 25.1, DK-5000 Odense C, Denmark d Prince Naif Health Research Center, King Saud University, Riyadh 11461, Saudi Arabia e Department of Basic Sciences, College of applied medical sciences, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), National GuardHealthAffairs,AlAhsa,SaudiArabia article info abstract Article history: Understanding the regulatory networks underlying lineage differentiation and fate determination of human Received 7 September 2016 bone marrow stromal cells (hBMSC) is a prerequisite for their therapeutic use. The goal of the current study Received in revised form 25 February 2017 was to unravel the novel role of the low-density lipoprotein receptor-related protein 3 (LRP3) in regulating Accepted 1 March 2017 the osteogenic and adipogenic differentiation of immortalized hBMSCs. Gene expression profiling revealed sig- Available online 8 March 2017 nificantly higher LRP3 levels in the highly osteogenic hBMSC clone imCL1 than in the less osteogenic clone imCL2, as well as a significant upregulation of LRP3 during the osteogenic induction of the imCL1 clone. -
UC San Diego UC San Diego Electronic Theses and Dissertations
UC San Diego UC San Diego Electronic Theses and Dissertations Title Insights from reconstructing cellular networks in transcription, stress, and cancer Permalink https://escholarship.org/uc/item/6s97497m Authors Ke, Eugene Yunghung Ke, Eugene Yunghung Publication Date 2012 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, SAN DIEGO Insights from Reconstructing Cellular Networks in Transcription, Stress, and Cancer A dissertation submitted in the partial satisfaction of the requirements for the degree Doctor of Philosophy in Bioinformatics and Systems Biology by Eugene Yunghung Ke Committee in charge: Professor Shankar Subramaniam, Chair Professor Inder Verma, Co-Chair Professor Web Cavenee Professor Alexander Hoffmann Professor Bing Ren 2012 The Dissertation of Eugene Yunghung Ke is approved, and it is acceptable in quality and form for the publication on microfilm and electronically ________________________________________________________________ ________________________________________________________________ ________________________________________________________________ ________________________________________________________________ Co-Chair ________________________________________________________________ Chair University of California, San Diego 2012 iii DEDICATION To my parents, Victor and Tai-Lee Ke iv EPIGRAPH [T]here are known knowns; there are things we know we know. We also know there are known unknowns; that is to say we know there -
Prdc Cdna Insert Product Line
mLRP-10 VersaClone cDNA Catalog Number: RDC1306 Specifications: Description This shuttle vector contains the complete ORF for the gene of interest, Gene: mLrp10 along with a Kozak consensus sequence for optimal translation initiation. It is inserted NotI to AscI. The gene insert is flanked with Accession: BAB20775 convenient multiple cloning sites which can be used to easily cut and transfer the gene cassette into your desired expression vector. Insert size: 2155bp Preparation and Storage Concentration: 10µg at 0.2μg/μL Formulation cDNA is provided in 10 mM Tris-Cl, pH 8.5 Shipping Ships at ambient temperature Stability 1 year from date of receipt when stored at -20°C to -80°C Storage Use a manual defrost freezer and avoid repeated mLRP-10 cDNA freeze-thaw cycles. Plasmid Lrp10 low-density lipoprotein receptor-related protein 10 ZraI BmgBI AatII BstAPI HpaI [ Mus musculus (house mouse) ] SspI NdeI HindIII XmnI BamHI EcoRV Also known as: Lrp9 ScaI BmtI StuI NheI NotI EcoNI EagI Summary: BtgI NcoI LRP10 is a member of the low AMP BsmI density lipoprotein (LDL) receptor gene family. LDL receptors are transmembrane cell surface proteins involved in receptor- RDC1306 mediated endocytosis of lipoprotein 4889 bps BsaAI SnaBI and protein ligands. LRP10 is highly Tth111I mLRP10 (1-713) expressed in heart, lung, and liver. COLE1 AvrII LRP10 may be involved in the uptake of lipoprotein APOE in liver. NaeI NgoMIV BtgZI XhoI PciI AarI PspXI SapI BbsI XmaI BglII SmaI ApaI SalI PspOMI XbaI PpuMI Bst1107I Van91I BssHII AscI FOR RESEARCH USE ONLY NOT -
LRP11 (K-20): Sc-247828
SAN TA C RUZ BI OTEC HNOL OG Y, INC . LRP11 (K-20): sc-247828 BACKGROUND APPLICATIONS Members of the LDL receptor gene family, including LDLR (low density LRP11 (K-20) is recommended for detection of LRP11 of mouse and rat origin lipoprotein receptor), LRP1 (low density lipoprotein related protein), megalin by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000), (also designated GP330), VLDLR (very low density lipoprotein receptor) and immunoprecipitation [1-2 µg per 100-500 µg of total protein (1 ml of cell ApoER2 are characterized by a cluster of cysteine-rich class A repeats, lysate)], immunofluorescence (starting dilution 1:50, dilution range 1:50- epidermal growth factor (EGF)-like repeats, YWTD repeats and an O-linked 1:500) and solid phase ELISA (starting dilution 1:30, dilution range 1:30- sugar domain. LRP11 (low density lipoprotein receptor-related protein 11), 1:3000); non cross-reactive with other LRP family members. also known as MANSC3, is a 500 amino acid single-pass type I membrane Suitable for use as control antibody for LRP11 siRNA (m): sc-149044, LRP11 protein that exists as 2 alternatively spliced isoforms. LRP11 is encoded shRNA Plasmid (m): sc-149044-SH and LRP11 shRNA (m) Lentiviral Particles: by a gene located on human chromosome 6q25.1. Chromosome 6 contains sc-149044-V. 170 million base pairs and comprises nearly 6% of the human genome. Deletion of a portion of the q arm of chromosome 6 is associated with early Molecular Weight of LRP11 isoforms: 53/25 kDa. onset intestinal cancer, suggesting the presence of a cancer susceptibility Positive Controls: mouse brain extract: sc-2253 or mouse skin extract: locus. -
Convergence of Genes Implicated in Alzheimer's Disease on the Cerebral
Neurochemistry International 50 (2007) 12–38 www.elsevier.com/locate/neuint Review Convergence of genes implicated in Alzheimer’s disease on the cerebral cholesterol shuttle: APP, cholesterol, lipoproteins, and atherosclerosis C.J. Carter 176 Downs Road, Hastings, East Sussex TN34 2DZ, UK Received 5 April 2006; received in revised form 30 June 2006; accepted 11 July 2006 Available online 12 September 2006 Abstract Polymorphic genes associated with Alzheimer’s disease (see www.polygenicpathways.co.uk) delineate a clearly defined pathway related to cerebral and peripheral cholesterol and lipoprotein homoeostasis. They include all of the key components of a glia/neurone cholesterol shuttle including cholesterol binding lipoproteins APOA1, APOA4, APOC1, APOC2, APOC3, APOD, APOE and LPA, cholesterol transporters ABCA1, ABCA2, lipoprotein receptors LDLR, LRP1, LRP8 and VLDLR, and the cholesterol metabolising enzymes CYP46A1 and CH25H, whose oxysterol products activate the liver X receptor NR1H2 and are metabolised to esters by SOAT1. LIPA metabolises cholesterol esters, which are transported by the cholesteryl ester transport protein CETP. The transcription factor SREBF1 controls the expression of most enzymes of cholesterol synthesis. APP is involved in this shuttle as it metabolises cholesterol to 7-betahydroxycholesterol, a substrate of SOAT1 and HSD11B1, binds to APOE and is tethered to LRP1 via APPB1, APBB2 and APBB3 at the cytoplasmic domain and via LRPAP1 at the extracellular domain. APP cleavage products are also able to prevent cholesterol binding to APOE. BACE cleaves both APP and LRP1. Gamma-secretase (PSEN1, PSEN2, NCSTN) cleaves LRP1 and LRP8 as well as APP and their degradation products control transcription factor TFCP2, which regulates thymidylate synthase (TS) and GSK3B expression. -
Clinical and Pathological Phenotypes of LRP10 Variant Carriers with Dementia
Journal of Alzheimer’s Disease 76 (2020) 1161–1170 1161 DOI 10.3233/JAD-200318 IOS Press Clinical and Pathological Phenotypes of LRP10 Variant Carriers with Dementia Leonie J. M. Vergouwa,1, Hanneke Geutb,c,1, Guido Breedveldd, Demy J. S. Kuipersd, Marialuisa Quadrid, Netherlands Brain Bankc, Annemieke J. M. Rozemullere, John C. van Swietena, Frank Jan de Jonga, Wilma D. J. van de Bergb,2 and Vincenzo Bonifatid,2,∗ aErasmus MC, University Medical Center Rotterdam, Department of Neurology and Alzheimer Center, Rotterdam, the Netherlands bAmsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam, the Netherlands cNetherlands Institute for Neuroscience, Amsterdam, the Netherlands dErasmus MC, University Medical Center Rotterdam, Department of Clinical Genetics, Rotterdam, the Netherlands eAmsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Amsterdam Neuroscience, Amsterdam, the Netherlands Accepted 18 May 2020 Abstract. Background: Rare variants in the low-density lipoprotein receptor related protein 10 gene (LRP10) have recently been implicated in the etiology of Parkinson’s disease (PD) and dementia with Lewy bodies (DLB). Objective: We searched for LRP10 variants in a new series of brain donors with dementia and Lewy pathology (LP) at autopsy, or dementia and parkinsonism without LP but with various other neurodegenerative pathologies. Methods: Sanger sequencing of LRP10 was performed in 233 donors collected by the Netherlands Brain Bank. Results: Rare, possibly pathogenic heterozygous LRP10 variants were present in three patients: p.Gly453Ser in a patient with mixed Alzheimer’s disease (AD)/Lewy body disease (LBD), p.Arg151Cys in a DLB patient, and p.Gly326Asp in an AD patient without LP.