BLUEBERRIES Jorge B
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Checklist of Common Native Plants the Diversity of Acadia National Park Is Refl Ected in Its Plant Life; More Than 1,100 Plant Species Are Found Here
National Park Service Acadia U.S. Department of the Interior Acadia National Park Checklist of Common Native Plants The diversity of Acadia National Park is refl ected in its plant life; more than 1,100 plant species are found here. This checklist groups the park’s most common plants into the communities where they are typically found. The plant’s growth form is indicated by “t” for trees and “s” for shrubs. To identify unfamiliar plants, consult a fi eld guide or visit the Wild Gardens of Acadia at Sieur de Monts Spring, where more than 400 plants are labeled and displayed in their habitats. All plants within Acadia National Park are protected. Please help protect the park’s fragile beauty by leaving plants in the condition that you fi nd them. Deciduous Woods ash, white t Fraxinus americana maple, mountain t Acer spicatum aspen, big-toothed t Populus grandidentata maple, red t Acer rubrum aspen, trembling t Populus tremuloides maple, striped t Acer pensylvanicum aster, large-leaved Aster macrophyllus maple, sugar t Acer saccharum beech, American t Fagus grandifolia mayfl ower, Canada Maianthemum canadense birch, paper t Betula papyrifera oak, red t Quercus rubra birch, yellow t Betula alleghaniesis pine, white t Pinus strobus blueberry, low sweet s Vaccinium angustifolium pyrola, round-leaved Pyrola americana bunchberry Cornus canadensis sarsaparilla, wild Aralia nudicaulis bush-honeysuckle s Diervilla lonicera saxifrage, early Saxifraga virginiensis cherry, pin t Prunus pensylvanica shadbush or serviceberry s,t Amelanchier spp. cherry, choke t Prunus virginiana Solomon’s seal, false Maianthemum racemosum elder, red-berried or s Sambucus racemosa ssp. -
Plant Collecting Expedition for Berry Crop Species Through Southeastern
Plant Collecting Expedition for Berry Crop Species through Southeastern and Midwestern United States June and July 2007 Glassy Mountain, South Carolina Participants: Kim E. Hummer, Research Leader, Curator, USDA ARS NCGR 33447 Peoria Road, Corvallis, Oregon 97333-2521 phone 541.738.4201 [email protected] Chad E. Finn, Research Geneticist, USDA ARS HCRL, 3420 NW Orchard Ave., Corvallis, Oregon 97330 phone 541.738.4037 [email protected] Michael Dossett Graduate Student, Oregon State University, Department of Horticulture, Corvallis, OR 97330 phone 541.738.4038 [email protected] Plant Collecting Expedition for Berry Crops through the Southeastern and Midwestern United States, June and July 2007 Table of Contents Table of Contents.................................................................................................................... 2 Acknowledgements:................................................................................................................ 3 Executive Summary................................................................................................................ 4 Part I – Southeastern United States ...................................................................................... 5 Summary.............................................................................................................................. 5 Travelog May-June 2007.................................................................................................... 6 Conclusions for part 1 ..................................................................................................... -
Natural Communities of Virginia: Ecological Groups and Community Types
COMMONWEALTH of VIRGINIA The Natural Communities of Virginia: Ecological Groups and Community Types Virginia Department of Conservation and Recreation Division of Natural Heritage Natural Heritage Technical Report 21-15 July 2021 Cover photos by Gary Fleming This report can be cited as: Fleming, Gary P. and Karen D. Patterson 2021. Natural Communities of Virginia: Ecological Groups and Community Types: a listing with conservation status ranks. Natural Heritage Technical Report 21-15. Virginia Department of Conservation and Recreation, Division of Natural Heritage, Richmond, Virginia. 31 pages. The Natural Communities of Virginia: Ecological Groups and Community Types a listing with conservation status ranks July 2021 Virginia Department of Conservation and Recreation Division of Natural Heritage 600 East Main Street, 24th Floor Richmond, Virginia 23219 List Compiled by Gary P. Fleming, Vegetation Ecologist Karen D. Patterson, Vegetation Ecologist Table of Contents Page INTRODUCTION ............................................................................................................................................................................. I CLASSIFICATION STRUCTURE ......................................................................................................................................................... i RELATIONSHIP TO THE USNVC AND OTHER CLASSIFICATION SYSTEM .......................................................................................... iii CHANGES TO CLASSES, ECOLOGICAL COMMUNITY GROUPS AND COMMUNITY -
Multi-Species Mating Disruption in Cranberries (Ericales: Ericaceae): Early Evidence Using a Flowable Emulsion
Journal of Insect Science (2017) 17(2): 54; 1–6 doi: 10.1093/jisesa/iex025 Research article Multi-Species Mating Disruption in Cranberries (Ericales: Ericaceae): Early Evidence Using a Flowable Emulsion Shawn A. Steffan,1,2,3 Elissa M. Chasen,1,2 Annie E. Deutsch,2,4 and Agenor Mafra-Neto5 1USDA-ARS Vegetable Crops Research Unit, 1630 Linden Drive, Madison, WI 53706 ([email protected]; elissa.chasen@ ars.usda.gov), 2Department of Entomology, University of Wisconsin, 1630 Linden Drive, Madison, WI 53706 (steffan@entomology. wisc.edu; [email protected]; [email protected]), 3Corresponding author, e-mail: ([email protected]), 4Door County University of Wisconsin-Extension, 421 Nebraska St., Sturgeon Bay, WI 54235 ([email protected]), and 5ISCA Technologies, Incorporated, 1230 W. Spring St., Riverside, CA 92507 ([email protected]) Subject Editor: Cesar Rodriguez-Saona Received 11 October 2016; Editorial decision 11 March 2017 Abstract Pheromone-based mating disruption has proven to be a powerful pest management tactic in many cropping systems. However, in the cranberry system, a viable mating disruption program does not yet exist. There are commercially available pheromones for several of the major pests of cranberries, including the cranberry fruit- worm, Acrobasis vaccinii Riley (Lepidoptera: Pyralidae) and blackheaded fireworm, Rhopobota naevana (Hu¨ bner) (Lepidoptera: Tortricidae). Previous studies have shown that mating disruption represents a promising approach for R. naevana management although carrier and delivery technologies have remained unresolved. The present study examined the suitability of Specialized Pheromone & Lure Application Technology (SPLAT; ISCA Technologies, Inc., Riverside, CA), a proprietary wax and oil blend, to serve as a pheromone carrier in the cranberry system. -
Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- ERICACEAE
Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- ERICACEAE ERICACEAE (Heath Family) A family of about 107 genera and 3400 species, primarily shrubs, small trees, and subshrubs, nearly cosmopolitan. The Ericaceae is very important in our area, with a great diversity of genera and species, many of them rather narrowly endemic. Our area is one of the north temperate centers of diversity for the Ericaceae. Along with Quercus and Pinus, various members of this family are dominant in much of our landscape. References: Kron et al. (2002); Wood (1961); Judd & Kron (1993); Kron & Chase (1993); Luteyn et al. (1996)=L; Dorr & Barrie (1993); Cullings & Hileman (1997). Main Key, for use with flowering or fruiting material 1 Plant an herb, subshrub, or sprawling shrub, not clonal by underground rhizomes (except Gaultheria procumbens and Epigaea repens), rarely more than 3 dm tall; plants mycotrophic or hemi-mycotrophic (except Epigaea, Gaultheria, and Arctostaphylos). 2 Plants without chlorophyll (fully mycotrophic); stems fleshy; leaves represented by bract-like scales, white or variously colored, but not green; pollen grains single; [subfamily Monotropoideae; section Monotropeae]. 3 Petals united; fruit nodding, a berry; flower and fruit several per stem . Monotropsis 3 Petals separate; fruit erect, a capsule; flower and fruit 1-several per stem. 4 Flowers few to many, racemose; stem pubescent, at least in the inflorescence; plant yellow, orange, or red when fresh, aging or drying dark brown ...............................................Hypopitys 4 Flower solitary; stem glabrous; plant white (rarely pink) when fresh, aging or drying black . Monotropa 2 Plants with chlorophyll (hemi-mycotrophic or autotrophic); stems woody; leaves present and well-developed, green; pollen grains in tetrads (single in Orthilia). -
WRA Species Report
Designation = Evaluate WRA Score = 2 Family: Ericaceae Taxon: Vaccinium virgatum Synonym: Vaccinium amoenum Aiton Common Name: Rabbit-eye blueberry Vaccinium ashei J. M. Reade Southern black blueberry Questionaire : current 20090513 Assessor: Chuck Chimera Designation: EVALUATE Status: Assessor Approved Data Entry Person: Chuck Chimera WRA Score 2 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? y=1, n=-1 103 Does the species have weedy races? y=1, n=-1 201 Species suited to tropical or subtropical climate(s) - If island is primarily wet habitat, then (0-low; 1-intermediate; 2- High substitute "wet tropical" for "tropical or subtropical" high) (See Appendix 2) 202 Quality of climate match data (0-low; 1-intermediate; 2- High high) (See Appendix 2) 203 Broad climate suitability (environmental versatility) y=1, n=0 y 204 Native or naturalized in regions with tropical or subtropical climates y=1, n=0 n 205 Does the species have a history of repeated introductions outside its natural range? y=-2, ?=-1, n=0 ? 301 Naturalized beyond native range y = 1*multiplier (see n Appendix 2), n= question 205 302 Garden/amenity/disturbance weed n=0, y = 1*multiplier (see n Appendix 2) 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see n Appendix 2) 304 Environmental weed n=0, y = 2*multiplier (see n Appendix 2) 305 Congeneric weed n=0, y = 1*multiplier (see y Appendix 2) 401 Produces spines, thorns or burrs y=1, n=0 n 402 Allelopathic y=1, n=0 n 403 Parasitic y=1, n=0 n 404 Unpalatable -
Highbush Blueberry: Cultivation, Protection, Breeding and Biotechnology
The European Journal of Plant Science and Biotechnology ©2007 Global Science Books Highbush Blueberry: Cultivation, Protection, Breeding and Biotechnology Daniele Prodorutti1* • Ilaria Pertot2 • Lara Giongo3 • Cesare Gessler2 1 Plant Protection Department, IASMA Research Centre, Via E. Mach 1, 38010 San Michele all’Adige (TN), Italy 2 Safecrop Centre, IASMA Research Centre, Via E. Mach 1, 38010 San Michele all’Adige (TN), Italy 3 Agrifood Quality Department, IASMA Research Centre, Via E. Mach 1, 38010 San Michele all’Adige (TN), Italy Corresponding author : * [email protected] ABSTRACT Highbush blueberry is one of the most commercially significant berry crops. It is mainly cultivated in the United States and Canada, but also in Europe, Australia, Chile and New Zealand. Production of this crop is likely to increase in response to increased consumer demand for healthy foods, including the antioxidant-rich blueberry. This review describes several issues and developments in sustainable blueberry farming, including agronomical and cultural techniques (mulching, irrigation, the beneficial effects of mycorrhizae and fertilization), disease management (biology and control of common and emerging diseases), pest management, pollinators (effects on fruit set and production), conventional breeding and molecular techniques for examining and engineering blueberry germplasm. This paper describes past problems and current challenges associated with the commercial production of highbush blueberry, as well as new approaches and techniques for -
Florida Blueberry Leaf Disease Guide1 Douglas A
PP348 Florida Blueberry Leaf Disease Guide1 Douglas A. Phillips, Norma C. Flor, and Philip F. Harmon2 This publication is intended for Florida blueberry growers different blueberry cultivars. Symptoms with different to use as a diagnostic field guide in the identification causes can have similar appearances, and more than and management of common leaf diseases on southern one disease can occur on the same leaf. Growers should highbush blueberry (SHB). Management recommendations consult UF/IFAS Extension or use a lab diagnostic service. include fungicide applications and horticultural inputs Blueberry disease samples can be sent to the UF/IFAS Plant intended to reduce disease severity. Diagnostic Center (plantpath.ifas.ufl.edu/extension/plant- diagnostic-center) or another diagnostic lab for accurate Introduction identification of the problem. Southern highbush blueberry (SHB) cultivars are com- Several leaf diseases affect SHB in Florida and have the mercially grown throughout much of Florida, in both potential to defoliate bushes. For fungal leaf diseases, deciduous and evergreen production systems. Growers in growers have many effective chemical management deciduous production should strive to keep leaves healthy options; however, proper product selection and timing of through flower bud differentiation in fall to ensure opti- application depends on correct disease diagnosis. Because mum yield potential. In evergreen production, it is critical fungicides are only effective for fungal diseases, differentiat- to maintain the prior year’s foliage through winter months ing between symptoms caused by fungi and other factors to support early fruit production the following season. In can help prevent unnecessary fungicide use and costs. both systems, leaves can be damaged by many factors, such as environmental conditions, chemical applications, insects, The first step in diagnosing the cause of leaf symptoms in and diseases. -
1 Travel to Wolfville and Kentville, Nova Scotia, Canada, to Collect
Travel to Wolfville and Kentville, Nova Scotia, Canada, to collect Vaccinium and Related Ericaceae for USDA Plant Exploration Grant 2012 Acadia University, Wolfville, Nova Scotia AAFC Kentville, Nova Scotia Kim Hummer, Research Leader USDA ARS National Clonal Germplasm Repository, Corvallis, Oregon Location and Dates of Travel Wolfville and Kentville, Nova Scotia, Canada 15 July through 20 July 20102 Objectives: To obtain cuttings/ propagules of the Vaccinium collections of Dr. Sam Vander Kloet, Professor Emeritus at Acadia University, Kentville, Nova Scotia. Executive Summary During 15 through 20 July 2012, I traveled to Nova Scotia to obtain plant material that Dr. Sam Vander Kloet, Emeritus Professor at Acadia University had obtained during his life. Acadia University Conservatory, Wolfville, had about 100 accessions of subtropical Vaccinium (blueberry) and related genera. Agriculture and Agri-Food Canada had about 90 accessions of native North American Vaccinium in their field collections. On Monday 16 July through Wednesday 18 July 2012, I worked at the Herbarium and Conservatory of Acadia University working with Ruth Newell, the Curator. From Wednesday afternoon through Thursday, I worked with Dr. Andrew Jamieson, Small fruit Breeder and Geneticist, Agriculture and Agri- Food Canada. I obtained a total of 654 root and stem cuttings of the following genera: Cavendishia (62), Ceratostemma (7), Costera (1), Diogenesia (9), Disterigma (10), Macleania (25), Pernettya (13), Psammisia (7), Spyrospermum (7), and Vaccinium (513). I also obtained two accessions of seed including Vaccinium boreale (1000 count) and Fragaria vesca subsp. alba (2000 count). I obtained a Canadian phytosanitary certificate and had USDA APHIS permits and letters to bring in the Vaccinium and permissible nurserystock. -
Fournier Uqac 0862N 10666.Pdf
UNIVERSITÉ DU QUÉBEC À CHICOUTIMI DÉPARTEMENT DES SCIENCES FONDAMENTALES DYNAMIQUE DE LA PHÉNOLOGIE, DE L’ALLOMÉTRIE ET DU RENDEMENT DES BLEUETIERS NAINS SAUVAGES DU QUÉBEC SELON L’ESPÈCE ET DIVERS TRAITEMENTS AGRICOLES PAR MARIE-PIER FOURNIER B. Sc. (BIOLOGIE) MÉMOIRE PRÉSENTÉ À L’UNIVERSITÉ DU QUÉBEC À CHICOUTIMI COMME EXIGENCE PARTIELLE DE LA MAÎTRISE EN RESSOURCES RENOUVELABLES II RÉSUMÉ Le rendement des plants de bleuets sauvages est étroitement lié à plusieurs caractéristiques intrinsèques et extrinsèques. Pour ainsi améliorer la productivité, une meilleure compréhension de l’influence de l’architecture des plants, de la phénologie spécifique aux espèces et des traitements de fertilisation et de fauchage sur la production de fruit serait importante pour faire de meilleur choix de pratiques agricole en zone nordique. Pour ce faire, la première partie de cette étude porte sur la comparaison des traits phénologiques, architecturaux et allométriques entre les deux espèces présentes au Saguenay-Lac-Saint-Jean, soit Vaccinium angustifolium Aiton et Vaccinium myrtilloides Michaux. Dans la seconde partie de l’étude, ce sont les effets combinés sur les traits allométriques et le rendement de deux pratiques agricoles, soit le fauchage et l’application d’engrais, qui sont comparés dans une bleuetière en zone nordique. L’expérience s’est déroulée du printemps 2017 à l’automne 2018 sur une bleuetière commerciale située au nord du Saguenay-Lac-Saint-Jean. La combinaison de fauchage – mécanique ou mécanique et thermique – et d’engrais – minéral, organique ou sans – a été appliquée sur les champs. La phénologie des bourgeons, la croissance en hauteur et en longueur, la masse des fruits par plant et par parcelle ainsi que le nombre d’éléments sur la plante (bourgeon, feuille, fleur, fruit, etc.) ont été notés selon le type de production en cours dans les champs, soit l’année après fauchage (pruning year) ou l’année de récolte (harvesting year). -
2N Gametes in Vaccinium Section Cyanococcus
Euphytica 61 : 241-246, 1992 . © 1992 Kluwer Academic Publishers . Printed in the Netherlands . The origin of polyploids via 2n gametes in Vaccinium section Cyanococcus Rodomiro Ortiz, Leo P . Bruederle', Timothy Laverty & Nicholi Vorsa Blueberry and Cranberry Research Center, Rutgers University, Chatsworth, Nt 08019, USA ; ' present address : The University of Michigan, Flint. Flint, MI 48502-2186, USA Received 24 October 1991 ; accepted 29 May 1992 Key words: blueberry, FDR 2n pollen, introgression, phenotypic frequency, sexual polyploidization, Vaccinium section Cyanococcus Summary The production of 2n pollen (pollen with the sporophytic chromosome number) was evaluated in 4x and 6x taxa of Vaccinium section Cyanococcus . Mean frequencies of 2n pollen producers were 17 .1% and 8.3% in natural 4x and 6x populations, respectively . The frequency of 2n pollen producers in the 4x species ranged from 8 .6% (V. angustifolium) to 23.8% (V. pallidum) . Level of 2n pollen production was genotypically variable (1% to 37 .4%). The widespread occurrence of 2n pollen in 2x, 4x and 6x taxa suggests that sexual polyploidization was widespread and responsible for the origin of the polyploid species found in this genus . The frequency of 2n pollen producers was not significantly different between the 4x species and their putative 2x ancestors. These results support the origin of 4x and 6x taxa as a consequence of sexual polyploidization . Polyploids derived from sexual polyploidization would be expected to have increased fitness and flexibility due to the mode of 2n pollen formation . In blueberry species the predominant mode of 2n pollen formation is genetically equivalent to a first division restitution mechanism (FDR) . -
The Genus Vaccinium in North America
Agriculture Canada The Genus Vaccinium 630 . 4 C212 P 1828 North America 1988 c.2 Agriculture aid Agri-Food Canada/ ^ Agnculturo ^^In^iikQ Canada V ^njaian Agriculture Library Brbliotheque Canadienno de taricakun otur #<4*4 /EWHE D* V /^ AgricultureandAgri-FoodCanada/ '%' Agrrtur^'AgrntataireCanada ^M'an *> Agriculture Library v^^pttawa, Ontano K1A 0C5 ^- ^^f ^ ^OlfWNE D£ W| The Genus Vaccinium in North America S.P.VanderKloet Biology Department Acadia University Wolfville, Nova Scotia Research Branch Agriculture Canada Publication 1828 1988 'Minister of Suppl) andS Canada ivhh .\\ ailabla in Canada through Authorized Hook nta ami other books! or by mail from Canadian Government Publishing Centre Supply and Services Canada Ottawa, Canada K1A0S9 Catalogue No.: A43-1828/1988E ISBN: 0-660-13037-8 Canadian Cataloguing in Publication Data VanderKloet,S. P. The genus Vaccinium in North America (Publication / Research Branch, Agriculture Canada; 1828) Bibliography: Cat. No.: A43-1828/1988E ISBN: 0-660-13037-8 I. Vaccinium — North America. 2. Vaccinium — North America — Classification. I. Title. II. Canada. Agriculture Canada. Research Branch. III. Series: Publication (Canada. Agriculture Canada). English ; 1828. QK495.E68V3 1988 583'.62 C88-099206-9 Cover illustration Vaccinium oualifolium Smith; watercolor by Lesley R. Bohm. Contract Editor Molly Wolf Staff Editors Sharon Rudnitski Frances Smith ForC.M.Rae Digitized by the Internet Archive in 2011 with funding from Agriculture and Agri-Food Canada - Agriculture et Agroalimentaire Canada http://www.archive.org/details/genusvacciniuminOOvand