Setting up the Distributed Analytics Environment
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Netapp Solutions for Hadoop Reference Architecture: Cloudera Faiz Abidi (Netapp) and Udai Potluri (Cloudera) June 2018 | WP-7217
White Paper NetApp Solutions for Hadoop Reference Architecture: Cloudera Faiz Abidi (NetApp) and Udai Potluri (Cloudera) June 2018 | WP-7217 In partnership with Abstract There has been an exponential growth in data over the past decade and analyzing huge amounts of data in a reasonable time can be a challenge. Apache Hadoop is an open- source tool that can help your organization quickly mine big data and extract meaningful patterns from it. However, enterprises face several technical challenges when deploying Hadoop, specifically in the areas of cluster availability, operations, and scaling. NetApp® has developed a reference architecture with Cloudera to deliver a solution that overcomes some of these challenges so that businesses can ingest, store, and manage big data with greater reliability and scalability and with less time spent on operations and maintenance. This white paper discusses a flexible, validated, enterprise-class Hadoop architecture that is based on NetApp E-Series storage using Cloudera’s Hadoop distribution. TABLE OF CONTENTS 1 Introduction ........................................................................................................................................... 4 1.1 Big Data ..........................................................................................................................................................4 1.2 Hadoop Overview ...........................................................................................................................................4 2 NetApp E-Series -
Java Linksammlung
JAVA LINKSAMMLUNG LerneProgrammieren.de - 2020 Java einfach lernen (klicke hier) JAVA LINKSAMMLUNG INHALTSVERZEICHNIS Build ........................................................................................................................................................... 4 Caching ....................................................................................................................................................... 4 CLI ............................................................................................................................................................... 4 Cluster-Verwaltung .................................................................................................................................... 5 Code-Analyse ............................................................................................................................................. 5 Code-Generators ........................................................................................................................................ 5 Compiler ..................................................................................................................................................... 6 Konfiguration ............................................................................................................................................. 6 CSV ............................................................................................................................................................. 6 Daten-Strukturen -
Apache Flink™: Stream and Batch Processing in a Single Engine
Apache Flink™: Stream and Batch Processing in a Single Engine Paris Carboney Stephan Ewenz Seif Haridiy Asterios Katsifodimos* Volker Markl* Kostas Tzoumasz yKTH & SICS Sweden zdata Artisans *TU Berlin & DFKI parisc,[email protected] fi[email protected] fi[email protected] Abstract Apache Flink1 is an open-source system for processing streaming and batch data. Flink is built on the philosophy that many classes of data processing applications, including real-time analytics, continu- ous data pipelines, historic data processing (batch), and iterative algorithms (machine learning, graph analysis) can be expressed and executed as pipelined fault-tolerant dataflows. In this paper, we present Flink’s architecture and expand on how a (seemingly diverse) set of use cases can be unified under a single execution model. 1 Introduction Data-stream processing (e.g., as exemplified by complex event processing systems) and static (batch) data pro- cessing (e.g., as exemplified by MPP databases and Hadoop) were traditionally considered as two very different types of applications. They were programmed using different programming models and APIs, and were exe- cuted by different systems (e.g., dedicated streaming systems such as Apache Storm, IBM Infosphere Streams, Microsoft StreamInsight, or Streambase versus relational databases or execution engines for Hadoop, including Apache Spark and Apache Drill). Traditionally, batch data analysis made up for the lion’s share of the use cases, data sizes, and market, while streaming data analysis mostly served specialized applications. It is becoming more and more apparent, however, that a huge number of today’s large-scale data processing use cases handle data that is, in reality, produced continuously over time. -
Declarative Languages for Big Streaming Data a Database Perspective
Tutorial Declarative Languages for Big Streaming Data A database Perspective Riccardo Tommasini Sherif Sakr University of Tartu Unversity of Tartu [email protected] [email protected] Emanuele Della Valle Hojjat Jafarpour Politecnico di Milano Confluent Inc. [email protected] [email protected] ABSTRACT sources and are pushed asynchronously to servers which are The Big Data movement proposes data streaming systems to responsible for processing them [13]. tame velocity and to enable reactive decision making. However, To facilitate the adoption, initially, most of the big stream approaching such systems is still too complex due to the paradigm processing systems provided their users with a set of API for shift they require, i.e., moving from scalable batch processing to implementing their applications. However, recently, the need for continuous data analysis and pattern detection. declarative stream processing languages has emerged to simplify Recently, declarative Languages are playing a crucial role in common coding tasks; making code more readable and main- fostering the adoption of Stream Processing solutions. In partic- tainable, and fostering the development of more complex appli- ular, several key players introduce SQL extensions for stream cations. Thus, Big Data frameworks (e.g., Flink [9], Spark [3], 1 processing. These new languages are currently playing a cen- Kafka Streams , and Storm [19]) are starting to develop their 2 3 4 tral role in fostering the stream processing paradigm shift. In own SQL-like approaches (e.g., Flink SQL , Beam SQL , KSQL ) this tutorial, we give an overview of the various languages for to declaratively tame data velocity. declarative querying interfaces big streaming data. -
Apache Apex: Next Gen Big Data Analytics
Apache Apex: Next Gen Big Data Analytics Thomas Weise <[email protected]> @thweise PMC Chair Apache Apex, Architect DataTorrent Apache Big Data Europe, Sevilla, Nov 14th 2016 Stream Data Processing Data Delivery Transform / Analytics Real-time visualization, … Declarative SQL API Data Beam Beam SAMOA Operator SAMOA DAG API Sources Library Events Logs Oper1 Oper2 Oper3 Sensor Data Social Databases CDC (roadmap) 2 Industries & Use Cases Financial Services Ad-Tech Telecom Manufacturing Energy IoT Real-time Call detail record customer facing (CDR) & Supply chain Fraud and risk Smart meter Data ingestion dashboards on extended data planning & monitoring analytics and processing key performance record (XDR) optimization indicators analysis Understanding Reduce outages Credit risk Click fraud customer Preventive & improve Predictive assessment detection behavior AND maintenance resource analytics context utilization Packaging and Improve turn around Asset & Billing selling Product quality & time of trade workforce Data governance optimization anonymous defect tracking settlement processes management customer data HORIZONTAL • Large scale ingest and distribution • Enforcing data quality and data governance requirements • Real-time ELTA (Extract Load Transform Analyze) • Real-time data enrichment with reference data • Dimensional computation & aggregation • Real-time machine learning model scoring 3 Apache Apex • In-memory, distributed stream processing • Application logic broken into components (operators) that execute distributed in a cluster • -
E6895 Advanced Big Data Analytics Lecture 4: Data Store
E6895 Advanced Big Data Analytics Lecture 4: Data Store Ching-Yung Lin, Ph.D. Adjunct Professor, Dept. of Electrical Engineering and Computer Science Chief Scientist, Graph Computing, IBM Watson Research Center E6895 Advanced Big Data Analytics — Lecture 4 © CY Lin, 2016 Columbia University Reference 2 E6895 Advanced Big Data Analytics – Lecture 4: Data Store © 2015 CY Lin, Columbia University Spark SQL 3 E6895 Advanced Big Data Analytics – Lecture 4: Data Store © 2015 CY Lin, Columbia University Spark SQL 4 E6895 Advanced Big Data Analytics – Lecture 4: Data Store © 2015 CY Lin, Columbia University Apache Hive 5 E6895 Advanced Big Data Analytics – Lecture 4: Data Store © 2015 CY Lin, Columbia University Using Hive to Create a Table 6 E6895 Advanced Big Data Analytics – Lecture 4: Data Store © 2015 CY Lin, Columbia University Creating, Dropping, and Altering DBs in Apache Hive 7 E6895 Advanced Big Data Analytics – Lecture 4: Data Store © 2015 CY Lin, Columbia University Another Hive Example 8 E6895 Advanced Big Data Analytics – Lecture 4: Data Store © 2015 CY Lin, Columbia University Hive’s operation modes 9 E6895 Advanced Big Data Analytics – Lecture 4: Data Store © 2015 CY Lin, Columbia University Using HiveQL for Spark SQL 10 E6895 Advanced Big Data Analytics – Lecture 4: Data Store © 2015 CY Lin, Columbia University Hive Language Manual 11 E6895 Advanced Big Data Analytics – Lecture 4: Data Store © 2015 CY Lin, Columbia University Using Spark SQL — Steps and Example 12 E6895 Advanced Big Data Analytics – Lecture 4: Data Store © 2015 CY Lin, Columbia University Query testtweet.json Get it from Learning Spark Github ==> https://github.com/databricks/learning-spark/tree/master/files 13 E6895 Advanced Big Data Analytics – Lecture 4: Data Store © 2015 CY Lin, Columbia University SchemaRDD 14 E6895 Advanced Big Data Analytics – Lecture 4: Data Store © 2015 CY Lin, Columbia University Row Objects Row objects represent records inside SchemaRDDs, and are simply fixed-length arrays of fields. -
The Cloud‐Based Demand‐Driven Supply Chain
The Cloud-Based Demand-Driven Supply Chain Wiley & SAS Business Series The Wiley & SAS Business Series presents books that help senior-level managers with their critical management decisions. Titles in the Wiley & SAS Business Series include: The Analytic Hospitality Executive by Kelly A. McGuire Analytics: The Agile Way by Phil Simon Analytics in a Big Data World: The Essential Guide to Data Science and Its Applications by Bart Baesens A Practical Guide to Analytics for Governments: Using Big Data for Good by Marie Lowman Bank Fraud: Using Technology to Combat Losses by Revathi Subramanian Big Data Analytics: Turning Big Data into Big Money by Frank Ohlhorst Big Data, Big Innovation: Enabling Competitive Differentiation through Business Analytics by Evan Stubbs Business Analytics for Customer Intelligence by Gert Laursen Business Intelligence Applied: Implementing an Effective Information and Communications Technology Infrastructure by Michael Gendron Business Intelligence and the Cloud: Strategic Implementation Guide by Michael S. Gendron Business Transformation: A Roadmap for Maximizing Organizational Insights by Aiman Zeid Connecting Organizational Silos: Taking Knowledge Flow Management to the Next Level with Social Media by Frank Leistner Data-Driven Healthcare: How Analytics and BI Are Transforming the Industry by Laura Madsen Delivering Business Analytics: Practical Guidelines for Best Practice by Evan Stubbs ii Demand-Driven Forecasting: A Structured Approach to Forecasting, Second Edition by Charles Chase Demand-Driven Inventory -
Indice General
i Indice general 4. Apache Lenya 1.4: Arquitectura 1 4.1. Introduccion .................................... 1 4.1.1. Arquitectura del sistema ......................... 1 4.1.2. Arquitectura del gestor de contenidos ................. 2 4.2. Conceptos basicos ................................ 4 4.2.1. Modulos .................................. 4 4.2.2. Polimor smo de las publicaciones .................... 4 4.2.2.1. El protocolo fallback:// .................... 6 4.3. La capa de presentacion ............................. 6 4.3.1. Los sitemaps de Lenya .......................... 6 4.3.1.1. El espacio de URIs ....................... 6 4.3.1.2. Proceso de una peticion .................... 8 4.4. La capa de gestion ................................ 11 4.4.1. Marco de casos de uso .......................... 11 4.4.1.1. Introduccion .......................... 11 4.4.1.2. Descripciondel funcionamiento ................ 13 4.4.1.3. Implementacionde un caso de uso .............. 13 4.4.2. Control de acceso ............................. 16 4.4.2.1. De niciones basicas ...................... 17 4.4.2.2. Componentes .......................... 18 4.4.2.3. Los mecanismos de autorizaciony autenticacion ...... 19 4.4.3. Flujo de trabajo ............................. 19 4.4.3.1. La de niciondel ujo de trabajo ............... 21 4.4.3.2. Personalizaciondel ujo de trabajo ............. 23 4.4.4. Noti caciones ............................... 23 4.5. La capa de repositorio .............................. 24 4.5.1. Acceso al repositorio ........................... 24 4.5.1.1. Control optimista de concurrencia .............. 24 4.5.1.2. Check-In y Check-Out ..................... 25 4.5.2. Control de versiones ........................... 25 4.6. Arquitectura fsica ................................ 25 4.6.1. Estructura de directorios de una publicacion ............. 25 4.6.2. Estructura de directorios de un modulo ................ 27 ii 4.6.2.1. -
Building a Modern, Scalable Cyber Intelligence Platform with Apache Kafka
White Paper Information Security | Machine Learning October 2020 IT@Intel: Building a Modern, Scalable Cyber Intelligence Platform with Apache Kafka Our Apache Kafka data pipeline based on Confluent Platform ingests tens of terabytes per day, providing in-stream processing for faster security threat detection and response Intel IT Authors Executive Summary Ryan Clark Advanced cyber threats continue to increase in frequency and sophistication, Information Security Engineer threatening computing environments and impacting businesses’ ability to grow. Jen Edmondson More than ever, large enterprises must invest in effective information security, Product Owner using technologies that improve detection and response times. At Intel, we Dennis Kwong are transforming from our legacy cybersecurity systems to a modern, scalable Information Security Engineer Cyber Intelligence Platform (CIP) based on Kafka and Splunk. In our 2019 paper, Transforming Intel’s Security Posture with Innovations in Data Intelligence, we Jac Noel discussed the data lake, monitoring, and security capabilities of Splunk. This Security Solutions Architect paper describes the essential role Apache Kafka plays in our CIP and its key Elaine Rainbolt benefits, as shown here: Industry Engagement Manager ECONOMIES OPERATE ON DATA REDUCE TECHNICAL GENERATES OF SCALE IN STREAM DEBT AND CONTEXTUALLY RICH Paul Salessi DOWNSTREAM COSTS DATA Information Security Engineer Intel IT Contributors Victor Colvard Information Security Engineer GLOBAL ALWAYS MODERN KAFKA LEADERSHIP SCALE AND REACH ON ARCHITECTURE WITH THROUGH CONFLUENT Juan Fernandez THRIVING COMMUNITY EXPERTISE Technical Solutions Specialist Frank Ober SSD Principal Engineer Apache Kafka is the foundation of our CIP architecture. We achieve economies of Table of Contents scale as we acquire data once and consume it many times. -
An Enterprise Knowledge Network
Fogbeam Labs Cut Through The Information Fog http://www.fogbeam.com An Enterprise Knowledge Network Knowledge exists in many forms inside your organization – ranging from tacit knowledge which exists only in the minds of the users who possess it, to codified knowledge stored in databases and document repositories. Unfortunately while knowledge exists throughout the organization, it is often not easy (if even possible) to locate, use, share, and reuse existing knowledge. This results in a situation often described as “the left hand doesn't know what the right hand is doing” and damages morale as employees spend their days frustrated and complaining that “nobody knows what is going on around here”. The obstacles that hinder access to existing knowledge can be cultural, geographical, social, and/or technological. And while no technological solution can guarantee perfect knowledge-sharing, tools drawn from big data, data mining / machine learning, deep learning, and artificial intelligence techniques can improve an organization's power to generate, capture, use, share and reuse knowledge. Using technologies developed as part of the semantic web initiative, and applying the principles of linked data within the enterprise, the Fogbeam Labs Enterprise Knowledge Network approach can help your firm integrate and aggregate knowledge which is spread across your existing enterprise applications, content repositories and Intranet. An Enterprise Knowledge Network enables your firm's capabilities to: • engage in high levels of knowledge transfer and -
Evaluation of SPARQL Queries on Apache Flink
applied sciences Article SPARQL2Flink: Evaluation of SPARQL Queries on Apache Flink Oscar Ceballos 1 , Carlos Alberto Ramírez Restrepo 2 , María Constanza Pabón 2 , Andres M. Castillo 1,* and Oscar Corcho 3 1 Escuela de Ingeniería de Sistemas y Computación, Universidad del Valle, Ciudad Universitaria Meléndez Calle 13 No. 100-00, Cali 760032, Colombia; [email protected] 2 Departamento de Electrónica y Ciencias de la Computación, Pontificia Universidad Javeriana Cali, Calle 18 No. 118-250, Cali 760031, Colombia; [email protected] (C.A.R.R.); [email protected] (M.C.P.) 3 Ontology Engineering Group, Universidad Politécnica de Madrid, Campus de Montegancedo, Boadilla del Monte, 28660 Madrid, Spain; ocorcho@fi.upm.es * Correspondence: [email protected] Abstract: Existing SPARQL query engines and triple stores are continuously improved to handle more massive datasets. Several approaches have been developed in this context proposing the storage and querying of RDF data in a distributed fashion, mainly using the MapReduce Programming Model and Hadoop-based ecosystems. New trends in Big Data technologies have also emerged (e.g., Apache Spark, Apache Flink); they use distributed in-memory processing and promise to deliver higher data processing performance. In this paper, we present a formal interpretation of some PACT transformations implemented in the Apache Flink DataSet API. We use this formalization to provide a mapping to translate a SPARQL query to a Flink program. The mapping was implemented in a prototype used to determine the correctness and performance of the solution. The source code of the Citation: Ceballos, O.; Ramírez project is available in Github under the MIT license. -
Unravel Data Systems Version 4.5
UNRAVEL DATA SYSTEMS VERSION 4.5 Component name Component version name License names jQuery 1.8.2 MIT License Apache Tomcat 5.5.23 Apache License 2.0 Tachyon Project POM 0.8.2 Apache License 2.0 Apache Directory LDAP API Model 1.0.0-M20 Apache License 2.0 apache/incubator-heron 0.16.5.1 Apache License 2.0 Maven Plugin API 3.0.4 Apache License 2.0 ApacheDS Authentication Interceptor 2.0.0-M15 Apache License 2.0 Apache Directory LDAP API Extras ACI 1.0.0-M20 Apache License 2.0 Apache HttpComponents Core 4.3.3 Apache License 2.0 Spark Project Tags 2.0.0-preview Apache License 2.0 Curator Testing 3.3.0 Apache License 2.0 Apache HttpComponents Core 4.4.5 Apache License 2.0 Apache Commons Daemon 1.0.15 Apache License 2.0 classworlds 2.4 Apache License 2.0 abego TreeLayout Core 1.0.1 BSD 3-clause "New" or "Revised" License jackson-core 2.8.6 Apache License 2.0 Lucene Join 6.6.1 Apache License 2.0 Apache Commons CLI 1.3-cloudera-pre-r1439998 Apache License 2.0 hive-apache 0.5 Apache License 2.0 scala-parser-combinators 1.0.4 BSD 3-clause "New" or "Revised" License com.springsource.javax.xml.bind 2.1.7 Common Development and Distribution License 1.0 SnakeYAML 1.15 Apache License 2.0 JUnit 4.12 Common Public License 1.0 ApacheDS Protocol Kerberos 2.0.0-M12 Apache License 2.0 Apache Groovy 2.4.6 Apache License 2.0 JGraphT - Core 1.2.0 (GNU Lesser General Public License v2.1 or later AND Eclipse Public License 1.0) chill-java 0.5.0 Apache License 2.0 Apache Commons Logging 1.2 Apache License 2.0 OpenCensus 0.12.3 Apache License 2.0 ApacheDS Protocol