Global Change in the Geosphere-Biosphere

Total Page:16

File Type:pdf, Size:1020Kb

Load more

Global Change in the I Geosphere-Biosphere Initial Priorities for an IGBP 111111111111111111111111111111111111111111111 NF00454 Global Change in the Geosphere-Biosphere Initial Priorities for an IGOP U.S. Committee for an International Geosphere-Biosphere Program Commission on Physical Sciences, Mathematics, and Resources National Research Council NATIONAL ACADEMY PRESS Washington, D.C. 1986 NOTICE: The project that is the subject of this report was approved by the Governing Board of the National Research Council, whose members are drawn from the councils of the National Academy of Sciences, the National Academy of Engineering, and the Institute of Medicine. The members of the committee responsible for the report were chosen for their special competences and with regard for appropriate balance. This report has been reviewed by a group other than the authors according to procedures approved by a Report Review Committee consisting of members of the National Academy of Sciences, the National Academy of Engineering, and the Institute of Medicine. The National Research Council was established by the National Academy of Sciences in 1916 to associate the broad communjty of science and technology with the Academy's purposes of furthering knowledge and of advising the federal government. The Council operates in accordance with general policies determined by the Academy under the authority of its congressional charter of 1863, which establishes the Academy as a private, nonprofit, self-governing membership corporation. The Council has become the principal operating agency of both the National Academy of Sciences and the National Academy of Engineering in the conduct of their services to the government, the public, and the scientific and engineering communities. It is administered jointly by both Academies and the Institute of Medicine. The National Academy of Engineering and the Institute of Medicine were established in 1964 and 1970, respectively, under the charter of the National Academy of Sciences. This study was supported by the following agencies: the National Aeronautics and Space Administration, under contracts NASW 3985 and NASW 4056; the Department of the Interior, under Purchase Order 42000-0666; the Department of Energy, under Grant DE-FG05-84ER-602777; and the Department of the Navy under Grant N00014-84-0196. Copies available from: The Board on Atmospheric Sciences and Climate National Research Council 2101 Constitution Avenue, NW Washington, DC 20418 U.S. Committee for an International Geosphere-Biosphere Program John A. Eddy, National Center for Atmospheric Research, Cha£rman D. James Baker, Joint Oceanographic Institutions, Inc. Wallace S. Broecker, Lamont-Doherty Geological Observatory, Columbia University Charles Drake, Dartmouth College Peter Eagleson, Massachusetts Institute of Technology William S. Fyfe, University of Western Ontario W.Lawrence Gates, Oregon State University John Imbrie, Brown University Robert Loomis, University of California, Davis James J. McCarthy, Harvard University Michael B. McElroy, Harvard University Mark F. Meier, U.S. Geological Survey Harold Mooney, Stanford University Andrew Nagy, University of Michigan Ronald Prinn, Massachusetts Institute of Technology S. Ichtiaque Rasool, Jet Propulsion Laboratory, California Institute of Technology Roger Revelle, University of California, San Diego Norman J. Rosenberg, University of Nebraska-Lincoln NRC Staff Peter Abel Robert S. Chen John S. Perry iii Board on Atmospheric Sciences and Climate Charles L. Hosler; Jr., Pennsylvania St.ate University, Ohairman Louis J. Battan, University of Arizona Kirk Bryan, Princeton University William C. Clark, International Institute for Applied Systems Analysis Robert A. Duce, University of Rhode Island John A. Eddy, National Center for Atmospheric Research John Gerber, University of Florida John B. Hovermale, Naval Environmental Prediction Research Facility Francis S. Johnson, University of Texas, Dallas Michael B. McElroy, Harvard University Volker A. Mohnen, State University of New York, Albany Andrew F. Nagy, University of Michigan Julia N. Paegle, University of Utah Roger R. Revelle, University of California, San Diego Juan G. Roederer, University of Alaska John W. Townsend, Fairchild Space & Electronics Company Warren Washington, National Center for Atmospheric Research Ex-Officio Members Werner A. Baum, Florida State University Devire Intriligator, Carmel Research Center Joseph Smagorinsky, Princeton University Verner E. Suomi, University of Wisconsin, Madison iv Commission on Physical Sciences, Mathematics, and Resources Herbert Friedman, National Research Council, Chairman Clarence R. Allen, California Institute of Technology Thomas Barrow, Standard Oil Company, Inc. (Retired) Elkan R. Blout, Harvard Medical School Bernard F. Burke, Massachusetts Institute of Technology George F. Carrier, Harvard University Charles L. Drake, Dartmouth College Mildred S. Dresselhaus, Massachusetts Institute of Technology Joseph L. Fisher, Office of the Governor, Commonwealth of Virginia James C. Fletcher, University of Pittsburgh William A. Fowler, California Institute of Technology Gerhart Friedlander, Brookhaven National Laboratory Edward D. Goldberg, Scripps Institution of Oceanography Mary 1. Good, UOP, Inc. J. Ross MacDonald, University of North Carolina Thomas F. Malone, Saint Joseph College Charles J. Mankin, Oklahoma Geological Survey Perry L. McCarty, Stanford University William D. Phillips, Mallinckrodt, Inc. Robert E. Sievers, University of Colorado John D. Spengler, Harvard School of Public Health George W. Wetherill, Carnegie Institution of Washington Raphael G. Kasper, Executive Director Lawrence E.McCray, Associate Executive Director v This Page Intentionally left Blank FOREWORD Cooperation in observation and research has long been the hallmark of the earth sciences. In the seventeenth century, Hadley laboriously developed an understanding of the global atmospheric circulation and the trade winds from carefully collected ships' logs. By the nineteenth cen­ tury, formally organized international scientific activities began to take shape, such as the First Polar Year of 1882-1883. In the same period, international networks of weather observations emerged that have contin­ ued through the present. In our own century, the International Geophy­ sical Year (lGY) of 1957-1958 not only created an unprecedented treasure trove of coordinated data but also spawned a host of successor programs, some of which are still in progress. For the most part, these programs focused on one or another com­ ponent of our complex planet and primarily involved the scientific discip­ lines specialized to address that component. For example, the Global Atmospheric Research Program (GARP) addressed the large-scale circula­ tion of the atmosphere; through its observational programs and coordi­ nated research efforts, meteorologists and oceanographers greatly advanced our understanding of the processes determining weather and climate variability. The power of space-based observations of solar radia­ tion and its role in global stratospheric photochemistry has further exposed the vast complexity of atmospheric processes at high altitude. The very success of these endeavors within the various disciplines of the earth sciences, however, has made us aware of their limitations. As we have learned more about the workings of the Earth's atmosphere, oce­ ans, biota, space environment, solar variability, and indeed the solid Earth itself, we have become increasingly aware of the interactions among these components. Indeed, it has become increasingly evident that the most scientifically challenging and socially important problems facing the environmental sciences lie at the interfaces between these com­ ponents, and thus between the established disciplines of the sciences of the geosphere and biosphere. The modern view of the Earth as a scene of continual change, and of mankind as an increasingly potent agent for change, heightens the vii importance of these interactions. The richly detailed chronology of massive global changes in the Quaternary associated with the advance and retreat of the great ice sheets can be understood only in a framework that encompasses ocean chemistry and biology, lithospheric dynamics, solar and orbital variations, and the terrestrial biota. Understanding future environmental changes that may be induced by mankind's transformation of the Earth's surface and the atmosphere's composition will require an even greater breadth of investigation that includes the social sciences. Such considerations, inspired by the twenty-fifth anniversary of the IGY, have generated a number of initatives aimed at fostering international, interdisciplinary, and global-scale studies. A unifying theme was cogently stated by George Garland in an International Council of Scientific Unions (ICSU) lecture commemorating the twenty­ fifth anniversary of the IGY. He remarked that the "mysteries" that remain in our understanding of the planet involve the interaction between physical and biological processes, including those processes dominated by human actions. A group of scientists advising the National Aeronautics and Space Administration (NASA) under the leadership of Richard Goody called for a program to address the continued "habitability" of the planet. Within the National Research Council (NRC), I encouraged discussions of future international interdisciplinary programs by the several units of the NRC concerned with the natural sciences.
Recommended publications
  • Study of the Geoeffectiveness of Coronal Mass Ejections

    Study of the Geoeffectiveness of Coronal Mass Ejections

    Study of the geoeffectiveness of coronal mass ejections Katarzyna Bronarska Jagiellonian University Faculty of Physics, Astronomy and Applied Computer Science Astronomical Observatory PhD thesis written under the supervision of dr hab. Grzegorz Michaªek September 2018 Acknowledgements Pragn¦ wyrazi¢ gª¦bok¡ wdzi¦czno±¢ moim rodzicom oraz m¦»owi, bez których »aden z moich sukcesów nie byªby mo»liwy. Chc¦ równie» podzi¦kowa¢ mojemu promotorowi, doktorowi hab. Grzogorzowi Michaªkowi, za ci¡gªe wsparcie i nieocenion¡ pomoc. I would like to express my deepest gratitude to my parents and my husband, without whom none of my successes would be possible. I would like to thank my superior, dr hab. Grzegorz Michaªek for continuous support and invaluable help. Abstract This dissertation is an attempt to investigate geoeectiveness of CMEs. The study was focused on two important aspects regarding the prediction of space weather. Firstly, it was presented relationship between energetic phenomena on the Sun and CMEs producing solar energetic particles. Scientic considerations demonstrated that very narrow CMEs can generate low energy particles (energies below 1 MeV) in the Earth's vicinity without other activity on the Sun. It was also shown that SEP events associated with active regions from eastern longitudes have to be complex to produce SEP events at Earth. On the other hand, SEP particles originating from mid-longitudes (30<latitude<70) on the west side of solar disk can be also associated with the least complex active regions. Secondly, two phenomena aecting CMEs detection in coronagraphs have been dened. During the study the detection eciency of LASCO coronagraphs was evaluated. It was shown that the detection eciency of the LASCO coronagraphs with typical data availability is sucient to record all potentially geoeective CMEs.
  • Continuous Magnetic Reconnection at the Earth's Magnetopause

    Continuous Magnetic Reconnection at the Earth's Magnetopause

    Why Study Magnetic Reconnection? Fundamental Process • Sun: Solar flares, Flare loops, CMEs • Interplanetary Space • Planetary Magnetosphere: solar wind plasma entry, causes Aurora Ultimate goal of the project – observe magnetic reconnection by satellite in situ through predictions of reconnection site in model Regions of the Geosphere • Solar wind: made up of plasma particles (pressure causes field distortion) • Bow shock: shock wave preceding Earth’s magnetic field • Magnetosheath: region of shocked plasma (higher density) • Magnetopause: Boundary between solar wind/geosphere • Cusp region: region with open field lines and direct solar wind access to upper atmosphere Magnetic Reconnection • Two antiparallel magnetized plasmas, separated by current sheet • Occurs in a very small area (Diffusion Region) At the Earth’s Magnetopause: • IMF reconnects with Earth’s magnetic field across the magnetopause • Southward IMF reconnects near equator • Forms open field lines, which convect backwards to cusp Instrument Overview Polar –TIMAS Wind - SWE instrument • Outside • Measures 3D velocity geospheric distributions influence • Focused on H+ data • Provides solar wind data Magnetic Reconnection Observed in the Cusp Magnetopause Fast Particle Magnetospheric Slow Particle • Color spectrogram Cusp • Measures energy and intensity (flux) of protons from solar wind Solar Wind in cusp with respect to time and latitude • Latitude changes due to convection Color spectrogram produced by IDL program written by mentor Methodology to Determine Where Reconnection
  • Extraformational Sediment Recycling on Mars Kenneth S

    Extraformational Sediment Recycling on Mars Kenneth S

    Research Paper GEOSPHERE Extraformational sediment recycling on Mars Kenneth S. Edgett1, Steven G. Banham2, Kristen A. Bennett3, Lauren A. Edgar3, Christopher S. Edwards4, Alberto G. Fairén5,6, Christopher M. Fedo7, Deirdra M. Fey1, James B. Garvin8, John P. Grotzinger9, Sanjeev Gupta2, Marie J. Henderson10, Christopher H. House11, Nicolas Mangold12, GEOSPHERE, v. 16, no. 6 Scott M. McLennan13, Horton E. Newsom14, Scott K. Rowland15, Kirsten L. Siebach16, Lucy Thompson17, Scott J. VanBommel18, Roger C. Wiens19, 20 20 https://doi.org/10.1130/GES02244.1 Rebecca M.E. Williams , and R. Aileen Yingst 1Malin Space Science Systems, P.O. Box 910148, San Diego, California 92191-0148, USA 2Department of Earth Science and Engineering, Imperial College London, South Kensington, London SW7 2AZ, UK 19 figures; 1 set of supplemental files 3U.S. Geological Survey, Astrogeology Science Center, 2255 N. Gemini Drive, Flagstaff, Arizona 86001, USA 4Department of Astronomy and Planetary Science, Northern Arizona University, P.O. Box 6010, Flagstaff, Arizona 86011, USA CORRESPONDENCE: [email protected] 5Department of Planetology and Habitability, Centro de Astrobiología (CSIC-INTA), M-108, km 4, 28850 Madrid, Spain 6Department of Astronomy, Cornell University, Ithaca, New York 14853, USA 7 CITATION: Edgett, K.S., Banham, S.G., Bennett, K.A., Department of Earth and Planetary Sciences, The University of Tennessee, 1621 Cumberland Avenue, 602 Strong Hall, Knoxville, Tennessee 37996-1410, USA 8 Edgar, L.A., Edwards, C.S., Fairén, A.G., Fedo, C.M., National Aeronautics
  • Directed Reading Packet

    Directed Reading Packet

    Directed Reading Packet Geosphere Unit Name:_______________________________ Teacher: _________________ Period: ____ Section 1.2: A View of Earth This section explains the physical structure of Earth. Reading Strategy Predicting Before you read, predict the meaning of the vocabulary terms. After you read, revise your definition if your prediction was incorrect. For more information on this Reading Strategy, see the Reading and Study Skills in the Skills and Reference Handbook at the end of your textbook. Vocabulary Term Before You Read After You Read hydrosphere a. b. atmosphere c. d. geosphere e. f. biosphere g. h. core i. j. mantle k. l. crust m. n. Earth’s Major Spheres 1. Earth can be thought of as consisting of four major spheres: the , , , and . Match each term to its description. Term Description 2. hydrosphere a. all life-forms on Earth 3. atmosphere b. composed of the core, mantle, and crust 4. geosphere c. dense, heavy inner sphere of Earth 5. biosphere d. thin outside layer of Earth’s surface 6. core e. the water portion of Earth 7. mantle f. the gaseous envelope around Earth 8. crust g. located between the crust and core of Earth 9. What does each letter in the diagram below represent? A. B. C. D. E. F. G. H. I. J. Plate Tectonics 10. Is the following sentence true or false? Forces such as weathering and erosion that work to wear away high points and flatten out Earth’s surface are called constructive forces. 11. Circle the letter of each type of constructive force. a. gravity b.
  • Session B-1: Model Building in Planetary Science and the NGSS

    Session B-1: Model Building in Planetary Science and the NGSS

    Model Building in Planetary Science and the NGSS Dr. Eric Hawker IMSA Science Faculty March 4th , 2016 Planetary Science • Planets are complicated dynamic systems. • There are many planetary attributes that interact with each other. • The dynamic changes that planets go through are driven by energy. Model Building • Usually these are not physical models! • A set of concepts that describe a system. • NGSS Science and Engineering Practices: Developing and Using Models: Modeling in 9–12 builds on K–8 experiences and progresses to using, synthesizing, and developing models to predict and show relationships among variables between systems and their components in the natural and designed world(s). • Develop a model based on evidence to illustrate the relationships between systems or between components of a system. (HS-ESS2-1), (HS-ESS2-3),(HS-ESS2-6) • Use a model to provide mechanistic accounts of phenomena. (HS- ESS2-4) Model Building • HS-ESS2-1. Develop a model to illustrate how Earth’s internal and surface processes operate at different spatial and temporal scales to form continental and ocean-floor features. • HS-ESS2-3. Develop a model based on evidence of Earth’s interior to describe the cycling of matter by thermal convection. • HS-ESS2-6. Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, and biosphere. Heat from Planetary Formation • The initial solar nebula of dust and gas that the Solar System formed from had a lot of gravitational potential energy. • This gravitational potential energy was turned into thermal energy (heat) during planetary formation. Atacama Large Millimeter Array image of HL Tauri Radioactivity • When the planets formed, radioactive isotopes such as uranium, thorium, and potassium were trapped deep underground.
  • Geosphere Process Report for the Safety Assessment SR-Site Assessment Safety the for Report Process Geosphere Technical Report TR-10-48

    Geosphere Process Report for the Safety Assessment SR-Site Assessment Safety the for Report Process Geosphere Technical Report TR-10-48

    Geosphere process report for the safety assessment SR-Site Technical Report TR-10-48 Geosphere process report for the safety assessment SR-Site Svensk Kärnbränslehantering AB November 2010 Svensk Kärnbränslehantering AB Swedish Nuclear Fuel and Waste Management Co Box 250, SE-101 24 Stockholm Phone +46 8 459 84 00 TR-10-48 CM Gruppen AB, Bromma, 2010 CM Gruppen ISSN 1404-0344 SKB TR-10-48 Geosphere process report for the safety assessment SR-Site Svensk Kärnbränslehantering AB November 2010 A pdf version of this document can be downloaded from www.skb.se 2011-10. Preface This document compiles information on processes in the geosphere relevant for long-term safety of a KBS-3 repository. It supports the safety assessment SR-Site, which will support the licence application for a final repository in Sweden. The work of compiling this report has been led by Kristina Skagius, Kemakta Konsult AB. She has also been the main editor of the report. The following persons have had the main responsibilities for specific subject areas: Harald Hökmark, Clay Technology AB (thermal and mechanical processes), Jan-Olof Selroos, SKB (hydrogeological and transport processes), and Ignasi Puigdomenech and Birgitta Kalinowski, SKB (geochemical processes). In addition, a number of experts have contributed to specific parts of the report as listed in Section 1.3. The report has been reviewed by Jordi Bruno, Amphos, Spain; John Cosgrove, Imperial College, UK; Thomas Doe, Golder Associates Inc, USA; Alan Hooper, Alan Hooper Consulting Limited, UK; John Hudson, Rock Engineering Consultants, UK; Ivars Neretnieks, Royal Institute of Technology, Sweden; Mike Thorne, Mike Thorne and Associates Ltd, UK; and Per-Eric Ahlström, SKB.
  • Development of a Local Empirical Model of Ionospheric Total Electron

    Development of a Local Empirical Model of Ionospheric Total Electron

    www.nature.com/scientificreports OPEN Development of a local empirical model of ionospheric total electron content (TEC) and its application for studying solar‑ionospheric efects Pantea Davoudifar1,2*, Keihanak Rowshan Tabari1, Amir Abbas Eslami Shafgh1, Ali Ajabshirizadeh3, Zahra Bagheri4, Fakhredin Akbarian Tork Abad2 & Milad Shayan1 Regular and irregular variations in total electron content(TEC) are one of the most signifcant observables in ionosphericstudies. During the solar cycle 24, the variability of ionosphere isstudied using global positioning system derived TEC at amid‑latitude station, Tehran (35.70N, 51.33E). Based on solar radiofux and seasonal and local time‑dependent features of TEC values, asemi‑ empirical model is developed to represent its monthly/hourlymean values. Observed values of TEC and the results of oursemi‑empirical model then are compared with estimated values of astandard plasmasphere–ionosphere model. The outcome of this modelis an expected mean TEC value considering the monthly/hourly regularefects of solar origin. Thus, it is possible to use it formonitoring irregular efects induced by solar events. As a result,the connection of TEC variations with solar activities are studiedfor the case of coronal mass ejections accompanying extremesolar fares. TEC response to solar fares of class X is wellreproduced by this model. Our resulting values show that the mostpowerful fares (i.e. class X) induce a variation of more than 20percent in daily TEC extent. In the Earth’s ionosphere, the variability of space weather is easily refected in TEC. As the total number of electrons is measured along a vertical column of one square meter cross-section (1 TEC Unit (TECU) = 1 × 1016 electrons m−2 ) from the height of a GPS satellite (∼ 20, 000 km ) to the receiver, thus TEC char- acterizes variations in both ionosphere and plasmasphere 1.
  • Space Weather Effects Studies in Azerbaijan: Potential Impacts on Geosphere, Biosphere and Periodic Comets

    Space Weather Effects Studies in Azerbaijan: Potential Impacts on Geosphere, Biosphere and Periodic Comets

    SENS 2007 Third Scientific Conference with International Participation SPACE, ECOLOGY, NANOTECHNOLOGY, SAFETY 27–29 June 2007, Varna, Bulgaria SPACE WEATHER EFFECTS STUDIES IN AZERBAIJAN: POTENTIAL IMPACTS ON GEOSPHERE, BIOSPHERE AND PERIODIC COMETS Elchin Babayev, Arif Hashimov, Ayyub Guliyev, Famil Mustafa, Peter Shustarev, Abbas Asgarov Azerbaijan National Academy of Sciences 10, Istiglaliyyat Street, Baku, AZ-1001, the Republic of Azerbaijan е-mail: [email protected] Key words: space weather, power failures, sudden cardiac death, traffic accidents, periodic comets Abstract. For getting more and better knowledge about the physical links between major space weather sources (solar, geomagnetic and cosmic ray activities) and short- and long-term effects on technical-engineering systems and biosphere, particularly, human life and health state in middle latitudes, we are conducting complex (theoretical, experimental and statistical) space weather studies in the Azerbaijan National Academy of Sciences. Part of main and recently obtained results of these collaborative investigations of potential space weather effects on functioning of power supply systems, sudden cardiac death mortality as well as an influence of changes of heliogeophysical conditions on dynamics of traffic accidents is briefly provided in this review paper. An influence of solar activity on changes of brightness curves of periodic comets 29P/Schwassmann-Wachmann and 1P/Halley is investigated on the basis of data with about 1300 and 5900 estimations of brightness and using improved by authors calculations for visual magnitude of comets. 1. Introduction According to the US National Space Weather Programme (1995), space weather refers to the “conditions on the Sun and in the solar wind, magnetosphere, ionosphere, and thermosphere that can influence the performance and reliability of space-borne and ground-based technological systems and can endanger human life or health”.
  • Changing Climate a Guide for Teaching Climate Change in Grades 3 to 8 the Climate System 1 and Greenhouse Effect by Lindsey Mohan and Jenny D

    Changing Climate a Guide for Teaching Climate Change in Grades 3 to 8 the Climate System 1 and Greenhouse Effect by Lindsey Mohan and Jenny D

    ENVIRONMENTAL LITERACY TEACHER GUIDE SERIES Changing Climate A Guide for Teaching Climate Change in Grades 3 to 8 The Climate System 1 and Greenhouse Effect by Lindsey Mohan and Jenny D Ingber “Climate is what you increased risk of drought, wildfires, and of this natural phenomenon is now expect, weather is plant and animal extinctions. causing a range of changes throughout In order to make well-informed Earth’s system. what you get.” decisions that will enable humans and In this chapter we consider the Robert A. Heinlein other organisms to continue to thrive on differences between climate and Earth into the future, today’s students weather, look at the climate system in arth’s global climate is changing, need to have at least a basic scientific more detail, discuss what it means for bringing numerous changes to the understanding of our planet’s climate climate to change, and take a closer E planet and the organisms that live system and the role that humans are look at the Greenhouse Effect and what on it. Validated records from instruments playing in changing it. students know about this important around the world show that our global The climate system encompasses a phenomenon. temperature increased by around one complex set of processes that affect degree Celsius (almost two degrees conditions around the world. One of Our Experience Fahrenheit) during the second half of the most important features of the of Climate the 20th century. Consequences of this climate system—the Greenhouse Weather and climate are a part of observed warming include substantial Effect—is necessary for life on Earth.
  • Sun and Geosphere, Vol.4 - No.1 - 2009, in Press

    Sun and Geosphere, Vol.4 - No.1 - 2009, in Press

    Sun and Geosphere, Vol.4 - No.1 - 2009, in press A Catalog of Halo Coronal Mass Ejections from SOHO N. Gopalswamy1, S. Yashiro2, G. Michalek3, H. Xie3, P. Mäkelä3, A. Vourlidas4, R. A. Howard4` 1NASA Goddard Space Flight Center, Greenbelt, Maryland, USA, 2Interferometrics, Herndon VA, USA, 3The Catholic University of America, Washington DC, USA, 4Naval Research Laboratory, Washington DC, USA Coronal mass ejections (CMEs) that appear to surround the occulting disk of the observing coronagraph are known as halo CMEs. Halos constitute a subset of energetic CMEs that have important heliospheric consequences. Here we describe an on-line catalog that contains all the halo CMEs that were identified in the images obtained by the Solar and Heliospheric Observatory (SOHO) mission’s Large Angle and Spectrometric Coronagraph (LASCO) since 1996. Until the end of 2007, some 396 halo CMEs were recorded. For each halo CME, we identify the solar source (heliographic coordinates), the soft X-ray flare importance, and the flare onset time. From the sky-plane speed measurements and the solar source information we obtain the space speed of CMEs using a cone model. In addition to the description of the catalog (http://cdaw.gsfc.nasa.gov/CME_list/HALO/halo.html), we summarize the statistical properties of the halo CMEs. We confirm that halo CMEs are twice faster than ordinary CMEs and are associated with major flares on the average. We also compared the annual rate of halo CMEs with that obtained by automatic detection methods and found that most of these methods have difficulty in identifying full halo CMEs.
  • Cosmic Influence on the Sun-Earth Environment

    Cosmic Influence on the Sun-Earth Environment

    Sensors 2008, 8, 7736-7752; DOI: 10.3390/s8127736 OPEN ACCESS sensors ISSN 1424-8220 www.mdpi.com/journal/sensors Article Cosmic Influence on the Sun-Earth Environment Saumitra Mukherjee Geology and Remote Sensing, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi-110067, India; E-mail: [email protected]; Tel. +91-11-26704312; Fax +91-11-26704312 Received: 19 May 2008; in revised form: 2 June 2008 / Accepted: 29 November 2008 / Published: 3 December 2008 Abstract: SOHO satellite data reveals geophysical changes before sudden changes in the Earth's Sun-Earth environment. The influence of extragalactic changes on the Sun as well as the Sun-Earth environment seems to be both periodic and episodic. The periodic changes in terms of solar maxima and minima occur every 11 years, whereas the episodic changes can happen at any time. Episodic changes can be monitored by cosmic ray detectors as a sudden increase or decrease of activity. During these solar and cosmic anomaly periods the environment of the Earth is affected. The Star-Sun-Earth connection has the potential to influence the thermosphere, atmosphere, ionosphere and lithosphere. Initial correlation of the cosmic and Sun-Earth connection has shown the possibility of predicting earthquakes, sudden changes in atmospheric temperatures and erratic rainfall/snowfall patterns. Keywords: SOHO satellite data, cosmic, extragalactic, earthquake, change in atmosphere 1. Introduction Since the early days of human civilization we have looked at the sky and tried to understand the environment of the Earth and the Universe [1, 2, 3, 4, and 5]. We are continuously collecting data for different environmental parameters.
  • Coronal Mass Ejections: a Summary of Recent Results

    Coronal Mass Ejections: a Summary of Recent Results

    Coronal Mass Ejections: a Summary of Recent Results N. Gopalswamy, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA, nat.gopalswamy @nasa.gov Abstract Coronal mass ejections (CMEs) have been recognized as the most energetic phenomenon in the heliosphere, deriving their energy from the stressed magnetic fields on the Sun. This paper summarizes the properties of CMEs and highlights some of the recent results on CMEs. In particular, the morphological, physical, and kinematic properties of CMEs are summarized. The CME consequences in the heliosphere such as interplanetary shocks, type II radio bursts, energetic particles, geomagnetic storms, and cosmic ray modulation are discussed. 1. Introduction bias to the work done by the author’s group. The paper is organized as follows: A coronal mass ejection (CME) can be defined as a Section 2 describes the basic properties of CMEs, concentrated material in the corona moving away from covering the morphological, physical, kinematic, and the Sun, but distinct from the solar wind. In source properties. Section 3 discusses halo CMEs, coronagraphic images, a CME can be recognized as which is a special population of CMEs having wide bright features moving to progressively larger ranging consequences in the heliosphere. Section 4 heliocentric distances. The movement is such that the describes various properties of CME-driven shocks lower part of the feature is always connected to the Sun, including their ability to produce type II radio bursts. i.e., the CME is anchored to the Sun and it expands into Section 5 describes the connection between coronal and the interplanetary space. The outward motion implies a IP manifestations of CMEs.