Tectonic Inheritance at a Continental Margin, William A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Mineralogy of Anthropocene E
1 A Minerology for the Anthropocene Pierre FLUCK Institut Universitaire de France / Docteur-ès-Sciences / geologist and archeologist / Emeritus Professor at Université de Haute-Alsace This essay is a follow-up on « La signature stratigraphique de l’Anthropocène », which is also available on HAL- Archives ouvertes. Table of contents 1. Introduction: neoformation minerals in ancient mining galleries 2. Minerals from burning coal mines 3. Minerals from the mineral processing industry 4 ...and metallurgy 5. Neoformations in slags 6. Speciation of heavy metals in soils 7. Metal objects in their archaeological environment, or affected by fire 8. Neoformations in or on the surface of building stones 9. A mineralogy of materials. The “miracle of the potter”. The minerals in cement 10. A mineralogy of the biosphere? Conclusions Warning. This paper is written to be read by both specialists and a wider audience. However, it contains many mineral names. While these may resonate in the minds of mineralogists or collectors, they may not be as meaningful to less discerning readers. Such readers should not be scared, for they may find excellent encyclopaedic records on the web, including chemical composition, crystallographic properties and description of each of these species. This is why we have decided not to include further information in this paper. Acknowledgements. I would like to thank the mineralogists with whom I have had the opportunity to maintain fruitful exchanges for a long time: my pupil Hubert Bari, Éric Asselborn, Cédric Lheur, François Farges. And I would like to honour the memories of René Weil (1901-1983), my master in descriptive mineralogy, and of Jacques Geffroy (1918-1993), pupil of Alfred Lacroix, my master in metallogeny. -
Study of the Geoeffectiveness of Coronal Mass Ejections
Study of the geoeffectiveness of coronal mass ejections Katarzyna Bronarska Jagiellonian University Faculty of Physics, Astronomy and Applied Computer Science Astronomical Observatory PhD thesis written under the supervision of dr hab. Grzegorz Michaªek September 2018 Acknowledgements Pragn¦ wyrazi¢ gª¦bok¡ wdzi¦czno±¢ moim rodzicom oraz m¦»owi, bez których »aden z moich sukcesów nie byªby mo»liwy. Chc¦ równie» podzi¦kowa¢ mojemu promotorowi, doktorowi hab. Grzogorzowi Michaªkowi, za ci¡gªe wsparcie i nieocenion¡ pomoc. I would like to express my deepest gratitude to my parents and my husband, without whom none of my successes would be possible. I would like to thank my superior, dr hab. Grzegorz Michaªek for continuous support and invaluable help. Abstract This dissertation is an attempt to investigate geoeectiveness of CMEs. The study was focused on two important aspects regarding the prediction of space weather. Firstly, it was presented relationship between energetic phenomena on the Sun and CMEs producing solar energetic particles. Scientic considerations demonstrated that very narrow CMEs can generate low energy particles (energies below 1 MeV) in the Earth's vicinity without other activity on the Sun. It was also shown that SEP events associated with active regions from eastern longitudes have to be complex to produce SEP events at Earth. On the other hand, SEP particles originating from mid-longitudes (30<latitude<70) on the west side of solar disk can be also associated with the least complex active regions. Secondly, two phenomena aecting CMEs detection in coronagraphs have been dened. During the study the detection eciency of LASCO coronagraphs was evaluated. It was shown that the detection eciency of the LASCO coronagraphs with typical data availability is sucient to record all potentially geoeective CMEs. -
Continuous Magnetic Reconnection at the Earth's Magnetopause
Why Study Magnetic Reconnection? Fundamental Process • Sun: Solar flares, Flare loops, CMEs • Interplanetary Space • Planetary Magnetosphere: solar wind plasma entry, causes Aurora Ultimate goal of the project – observe magnetic reconnection by satellite in situ through predictions of reconnection site in model Regions of the Geosphere • Solar wind: made up of plasma particles (pressure causes field distortion) • Bow shock: shock wave preceding Earth’s magnetic field • Magnetosheath: region of shocked plasma (higher density) • Magnetopause: Boundary between solar wind/geosphere • Cusp region: region with open field lines and direct solar wind access to upper atmosphere Magnetic Reconnection • Two antiparallel magnetized plasmas, separated by current sheet • Occurs in a very small area (Diffusion Region) At the Earth’s Magnetopause: • IMF reconnects with Earth’s magnetic field across the magnetopause • Southward IMF reconnects near equator • Forms open field lines, which convect backwards to cusp Instrument Overview Polar –TIMAS Wind - SWE instrument • Outside • Measures 3D velocity geospheric distributions influence • Focused on H+ data • Provides solar wind data Magnetic Reconnection Observed in the Cusp Magnetopause Fast Particle Magnetospheric Slow Particle • Color spectrogram Cusp • Measures energy and intensity (flux) of protons from solar wind Solar Wind in cusp with respect to time and latitude • Latitude changes due to convection Color spectrogram produced by IDL program written by mentor Methodology to Determine Where Reconnection -
Respicite Astra: a Historic Journey in Astronomy Through Books
0 Respicite Astra: A Historic Journey in Astronomy through Books RReessppiicciittee AAssttrraa A Historic Journey in Astronomy through Books The Astronomiicall Sociiety of Mallta The Natiionall Liibrary of Mallta The Astronomical Society of Malta The National Library of Malta 1 Respicite Astra: A Historic Journey in Astronomy through Books Respicite Astra A Historic Journey in Astronomy through Books Exhibition held between 25 September – 18 October 2010-09-21 at the National Library, Valletta, Malta on the occasion of Notte Bianca 2010 Introductory Text Mr Victor Farrugia Captions Mr Leonard Ellul Mercer – Pgs 23-24, 57 Mr Alexander Pace – Pgs 25-26, 58, 63, 70 Prof Frank Ventura – Pgs 4, 6-13, 15-18, 21, 27-31, 33, 35-38, 40, 42- 43, 45-48, 50-56, 60-62, 65-69, 72-76, 80, 85, 87, 93 Acknowledgements The Committee of the Astronomical Society of Malta would like to acknowledge the following persons for their kind and generous help in setting up this Exhibition at the Main Hall of the National Library starting on 25th September 2010 during the Notte Bianca event: Mr Fabio Agius (MaltaPost Philatelic Archives) Ms C Michelle Buhagiar (National Library of Malta) Ms Maroma Camilleri National Library of Malta) Mr Leonard Ellul Mercer (Personal capacity) Victor Farrugia (Astronomical Society of Malta) Mr Alexander Pace (Astronomical Society of Malta) Arch Alexei Pace (Astronomical Society of Malta) Ms Joanne Sciberras (National Library of Malta) Mr Tony Tanti (Astronomical Society of Malta) Prof Frank Ventura (University of Malta) Staff of the National Library of Malta Front Image Great Orion Nebula by Mr Leonard Ellul Mercer Production The Astronomical Society of Malta P.O. -
Extraformational Sediment Recycling on Mars Kenneth S
Research Paper GEOSPHERE Extraformational sediment recycling on Mars Kenneth S. Edgett1, Steven G. Banham2, Kristen A. Bennett3, Lauren A. Edgar3, Christopher S. Edwards4, Alberto G. Fairén5,6, Christopher M. Fedo7, Deirdra M. Fey1, James B. Garvin8, John P. Grotzinger9, Sanjeev Gupta2, Marie J. Henderson10, Christopher H. House11, Nicolas Mangold12, GEOSPHERE, v. 16, no. 6 Scott M. McLennan13, Horton E. Newsom14, Scott K. Rowland15, Kirsten L. Siebach16, Lucy Thompson17, Scott J. VanBommel18, Roger C. Wiens19, 20 20 https://doi.org/10.1130/GES02244.1 Rebecca M.E. Williams , and R. Aileen Yingst 1Malin Space Science Systems, P.O. Box 910148, San Diego, California 92191-0148, USA 2Department of Earth Science and Engineering, Imperial College London, South Kensington, London SW7 2AZ, UK 19 figures; 1 set of supplemental files 3U.S. Geological Survey, Astrogeology Science Center, 2255 N. Gemini Drive, Flagstaff, Arizona 86001, USA 4Department of Astronomy and Planetary Science, Northern Arizona University, P.O. Box 6010, Flagstaff, Arizona 86011, USA CORRESPONDENCE: [email protected] 5Department of Planetology and Habitability, Centro de Astrobiología (CSIC-INTA), M-108, km 4, 28850 Madrid, Spain 6Department of Astronomy, Cornell University, Ithaca, New York 14853, USA 7 CITATION: Edgett, K.S., Banham, S.G., Bennett, K.A., Department of Earth and Planetary Sciences, The University of Tennessee, 1621 Cumberland Avenue, 602 Strong Hall, Knoxville, Tennessee 37996-1410, USA 8 Edgar, L.A., Edwards, C.S., Fairén, A.G., Fedo, C.M., National Aeronautics -
Tectonic Features of the Precambrian Belt Basin and Their Influence on Post-Belt Structures
... Tectonic Features of the .., Precambrian Belt Basin and Their Influence on Post-Belt Structures GEOLOGICAL SURVEY PROFESSIONAL PAPER 866 · Tectonic Features of the · Precambrian Belt Basin and Their Influence on Post-Belt Structures By JACK E. HARRISON, ALLAN B. GRIGGS, and JOHN D. WELLS GEOLOGICAL SURVEY PROFESSIONAL PAPER X66 U N IT ED STATES G 0 V ERN M EN T P R I NT I N G 0 F F I C E, \VAS H I N G T 0 N 19 7 4 UNITED STATES DEPARTMENT OF THE INTERIOR ROGERS C. B. MORTON, Secretary GEOLOGICAL SURVEY V. E. McKelvey, Director Library of Congress catalog-card No. 74-600111 ) For sale by the Superintendent of Documents, U.S. GO\·ernment Printing Office 'Vashington, D.C. 20402 - Price 65 cents (paper cO\·er) Stock Number 2401-02554 CONTENTS Page Page Abstract................................................. 1 Phanerozoic events-Continued Introduction . 1 Late Mesozoic through early Tertiary-Continued Genesis and filling of the Belt basin . 1 Idaho batholith ................................. 7 Is the Belt basin an aulacogen? . 5 Boulder batholith ............................... 8 Precambrian Z events . 5 Northern Montana disturbed belt ................. 8 Phanerozoic events . 5 Tectonics along the Lewis and Clark line .............. 9 Paleozoic through early Mesozoic . 6 Late Cenozoic block faults ........................... 13 Late Mesozoic through early Tertiary . 6 Conclusions ............................................. 13 Kootenay arc and mobile belt . 6 References cited ......................................... 14 ILLUSTRATIONS Page FIGURES 1-4. Maps: 1. Principal basins of sedimentation along the U.S.-Canadian Cordillera during Precambrian Y time (1,600-800 m.y. ago) ............................................................................................... 2 2. Principal tectonic elements of the Belt basin reentrant as inferred from the sedimentation record ............ -
Directed Reading Packet
Directed Reading Packet Geosphere Unit Name:_______________________________ Teacher: _________________ Period: ____ Section 1.2: A View of Earth This section explains the physical structure of Earth. Reading Strategy Predicting Before you read, predict the meaning of the vocabulary terms. After you read, revise your definition if your prediction was incorrect. For more information on this Reading Strategy, see the Reading and Study Skills in the Skills and Reference Handbook at the end of your textbook. Vocabulary Term Before You Read After You Read hydrosphere a. b. atmosphere c. d. geosphere e. f. biosphere g. h. core i. j. mantle k. l. crust m. n. Earth’s Major Spheres 1. Earth can be thought of as consisting of four major spheres: the , , , and . Match each term to its description. Term Description 2. hydrosphere a. all life-forms on Earth 3. atmosphere b. composed of the core, mantle, and crust 4. geosphere c. dense, heavy inner sphere of Earth 5. biosphere d. thin outside layer of Earth’s surface 6. core e. the water portion of Earth 7. mantle f. the gaseous envelope around Earth 8. crust g. located between the crust and core of Earth 9. What does each letter in the diagram below represent? A. B. C. D. E. F. G. H. I. J. Plate Tectonics 10. Is the following sentence true or false? Forces such as weathering and erosion that work to wear away high points and flatten out Earth’s surface are called constructive forces. 11. Circle the letter of each type of constructive force. a. gravity b. -
Fe1ca349ca6c1561de7ea7ba19
Research Paper GEOSPHERE Latest Neoproterozoic to Cambrian detrital zircon facies of western Laurentia GEOSPHERE; v. 14, no. 1 William Matthews, Bernard Guest, and Lauren Madronich Department of Geoscience, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada doi:10.1130/GES01544.1 11 figures; 1 table; 1 supplemental file ABSTRACT 1963; Bond and Kominz, 1984; Lickorish and Simony, 1995; Fedo and Cooper, 2001), and are exposed along the length of the Cordillera from Mexico to the CORRESPONDENCE: [email protected] Late Neoproterozoic to Cambrian sandstone units are common in west- Northwest Territories of northern Canada (Stewart et al., 2001; Hadlari et al., ern Laurentia and record initial transgression of the craton after the for- 2012). These strata record the initial transgression of the Laurentian craton CITATION: Matthews, W., Guest, B., and Madronich, mation of the western passive margin during the latest Neoproterozoic to following the onset of thermal subsidence (Bond and Kominz, 1984; Bond et L., 2018, Latest Neoproterozoic to Cambrian detrital zircon facies of western Laurentia: Geosphere, v. 14, earliest Cambrian. Detrital zircon measurements from 42 latest Neopro- al., 1984, 1985; Levy and Christie-Blick, 1991; Yonkee et al., 2014) and cover an no. 1, p. 243–264, doi:10.1130/GES01544.1. terozoic to Cambrian basal Sauk sequences and five older Neoproterozoic important period in the evolution of complex life (Marshall, 2006). sandstone samples from a region extending from the Mexico–United States The widespread occurrence of sandstone facies suitable for detrital zircon Science Editor: Shanaka de Silva border to central British Columbia, Canada, are combined with previous re- geochronology, and the relatively limited time span of their deposition, make Associate Editor: Christopher J. -
Statecraft and Insect Oeconomies in the Global French Enlightenment (1670-1815)
Statecraft and Insect Oeconomies in the Global French Enlightenment (1670-1815) Pierre-Etienne Stockland Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2018 © 2017 Etienne Stockland All rights reserved ABSTRACT Statecraft and Insect Oeconomies in the Global French Enlightenment (1670-1815) Pierre-Etienne Stockland Naturalists, state administrators and farmers in France and its colonies developed a myriad set of techniques over the course of the long eighteenth century to manage the circulation of useful and harmful insects. The development of normative protocols for classifying, depicting and observing insects provided a set of common tools and techniques for identifying and tracking useful and harmful insects across great distances. Administrative techniques for containing the movement of harmful insects such as quarantine, grain processing and fumigation developed at the intersection of science and statecraft, through the collaborative efforts of diplomats, state administrators, naturalists and chemical practitioners. The introduction of insectivorous animals into French colonies besieged by harmful insects was envisioned as strategy for restoring providential balance within environments suffering from human-induced disequilibria. Naturalists, administrators, and agricultural improvers also collaborated in projects to maximize the production of useful substances secreted by insects, namely silk, dyes and medicines. A study of -
Deep Structure, Tectonics and Petroleum Potential of the Western Sector of the Russian Arctic
Journal of Marine Science and Engineering Article Deep Structure, Tectonics and Petroleum Potential of the Western Sector of the Russian Arctic Alexey S. Egorov 1, Oleg M. Prischepa 2, Yury V. Nefedov 2,* , Vladimir A. Kontorovich 3 and Ilya Y. Vinokurov 4 1 The Faculty of Geology, Federal State Budget Educational Institution of Higher Education, Saint-Petersburg Mining University, 199106 Saint-Petersburg, Russia; [email protected] 2 Oil and Gas Geology Department, Federal State Budget Educational Institution of Higher Education, Saint-Petersburg Mining University, Saint-199106 Petersburg, Russia; [email protected] 3 Siberian Branch, Russian Academy of Science, The Trofimuk Institute of Petroleum Geology and Geophysics, 630090 Novosibirsk, Russia; [email protected] 4 Deep Geophysics Department, Russian Geological Research Institute, 199106 Saint-Petersburg, Russia; [email protected] * Correspondence: [email protected]; Tel.: +7-911-230-56-36 Abstract: The evolutionary-genetic method, whereby modern sedimentary basins are interpreted as end-products of a long geological evolution of a system of conjugate palaeo-basins, enables the assessment of the petroleum potential of the Western sector of the Russian Arctic. Modern basins in this region contain relics of palaeo-basins of a certain tectonotype formed in varying geodynamic regimes. Petroleum potential estimates of the Western Arctic vary broadly—from 34.7 to more than 100 billion tons of oil equivalent with the share of liquid hydrocarbons from 5.3 to 13.4 billion tons of oil equivalent. At each stage of the development of palaeo-basins, favourable geological, geochemical and thermobaric conditions have emerged and determined the processes of oil and gas formation, Citation: Egorov, A.S.; Prischepa, migration, accumulation, and subsequent redistribution between different complexes. -
Rift-Valley-1.Pdf
R E S O U R C E L I B R A R Y E N C Y C L O P E D I C E N T RY Rift Valley A rift valley is a lowland region that forms where Earth’s tectonic plates move apart, or rift. G R A D E S 6 - 12+ S U B J E C T S Earth Science, Geology, Geography, Physical Geography C O N T E N T S 9 Images For the complete encyclopedic entry with media resources, visit: http://www.nationalgeographic.org/encyclopedia/rift-valley/ A rift valley is a lowland region that forms where Earth’s tectonic plates move apart, or rift. Rift valleys are found both on land and at the bottom of the ocean, where they are created by the process of seafloor spreading. Rift valleys differ from river valleys and glacial valleys in that they are created by tectonic activity and not the process of erosion. Tectonic plates are huge, rocky slabs of Earth's lithosphere—its crust and upper mantle. Tectonic plates are constantly in motion—shifting against each other in fault zones, falling beneath one another in a process called subduction, crashing against one another at convergent plate boundaries, and tearing apart from each other at divergent plate boundaries. Many rift valleys are part of “triple junctions,” a type of divergent boundary where three tectonic plates meet at about 120° angles. Two arms of the triple junction can split to form an entire ocean. The third, “failed rift” or aulacogen, may become a rift valley. -
High Country Conservation Advocates the Wilderness Society Center
High Country Conservation Advocates ● The Wilderness Society ● Center for Biological Diversity ● Rocky Smith ● EcoFlight ● Great Old Broads for Wilderness ● Rocky Mountain Wild ● Colorado Native Plant Society ● Rocky Mountain Recreation Initiative ● Wild Connections ● Quiet Use Coalition ● Central Colorado Wilderness Coalition ● San Luis Valley Ecosystem Council November 18, 2019 Brian Stevens Team Leader BLM Gunnison Field Office 210 West Spencer Ave., Suite A Gunnison, CO 81230 Via email to [email protected] Re: North Powderhorn Fuels Project Dear Mr. Stevens: The following are the comments of High Country Conservation Advocates (HCCA), The Wilderness Society, Center for Biological Diversity, Rocky Smith, EcoFlight, Great Old Broads for Wilderness, Rocky Mountain Wild, Colorado Native Plant Society, Rocky Mountain Recreation Initiative, Wild Connections, Quiet Use Coalition, Central Colorado Wilderness Coalition, Center for Biological Diversity, and San Luis Valley Ecosystem Council on the proposed North Powderhorn Fuels Project, as described in the Scoping Letter (SL) of October 18, 2019 and the Draft Proposed Action and Alternatives (DPAA). HCCA is located in Crested Butte, Colorado and has over 900 members. HCCA was founded in 1977 to protect the health and natural beauty of the land, rivers, and wildlife in and around Gunnison County now and for future generations. Thank you for the opportunity to comment on this proposal. We may be able to support Alternative C should the agency provide more information clearly indicating that treatments outside of the wilderness and WSAs could be justified and, with mitigation, be acceptable.1 We could also support an alternative that allows non-motorized prescribed burning in ponderosa stands within the Powderhorn Wilderness and Wilderness Study Areas, if such treatments would result in treated areas resembling what would exist if natural fire disturbances had been allowed to occur.