O-Glcnacylation Through Analytical Mass Spectrometry

Total Page:16

File Type:pdf, Size:1020Kb

O-Glcnacylation Through Analytical Mass Spectrometry Investigations into O-GlcNAcylation through analytical mass spectrometry by Thomas J. Clark B.Sc. (Physics), UNBC, 1997 Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in the Department of Chemistry Faculty of Science Thomas J. Clark 2014 SIMON FRASER UNIVERSITY Fall 2014 Approval Name: Thomas J. Clark Degree: Master of Science (Chemistry). Title: Investigations into O-GlcNAcylation through analytical mass spectrometry Examining Committee: Chair: Hua-Zhong Yu Professor David Vocadlo Senior Supervisor Professor George R. Agnes Supervisor Professor Andrew J. Bennet Supervisor Professor Bingyun Sun Internal Examiner Assistant Professor Date Defended/Approved: December 17, 2014 ii Partial Copyright Licence iii Abstract The modification of proteins with O-linked N-acetylglucosamine residues (O-GlcNAc) is found on many proteins in the nucleus and cytoplasm. O-GlcNAc has been implicated in many physiological processes but much remains to be learned about the effects of this modification on protein function. In this thesis I detail two studies aimed to improve our understanding of protein modification by O-GlcNAc. First, I describe a bioinformatics study focused on uncovering the protein structural features that favour O-GlcNAcylation by the enzyme O-GlcNAc transferase. The search for a sequence or structural motif to be found amongst the many substrates O- GlcNAcylated by OGT is a path well-trodden. On the basis of our analysis of site mapping data accumulated from the literature and also through targeted site mapping of an entirely intrinsically disordered protein by mass spectrometry, I counter argue that OGT preferentially targets substrates which can be intrinsically disordered. Second, I describe a study aimed to gain insight into cellular proteomic response due to lowering of O-GlcNAc levels. There is mounting evidence O-GlcNAcylation is both linked with protein folding and intracellular proteome stability. While stability is measured by turnover it is also tied to misfolding. We investigated a possible relationship between lowered O-GlcNAc levels and instability of a segment of the proteome using stable isotope labelling by amino acids in cell culture mass (SILAC). This data reveals a change in protein stability between the entire sample populations that differ in O-GlcNAc levels, which is also observed for many individual proteins. Keywords: mass spectrometry; O-GlcNAc; N-acetylglucosamine transferase (OGT); site mapping; SILAC; protein stability iv Dedication Rosslyn, Ross and Julie. v Acknowledgements I would like to thank my supervisor Professor David J. Vocadlo for his patience, insight and provision of opportunities to learn and engage in novel research. I would also like to thank Professor Andrew J. Bennet and Professor George R. Agnes for their valuable recommendations as part of my thesis committee. I would like to thank Professor Christoph Borchers for his leadership in the BCPN and making his mass spectrometry resources available. I would like to thank the following mass spectrometry experts for brief but valuable discussions on mass spectrometry: Dr. Jun Han, Professor Pierre Thibault and Professor Leonard Foster. I thank Professor Pierre Thibault for the opportunity to perform research in his laboratory. I thank Dr. Yanping Zhu for his help wth Cell culture experiments and Dr. Scott Yuwa for recombinant tau protein. I would like to thank Darryl Hardie and Derek Smith for their tireless support of my mass spectrometry endeavours. Also, the following people made positive contributions to my completing this thesis: Angela Jackson, Suzanne Perry, Dr. Wesley Zandberg, Dr.Garrett Whitworth, Dr. Ta-Wei Lui, Dr. Xiaoyang Shan, Julia Heinonen, Tyra Cross, Dr. Scott Yuzwa and Isaac Seo and Dr. Samy Cecioni. vi Table of Contents Approval .......................................................................................................................... ii Partial Copyright Licence ............................................................................................... iii Abstract .......................................................................................................................... iv Dedication ....................................................................................................................... v Acknowledgements ........................................................................................................ vi Table of Contents .......................................................................................................... vii List of Figures.................................................................................................................. x List of Abbreviations and Acronyms .............................................................................. xv Chapter 1. Introduction ............................................................................................. 1 Historical introduction ...................................................................................................... 1 O-GlcNAcylation .............................................................................................................. 3 Mass spectrometry .......................................................................................................... 5 Chapter 2. Analysis of O-GlcNAc mapped sites reveals OGT targets regions of intrinsic disorder and unstable structures ........................ 13 Introduction ................................................................................................................... 13 Intrinsic disorder and the absence of structural data ............................................. 14 Sites mapped on an entirely intrinsic disorder protein ........................................... 19 Discussion ..................................................................................................................... 28 Methods ........................................................................................................................ 32 Data mining from literature ................................................................................... 32 Phyre2 Protein Homology/analogY Recognition Engine ....................................... 33 Site mapping Tau ................................................................................................. 34 Chapter conclusions and future speculation .................................................................. 34 Chapter 3. Proteome response to the removal and inhibition of OGT ................. 36 Introduction ................................................................................................................... 36 Experimental design ............................................................................................. 38 Results .......................................................................................................................... 42 Global comparison of population means for protein turnover between 5S- GlcNAc treated and untreated HEK293 cells. ............................................... 42 Differentiated protein synthesis measured by heavy to light isotope ratios due to reduced O-GlcNAcylation .................................................................. 47 Differentiated protein degradation measured by medium to light isotope ratios due to reduced O-GlcNAcylation ........................................................ 50 Differentiated protein degradation measured by medium to light isotope ratios due to reduced O-GlcNAcylation ........................................................ 51 Proteins with differentiated synthesis conserved across experiments due to reduced levels of O-GlcNAcylation ............................................................... 53 Results surrounding a question of whether reduced O-GlcNAcylation levels alters the turnover of chaperone proteins ..................................................... 55 Time dependent kurtosis of H/M turnover data ..................................................... 67 vii Discussion ..................................................................................................................... 69 Discussion or results ............................................................................................ 69 Discussion of the rejection of MEF medium to light data sets. .............................. 71 False positives in preliminary MEF cell experiment traced to missed cleavages and high background ................................................................... 75 Conversion of Arginine to Proline in SILAC Experiments ...................................... 77 Inhibition of over alkylation by Iodoacetaminic acid ............................................... 78 Improving proteome coverage through comparison of fragmentation mechanisms ................................................................................................. 79 Methods ........................................................................................................................ 81 Cell Culture ........................................................................................................... 81 SILAC Labelling .................................................................................................... 82 SILAC experiment with MEF cells ......................................................................... 83 SILAC experiment with HEK293 cells ..................................................................
Recommended publications
  • I HIGH MASS ACCURACY COUPLED to SPATIALLY-DIRECTED
    HIGH MASS ACCURACY COUPLED TO SPATIALLY-DIRECTED PROTEOMICS FOR IMPROVED PROTEIN IDENTIFICATIONS IN IMAGING MASS SPECTROMETRY EXPERIMENTS By David Geoffrey Rizzo Dissertation Submitted to the Faculty of the Graduate School of Vanderbilt University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Chemistry August, 2016 Nashville, Tennessee Approved: Richard M. Caprioli, Ph.D. Kevin L. Schey, Ph.D. John A. McLean, Ph.D. Michael P. Stone, Ph.D. i Copyright © 2016 by David Geoffrey Rizzo All Rights Reserved ii This work is dedicated to my family and friends, who have shown nothing but support for me in all of life’s endeavors. iii ACKNOWLEDGEMENTS “As we express our gratitude, we must never forget that the highest appreciation is not to utter words, but to live by them.” - John F. Kennedy – There are many people I must thank for showing kindness, encouragement, and support for me during my tenure as a graduate student. First and foremost, I would like to thank my research advisor, Richard Caprioli, for providing both ample resources and guidance that allowed me to grow as a scientist. Our discussions about my research and science in general have helped me become a much more focused and discerning analytical chemist. I must also thank my Ph.D. committee members, Drs. Kevin Schey, John McLean, and Michael Stone, who have brought valuable insight into my research and provided direction along the way. My undergraduate advisor, Dr. Facundo Fernández, encouraged me to begin research in his lab and introduced me to the world of mass spectrometry.
    [Show full text]
  • Phosphorylation of Synaptojanin Differentially Regulates Endocytosis of Functionally Distinct Synaptic Vesicle Pools
    8882 • The Journal of Neuroscience, August 24, 2016 • 36(34):8882–8894 Cellular/Molecular Phosphorylation of Synaptojanin Differentially Regulates Endocytosis of Functionally Distinct Synaptic Vesicle Pools X Junhua Geng,1* Liping Wang,1,2* Joo Yeun Lee,1,4 XChun-Kan Chen,1 and Karen T. Chang1,3,4 1Zilkha Neurogenetic Institute, 2Department of Biochemistry and Molecular Biology, and 3Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, and 4Neuroscience Graduate Program, University of Southern California, Los Angeles, California 90089 The rapid replenishment of synaptic vesicles through endocytosis is crucial for sustaining synaptic transmission during intense neuronal activity. Synaptojanin (Synj), a phosphoinositide phosphatase, is known to play an important role in vesicle recycling by promoting the uncoating of clathrin following synaptic vesicle uptake. Synj has been shown to be a substrate of the minibrain (Mnb) kinase, a fly homolog of the dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A); however, the functional impacts of Synj phosphorylation by Mnb are not well understood. Here we identify that Mnb phosphorylates Synj at S1029 in Drosophila. We find that phosphorylation of Synj at S1029 enhances Synj phosphatase activity, alters interaction between Synj and endophilin, and promotes efficient endocytosis of the active cycling vesicle pool (also referred to as exo-endo cycling pool) at the expense of reserve pool vesicle endocytosis. Dephosphorylated Synj, on the other hand, is deficient in the endocytosis of the active recycling pool vesicles but maintains reserve pool vesicle endocytosis to restore total vesicle pool size and sustain synaptic transmission. Together, our findings reveal a novel role for Synj in modulating reserve pool vesicle endocytosis and further indicate that dynamic phosphorylation and dephosphorylation of Synj differentially maintain endocytosis of distinct functional synaptic vesicle pools.
    [Show full text]
  • Nuclear Pore Proteins and the Control of Genome Functions
    Downloaded from genesdev.cshlp.org on September 30, 2021 - Published by Cold Spring Harbor Laboratory Press REVIEW Nuclear pore proteins and the control of genome functions Arkaitz Ibarra and Martin W. Hetzer Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA Nuclear pore complexes (NPCs) are composed of several Cytoplasmic filaments are mainly formed by Nup358/ copies of ~30 different proteins called nucleoporins (Nups). RanBP2, Nup214, and Nup88, while the nuclear basket is NPCs penetrate the nuclear envelope (NE) and regulate the composed of Nup153 and Tpr (Fig. 1; for Nup othologs, see nucleocytoplasmic trafficking of macromolecules. Beyond Rothballer and Kutay 2012). this vital role, NPC components influence genome func- The selective access of regulatory factors into the tions in a transport-independent manner. Nups play an nucleus and export of specific RNA molecules mediated evolutionarily conserved role in gene expression regulation by the NPC is required for the accurate progression of most that, in metazoans, extends into the nuclear interior. major cellular processes. However, our perception of Additionally, in proliferative cells, Nups play a crucial role the NPC components is rapidly evolving, as accumulating in genome integrity maintenance and mitotic progression. evidence indicates that they can also directly impact Here we discuss genome-related functions of Nups and DNA metabolism by genome-related functions (Liang their impact on essential DNA metabolism processes such and Hetzer 2011). Among these, one of the most remark- as transcription, chromosome duplication, and segregation. able and well-conserved roles of Nups is to associate with specific target genes to regulate their transcriptional activity (Casolari et al.
    [Show full text]
  • Gene Targeting Therapies (Roy Alcalay)
    Recent Developments in Gene - Targeted Therapies for Parkinson’s Disease Roy Alcalay, MD, MS Alfred and Minnie Bressler Associate Professor of Neurology Division of Movement Disorders Columbia University Medical Center Disclosures Funding: Dr. Alcalay is funded by the National Institutes of Health, the DOD, the Michael J. Fox Foundation and the Parkinson’s Foundation. Dr. Alcalay receives consultation fees from Genzyme/Sanofi, Restorbio, Janssen, and Roche. Gene Localizations Identified in PD Gene Symbol Protein Transmission Chromosome PARK1 SNCA α-synuclein AD 4q22.1 PARK2 PRKN parkin (ubiquitin ligase) AR 6q26 PARK3 ? ? AD 2p13 PARK4 SNCA triplication α-synuclein AD 4q22.1 PARK5 UCH-L1 ubiquitin C-terminal AD 4p13 hydrolase-L1 PARK6 PINK1 PTEN-induced kinase 1 AR 1p36.12 PARK7 DJ-1 DJ-1 AR 1p36.23 PARK8 LRRK2 leucine rich repeat kinase 2 AD 12q12 PARK9 ATP13A2 lysosomal ATPase AR 1p36.13 PARK10 ? ? (Iceland) AR 1p32 PARK11 GIGYF2 GRB10-interacting GYF protein 2 AD 2q37.1 PARK12 ? ? X-R Xq21-q25 PARK13 HTRA2 serine protease AD 2p13.1 PARK14 PLA2G6 phospholipase A2 (INAD) AR 22q13.1 PARK15 FBXO7 F-box only protein 7 AR 22q12.3 PARK16 ? Discovered by GWAS ? 1q32 PARK17 VPS35 vacuolar protein sorting 35 AD 16q11.2 PARK18 EIF4G1 initiation of protein synth AD 3q27.1 PARK19 DNAJC6 auxilin AR 1p31.3 PARK20 SYNJ1 synaptojanin 1 AR 21q22.11 PARK21 DNAJC13 8/RME-8 AD 3q22.1 PARK22 CHCHD2 AD 7p11.2 PARK23 VPS13C AR 15q22 Gene Localizations Identified in PD Disorder Symbol Protein Transmission Chromosome PD GBA β-glucocerebrosidase AD 1q21 SCA2
    [Show full text]
  • The Role and Mechanisms of Action of Micrornas in Cancer Drug Resistance Wengong Si1,2,3, Jiaying Shen4, Huilin Zheng1,5 and Weimin Fan1,6*
    Si et al. Clinical Epigenetics (2019) 11:25 https://doi.org/10.1186/s13148-018-0587-8 REVIEW Open Access The role and mechanisms of action of microRNAs in cancer drug resistance Wengong Si1,2,3, Jiaying Shen4, Huilin Zheng1,5 and Weimin Fan1,6* Abstract MicroRNAs (miRNAs) are small non-coding RNAs with a length of about 19–25 nt, which can regulate various target genes and are thus involved in the regulation of a variety of biological and pathological processes, including the formation and development of cancer. Drug resistance in cancer chemotherapy is one of the main obstacles to curing this malignant disease. Statistical data indicate that over 90% of the mortality of patients with cancer is related to drug resistance. Drug resistance of cancer chemotherapy can be caused by many mechanisms, such as decreased antitumor drug uptake, modified drug targets, altered cell cycle checkpoints, or increased DNA damage repair, among others. In recent years, many studies have shown that miRNAs are involved in the drug resistance of tumor cells by targeting drug-resistance-related genes or influencing genes related to cell proliferation, cell cycle, and apoptosis. A single miRNA often targets a number of genes, and its regulatory effect is tissue-specific. In this review, we emphasize the miRNAs that are involved in the regulation of drug resistance among different cancers and probe the mechanisms of the deregulated expression of miRNAs. The molecular targets of miRNAs and their underlying signaling pathways are also explored comprehensively. A holistic understanding of the functions of miRNAs in drug resistance will help us develop better strategies to regulate them efficiently and will finally pave the way toward better translation of miRNAs into clinics, developing them into a promising approach in cancer therapy.
    [Show full text]
  • 1 Metabolic Dysfunction Is Restricted to the Sciatic Nerve in Experimental
    Page 1 of 255 Diabetes Metabolic dysfunction is restricted to the sciatic nerve in experimental diabetic neuropathy Oliver J. Freeman1,2, Richard D. Unwin2,3, Andrew W. Dowsey2,3, Paul Begley2,3, Sumia Ali1, Katherine A. Hollywood2,3, Nitin Rustogi2,3, Rasmus S. Petersen1, Warwick B. Dunn2,3†, Garth J.S. Cooper2,3,4,5* & Natalie J. Gardiner1* 1 Faculty of Life Sciences, University of Manchester, UK 2 Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK 3 Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, UK 4 School of Biological Sciences, University of Auckland, New Zealand 5 Department of Pharmacology, Medical Sciences Division, University of Oxford, UK † Present address: School of Biosciences, University of Birmingham, UK *Joint corresponding authors: Natalie J. Gardiner and Garth J.S. Cooper Email: [email protected]; [email protected] Address: University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, United Kingdom Telephone: +44 161 275 5768; +44 161 701 0240 Word count: 4,490 Number of tables: 1, Number of figures: 6 Running title: Metabolic dysfunction in diabetic neuropathy 1 Diabetes Publish Ahead of Print, published online October 15, 2015 Diabetes Page 2 of 255 Abstract High glucose levels in the peripheral nervous system (PNS) have been implicated in the pathogenesis of diabetic neuropathy (DN). However our understanding of the molecular mechanisms which cause the marked distal pathology is incomplete. Here we performed a comprehensive, system-wide analysis of the PNS of a rodent model of DN.
    [Show full text]
  • Principles and Applications of Rabbit Models for Atherosclerosis Research
    J Atheroscler Thromb, 2018; 25: 213-220. http://doi.org/10.5551/jat.RV17018 Review Principles and Applications of Rabbit Models for Atherosclerosis Research Jianglin Fan1, Yajie Chen1, Haizhao Yan1, Manabu Niimi1, Yanli Wang2 and Jingyan Liang3 1Department of Molecular Pathology, Faculty of Medicine, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, Japan 2Department of Pathology, Xi’an Medical University, Xi’an, China 3Research Center for Vascular Biology, Yangzhou University School of Medicine, Yangzhou, China Rabbits are one of the most used experimental animals for biomedical research, particularly as a bio- reactor for the production of antibodies. However, many unique features of the rabbit have also made it as an excellent species for examining a number of aspects of human diseases such as atherosclerosis. Rabbits are phylogenetically closer to humans than rodents, in addition to their relatively proper size, tame disposition, and ease of use and maintenance in the laboratory facility. Due to their short life spans, short gestation periods, high numbers of progeny, low cost (compared with other large ani- mals) and availability of genomics and proteomics, rabbits usually serve to bridge the gap between smaller rodents (mice and rats) and larger animals, such as dogs, pigs and monkeys, and play an important role in many translational research activities such as pre-clinical testing of drugs and diag- nostic methods for patients. The principle of using rabbits rather than other animals as an experi- mental model is very simple: rabbits should be used for research, such as translational research, that is difficult to accomplish with other species. Recently, rabbit genome sequencing and transcriptomic profiling of atherosclerosis have been successfully completed, which has paved a new way for researchers to use this model in the future.
    [Show full text]
  • Deamidation of Human Proteins
    Deamidation of human proteins N. E. Robinson*† and A. B. Robinson‡ *Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125; and ‡Oregon Institute of Science and Medicine, Cave Junction, OR 97523 Communicated by Frederick Seitz, The Rockefeller University, New York, NY, August 31, 2001 (received for review May 8, 2001) Deamidation of asparaginyl and glutaminyl residues causes time- 3D structure is known (23). This method is more than 95% dependent changes in charge and conformation of peptides and reliable in predicting relative deamidation rates of Asn residues proteins. Quantitative and experimentally verified predictive cal- within a single protein and is also useful for the prediction of culations of the deamidation rates of 1,371 asparaginyl residues in absolute deamidation rates. a representative collection of 126 human proteins have been It is, therefore, now possible to compute the expected deami- performed. These rates suggest that deamidation is a biologically dation rate of any protein for which the primary and 3D relevant phenomenon in a remarkably large percentage of human structures are known, except for very long-lived proteins. These proteins. proteins require measurement of the 400 Gln pentapeptide rates. in vivo deamidation ͉ asparaginyl residues Materials and Methods Calculation Method. The Brookhaven Protein Data Bank (PDB) eamidation of asparaginyl (Asn) and glutaminyl (Gln) was searched to select 126 human proteins of general biochem- Dresidues to produce aspartyl (Asp) and glutamyl (Glu) ical interest and of known 3D structure without bias toward any residues causes structurally and biologically important alter- known data about their deamidation, except for 13 proteins (as ations in peptide and protein structures.
    [Show full text]
  • WO 2017/147196 Al 31 August 2017 (31.08.2017) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/147196 Al 31 August 2017 (31.08.2017) P O P C T (51) International Patent Classification: Kellie, E. [US/US]; 70 Lanark Road, Maiden, MA 02148 C12Q 1/68 (2006.01) (US). COLE, Michael, B. [US/US]; 233 1 Eunice Street, Berkeley, CA 94708 (US). YOSEF, Nir [IL/US]; 1520 (21) International Application Number: Laurel Ave., Richmond, CA 94805 (US). GAYO, En¬ PCT/US20 17/0 18963 rique, Martin [ES/US]; 115 Peterborough Street, Boston, (22) International Filing Date: MA 022 15 (US). OUYANG, Zhengyu [CN/US]; 15 Vas- 22 February 2017 (22.02.2017) sar Street, Medford, MA 02155 (US). YU, Xu [CN/US]; 6 Whittier Place, Apt. 16j, Boston, MA 02 114 (US). (25) Filing Language: English (74) Agents: KOWALSKI, Thomas, J. et al; Vedder Price English (26) Publication Language: P.C., 1633 Broadway, New York, NY 1001 9 (US). (30) Priority Data: (81) Designated States (unless otherwise indicated, for every 62/298,349 22 February 2016 (22.02.2016) US kind of national protection available): AE, AG, AL, AM, (71) Applicants: MASSACHUSETTS INSTITUTE OF AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, TECHNOLOGY [US/US]; 77 Massachusetts Ave., Cam BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, bridge, MA 02139 (US). THE REGENTS OF THE UNI¬ DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, VERSITY OF CALIFORNIA [US/US]; 1111 Franklin HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KH, KN, Street, 12th Floor, Oakland, CA 94607 (US).
    [Show full text]
  • Cellular and Molecular Signatures in the Disease Tissue of Early
    Cellular and Molecular Signatures in the Disease Tissue of Early Rheumatoid Arthritis Stratify Clinical Response to csDMARD-Therapy and Predict Radiographic Progression Frances Humby1,* Myles Lewis1,* Nandhini Ramamoorthi2, Jason Hackney3, Michael Barnes1, Michele Bombardieri1, Francesca Setiadi2, Stephen Kelly1, Fabiola Bene1, Maria di Cicco1, Sudeh Riahi1, Vidalba Rocher-Ros1, Nora Ng1, Ilias Lazorou1, Rebecca E. Hands1, Desiree van der Heijde4, Robert Landewé5, Annette van der Helm-van Mil4, Alberto Cauli6, Iain B. McInnes7, Christopher D. Buckley8, Ernest Choy9, Peter Taylor10, Michael J. Townsend2 & Costantino Pitzalis1 1Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK. Departments of 2Biomarker Discovery OMNI, 3Bioinformatics and Computational Biology, Genentech Research and Early Development, South San Francisco, California 94080 USA 4Department of Rheumatology, Leiden University Medical Center, The Netherlands 5Department of Clinical Immunology & Rheumatology, Amsterdam Rheumatology & Immunology Center, Amsterdam, The Netherlands 6Rheumatology Unit, Department of Medical Sciences, Policlinico of the University of Cagliari, Cagliari, Italy 7Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK 8Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), University of Birmingham, Birmingham B15 2WB, UK 9Institute of
    [Show full text]
  • Product Data Sheet Purified Anti-NUP153
    Version: 2 Revision Date: 2016-01-08 Product Data Sheet Purified anti-NUP153 Catalog # / Size: 906201 / 100 µl Previously: Covance Catalog# MMS-102P Clone: QE5 Isotype: Mouse IgG1 Immunogen: The QE5 monoclonal antibody was generated against rat liver nuclear envelope proteins. Reactivity: Eukaryote Preparation: The antibody was purified by affinity chromatography. Formulation: Phosphate-buffered solution + 0.03% thimerosal. Concentration: 1 mg/ml Storage: The antibody solution should be stored undiluted between 2°C and 8°C. Please note the storage condition for this antibody has been changed from -20°C to between 2°C and 8°C. You can also check your vial or your Methanol fixed HeLa stained with the CoA to find the most accurate storage condition for this antibody. antibody QE5. This antibody brilliantly highlights the nuclear membrane (green). The golgi is stained with the Applications: antibody to Giantin. Applications: ICC, WB, IF, IP IEM - Reported in literature Recommended Usage: Each lot of this antibody is quality control tested by Immunocytochemistry. The optimal working dilution should be determined for each specific assay condition. • WB: 1:500* • IF: 1:250 • IP: 1:50 Application Notes: This antibody is effective in immunoblotting, immunofluorescence (IF) and immunoprecipitation (IP). *Predicted MW = 250 kD This antibody recognizes NUP153 as well as two related nuclear pore complex proteins: NUP214 and p62. By immunofluorescence, QE5 labels the nuclear envelope of eukaryotic cells giving a punctate staining pattern. Application References: 1. Pare GC, Easlick JL, Mislow JM, McNally EM, Kapiloff MS. Nesprin-1alpha contributes to the targeting of mAKAP to the cardiac myocyte nuclear envelope.
    [Show full text]
  • Deamidation, Acylation and Proteolysis of a Model Peptide in PLGA Films ⁎ M.L
    Journal of Controlled Release 112 (2006) 111–119 www.elsevier.com/locate/jconrel Deamidation, acylation and proteolysis of a model peptide in PLGA films ⁎ M.L. Houchin a, K. Heppert b, E.M. Topp a, a Department of Pharmaceutical Chemistry, The University of Kansas, 2095 Constant Ave., Lawrence, KS 66047, United States b Higuchi Biosciences Centers, The University of Kansas, Lawrence, KS, United States Received 8 December 2005; accepted 30 January 2006 Available online 9 March 2006 Abstract The relative rates of deamidation, acylation and proteolysis (i.e. amide bond cleavage) were determined for a model peptide (VYPNGA) in poly (DL-lactide-co-glycolide) films. Films were stored at 70°C and either 95%, 75%, 60%, 45%, 28%, or ∼0% relative humidity and at 37°C and 95% relative humidity. Peptide degradation products were identified by ESI+MS/MS and quantitated by LC/MS/MS. Extensive overlap of degradation mechanisms occurred, producing a complex mixture of products. Acylation was the dominant peptide degradation reaction (10–20% of total peptide) at early stages of PLGA hydrolysis and at intermediate relative humidity (60–45% RH). Deamidation and proteolysis were dominant (25–50% and 20–40% of total peptide, respectively) at later stages and at high relative humidity (95–75% RH). Understanding the relative rates of each peptide degradation reaction will allow for improved design of PLGA formulations that preserve the stability of peptide and protein drugs. © 2006 Elsevier B.V. All rights reserved. Keywords: PLGA; Deamidation; Acylation; Proteolysis; Peptide stability 1. Introduction bonds produces lactic and glycolic acid, which are easily metabolized.
    [Show full text]