Review Host-Pathogen Dynamics of Seagrass Diseases Under Future Global Change

Total Page:16

File Type:pdf, Size:1020Kb

Review Host-Pathogen Dynamics of Seagrass Diseases Under Future Global Change Marine Pollution Bulletin xxx (xxxx) xxx–xxx Contents lists available at ScienceDirect Marine Pollution Bulletin journal homepage: www.elsevier.com/locate/marpolbul Review: Host-pathogen dynamics of seagrass diseases under future global change ⁎ Brooke K. Sullivana,b, , Stacey M. Trevathan-Tackettc, Sigrid Neuhauserd, Laura L. Goverse,f a School of Biosciences, The University of Melbourne, Parkville Campus, Parkville, Victoria 3010, Australia b Victorian Marine Science Consortium, 2A Bellarine Highway, Queenscliff, Victoria 3225, Australia c Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria, Australia d Institute of Microbiology, University of Innsbruck, Technikerstr. 2, 6020 Innsbruck, Austria e Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Post Office Box 11103, 9700 CC Groningen, The Netherlands f Department of Aquatic Ecology and Environmental Biology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands ARTICLE INFO ABSTRACT Keywords: Human-induced global change is expected to amplify the disease risk for marine biota. However, the role of Global change disease in the rapid global decline of seagrass is largely unknown. Global change may enhance seagrass sus- Halophytophthora ceptibility to disease through enhanced physiological stress, while simultaneously promoting pathogen devel- Labyrinthula opment. This review outlines the characteristics of disease-forming organisms and potential impacts of global Marine infectious disease change on three groups of known seagrass pathogens: labyrinthulids, oomycetes and Phytomyxea. We propose Phytophthora that hypersalinity, climate warming and eutrophication pose the greatest risk for increasing frequency of disease Phytomyxea outbreaks in seagrasses by increasing seagrass stress and lowering seagrass resilience. In some instances, global change may also promote pathogen development. However, there is currently a paucity of information on these seagrass pathosystems. We emphasise the need to expand current research to better understand the seagrass- pathogen relationships, serving to inform predicative modelling and management of seagrass disease under future global change scenarios. 1. Introduction recognised for their ecological function and the provision of human services, including reduction in human and wildlife pathogens (Lamb Human-induced global change facilitates disease outbreaks on a et al., 2017) coastal protection (Christianen et al., 2013), fisheries ha- global scale (Harvell et al., 2002). Mass-mortalities due to disease in bitat (Jackson et al., 2001) and carbon sequestration (Fourqurean et al., keystone species marine species have been reported in corals (Hoegh- 2012). Seagrasses also provide positive feedback mechanisms for Guldberg et al., 2007), marine mammals (Cosby et al., 1988), oysters themselves that drive continued provision of suitable habitat for their (Van Banning, 1991), sea-stars (Hewson et al., 2014) and seagrasses own survival (De Boer, 2007; Maxwell et al., 2016). Despite increasing (Sullivan et al., 2013). Through the negative impacts on these keystone attention to seagrasses as a keystone species, researchers estimate species, the effects of disease may rapidly cascade through ecosystems, nearly 30% of the global seagrass area world-wide was lost between with potentially catastrophic consequences through local species ex- 1879 and 2006 (Waycott et al., 2009). tinction, community regime shifts and disruptions in economically- Under the threat of ongoing global change, ecologists look to un- linked ecosystem services, such as fisheries production (Groner et al., derstand how marine ecosystems will function, and how community 2015; Sullivan et al., 2013). Despite emerging threats to several eco- and population dynamics may be altered in the near and distant future. logically important species, epidemiological studies in marine systems The majority of publications available on the effects of global change in are sparse compared to terrestrial systems (Harvell et al., 1999). coastal ecosystems have focused on the role of abiotic environmental Seagrasses are marine flowering plants that form large swaths of conditions, namely temperature, on the health of marine systems, and grass-like intertidal and subtidal meadows in coastal areas. Seagrass most often at the level of an individual species or population (Harley ecosystems provide vital coastal habitats that are increasingly et al., 2006). Still, research on the role of biologically-mediated ⁎ Corresponding author at: School of Biosciences, The University of Melbourne, Parkville Campus, Parkville, Victoria 3010, Australia. E-mail addresses: [email protected] (B.K. Sullivan), [email protected] (S.M. Trevathan-Tackett), [email protected] (S. Neuhauser), [email protected] (L.L. Govers). http://dx.doi.org/10.1016/j.marpolbul.2017.09.030 Received 1 April 2017; Received in revised form 11 September 2017; Accepted 13 September 2017 0025-326X/ © 2017 Elsevier Ltd. All rights reserved. Please cite this article as: Sullivan, B.K., Marine Pollution Bulletin (2017), http://dx.doi.org/10.1016/j.marpolbul.2017.09.030 B.K. Sullivan et al. Marine Pollution Bulletin xxx (xxxx) xxx–xxx environmental conditions (Alsterberg et al., 2013; Eklöf et al., 2012; In fact, while the importance of the microbiome in seagrass is gaining Sunday et al., 2017) suggests that organism-to-organism interactions momentum (Fahimipour et al., 2017), the role of pathogenic disease is are important in understanding both direct and indirect effects of global often left out of seagrass research entirely, and is largely missing or change on the functional capacity of coastal and marine ecosystems. overlooked in reviews and analyses of global change impacts in seagrass ecosystems (Bjork et al., 2008; Brown et al., 2013; Short et al., 2016). 1.1. Known global change impacts to seagrass Still, there is recognition of the vulnerability of seagrass to global change scenarios (Short et al., 2016), which is alarming, given multiple Abiotic drivers potentially affecting seagrass resilience under future evidence of accelerating risk of emerging infectious diseases in terres- scenarios include increasing ocean temperatures, sea level rise, in- trial and marine systems, largely through range expansion and human creased frequency of storms, ocean acidification (increased CO2 and introduction (Anderson et al., 2004; Hoegh-Guldberg and Bruno, 2010). decreased pH) and changes to salinity (Duarte, 2002; Harley et al., We theorise that since human-induced changes to global systems 2006; Koch et al., 2013; Short et al., 2016). Increasingly, studies are pose major threats to seagrasses in the future (Orth et al., 2006; Short emerging to quantify the effects of global change on seagrasses. These et al., 2016), they may decrease seagrass resilience and fitness (De Boer, include theoretical investigations of seagrass physiology, communities 2007; Ehlers et al., 2008; Fraser et al., 2014; Ruesink, 2016) and thus, and populations (Duarte, 2002; Edwards, 1995; Harley et al., 2006; increase the risk of susceptibility to disease (Harvell et al., 2002). Occhipinti-Ambrogi and Savini, 2003; Orth et al., 2006; Short and Multiple and repeated disturbances, such as those that may occur as Neckles, 1999) and modelling and experimentation (Jordà et al., 2012; global change progresses, are known to further reduce seagrass resi- Koch et al., 2013; Palacios and Zimmerman, 2007; Rasheed and lience (Eklöf et al., 2010; Fraser et al., 2014) and may create hotspots of Unsworth, 2011). seagrass disease. In addition to enhanced susceptibility of the host, Firstly, elevated seawater temperatures will affect plant physiology, global change may also promote infection and transmission of diseases reproduction, growth and geographic distribution (Short and Neckles, by promoting pathogen development, survival and reproduction (Burge 1999). For some seagrasses, warmer waters may be beneficial, resulting et al., 2014; Harvell et al., 1999). Combined effects of global change on in increased growth rates (Short and Coles, 2001) and reproduction host, pathogen and host-pathogen relationships in seagrass diseases are (Diaz-Almela et al., 2007). However, plants growing at the edges of understudied. Still, available research points to significant effects for their geographical range are found to experience increased mortality seagrasses from temperature, salinity, eutrophication and biological due to drought stress (de Fouw et al., 2016) and heat waves (Collier and interactions, such as disease. This research reveals the urgency for Waycott, 2014; Fraser et al., 2014). continued and inclusive investigations into the potential roles of disease Secondly, increasing atmospheric CO2 levels are increasing the in seagrass ecosystems, especially those under direct stress from global amount of dissolved CO2 in coastal waters, resulting in a lower pH (Orr change phenomena. et al., 2005). Although the effects of ocean acidification are unfavour- able to calcifying marine organisms, they are known to enhance resi- 2. History of seagrass disease research lience of seagrasses (Alsterberg et al., 2013). Seagrasses themselves are expected to benefit from high CO2 levels that result in increased plant Disease events in seagrass ecosystems have been observed for nearly production (Garrard and Beaumont, 2014;
Recommended publications
  • Physiology and Biochemistry of the Tropical Seagrass Thalassia Testudinum in Response to Hypersalinity Stress and Labyrinthula Sp
    UNF Digital Commons UNF Graduate Theses and Dissertations Student Scholarship 2011 Physiology and Biochemistry of the Tropical Seagrass Thalassia testudinum in Response to Hypersalinity Stress and Labyrinthula sp. Infection Stacey Marie Trevathan-Tackett University of North Florida Suggested Citation Trevathan-Tackett, Stacey Marie, "Physiology and Biochemistry of the Tropical Seagrass Thalassia testudinum in Response to Hypersalinity Stress and Labyrinthula sp. Infection" (2011). UNF Graduate Theses and Dissertations. 391. https://digitalcommons.unf.edu/etd/391 This Master's Thesis is brought to you for free and open access by the Student Scholarship at UNF Digital Commons. It has been accepted for inclusion in UNF Graduate Theses and Dissertations by an authorized administrator of UNF Digital Commons. For more information, please contact Digital Projects. © 2011 All Rights Reserved Physiology and Biochemistry of the Tropical Seagrass Thalassia testudinum in Response to Hypersalinity Stress and Labyrinthula sp. Infection by Stacey Marie Trevathan-Tackett A thesis submitted to the Department of Biology in partial fulfillment of the requirements for the degree of Master of Science in Biology University of North Florida College of Arts and Sciences December, 2011 Unpublished Work © 2011 Stacey Marie Trevathan-Tackett Signature Deleted Signature Deleted Signature Deleted Signature Deleted Signature Deleted Signature Deleted Acknowledgements I first would like to acknowledge NOAA and the Nancy Foster Scholarship for funding both school and living expenses for the majority of my Master‟s career allowing me to focus all of my time and efforts toward research. Also, I would like to thank the Dodson Grant, the Coastal Biology program and the Graduate School at UNF for their continued financial support and resources during graduate school.
    [Show full text]
  • Genetic Diversity of Labyrinthula Spp. in Seagrass Zostera Marina Beds in the North Atlantic Ocean and the Baltic Sea
    Genetic diversity of Labyrinthula spp. in seagrass Zostera marina beds in the North Atlantic Ocean and the Baltic Sea Submitted by Matsapume Detcharoen In partial fulfillment of the requirements for the Degree of Master of Science in Biology Ludwig-Maximilians-Universität München Faculty of Biology August 2015 Abstract Die sogenannte Seegras – „Wasting Disease“ führte in den 1930er Jahren zu einem Massenrückgang des Seegrases Zostera marina im nördlichen Atlantik. Labyrinthula zosterae ist der potentielle Erreger der Krankheit, der zu dem Verlust von Seegrasbetten führen kann. Dieser Organismus infiziert die Blätter des Seegrases. Frühere Studien, die die Vielfalt der Labyrinthula spp untersuchten, basierten auf der Kultivierung von Labyrinthula. Diese Studie ist die erste Studie, die Blattproben zur molekularen Identifizierung von Labyrinthula verwendet und erforscht die Vielfalt der Gattung Labyrinthula. Proben von sechs Standorten wurden untersucht, dabei wurde ein 290 bp lange Teilsequenz der 18S rDNA kloniert und Sanger sequenziert. Das Abgleichen der erhaltenen Sequenzen mit NCBI GenBank mittels des blast Algorithmus ergab, dass die meisten Sequenzen von 77 bis 100% mit L. zosterae übereinstimmen, während inige Sequenzen der Standorte Wackerballig und Sandspollen eine 84-94 prozentige Übereinstimmung mit Labyrinthula spp zeigten. Keine der mutmaßlichen Labyrinthula spp. Sequenzen wurden mit bekannten Sequenzen aus der Datenbank zusammengefasst. Es wurden sieben OTUs generiert. Der Test von verschiedenen DNA-Extraktionmethoden ergab für ein Pflanzen- und ein Gewebe-Extraktionskit ähnliche Ergebnisse. Nichtsdestotrotz hat das Pflanzen-Kit mehr Vorteile wegen geringerer Kosten und dem geringeren Zeitaufwand. Zusammenfassend zeigt diese Studie, dass bisher unbekannte Labyrinthula spp. in den Seegraspopulationen vorkommen, und dass das in dieser Studie verwendete Verfahren für weitere Anwendungen geeignet ist.
    [Show full text]
  • Associated Heterotrophic Protists, Stereomyxa Ramosa, Nitzschia Alba and Labyrinthula Sp
    AQUATIC MICROBIAL ECOLOGY Vol. 21: 49-57,2000 Published February 21 Aquat Microb Ecol Utilisation of seaweed carbon by three surface- associated heterotrophic protists, Stereomyxa ramosa, Nitzschia alba and Labyrinthula sp. Evelyn ~rmstrong'~~~*,Andrew ~ogerson~,John W. ~eftley~ 'University Marine Biological Station Millport, Isle of Curnbrae KA28 OEG, Scotland, UK 'Oceanographic Center, Nova Southeastern University, 8000 N. Ocean Drive, Dania Beach, Florida 33004, USA 'Scottish Association for Marine Science, Dunstaffnage Marine Laboratory. PO Box 3, Oban. Argyll PA34 4AD. Scotland, UK ABSTRACT: In view of the abundance of protists associated with seaweeds and the diversity of nutri- tional strategies displayed by protists in general, the ability of 3 closely associated protists to utilise sea- weed carbon was investigated. Stereomyxa ramosa, Nitzschja alba and Labyrinthula sp. were cultured with seaweed polysaccharides as well as seaweed itself. N. alba and Labyrinthula sp. were found to utilise seaweed polysaccharides in axenic culture. All 3 protists were capable of penetrating intact but 'damaged' (autoclaved) seaweed particularly when bacteria were present. The possibility that these and other heterotrophic protists are directly removing macroalgal carbon in the field is discussed. KEY WORDS: Protist . Heterotroph - Seaweed. Carbon . Utilisation INTRODUCTION (Lucas et al. 1981, Rieper-Kirchner 1989).This conver- sion of dissolved carbon into particulate forms (as bac- Heterotrophic protists are abundant on seaweed sur- terial biomass) is thought to be a major link to higher faces (Rogerson 1991, Armstrong et al. 2000) because trophic levels (Newell et al. 1980). To compete effec- seaweeds are rich in bacterial prey (Laycock 1974, tively with bacteria, heterotrophic protists would need Shiba & Taga 1980).
    [Show full text]
  • Controlled Sampling of Ribosomally Active Protistan Diversity in Sediment-Surface Layers Identifies Putative Players in the Marine Carbon Sink
    The ISME Journal (2020) 14:984–998 https://doi.org/10.1038/s41396-019-0581-y ARTICLE Controlled sampling of ribosomally active protistan diversity in sediment-surface layers identifies putative players in the marine carbon sink 1,2 1 1 3 3 Raquel Rodríguez-Martínez ● Guy Leonard ● David S. Milner ● Sebastian Sudek ● Mike Conway ● 1 1 4,5 6 7 Karen Moore ● Theresa Hudson ● Frédéric Mahé ● Patrick J. Keeling ● Alyson E. Santoro ● 3,8 1,9 Alexandra Z. Worden ● Thomas A. Richards Received: 6 October 2019 / Revised: 4 December 2019 / Accepted: 17 December 2019 / Published online: 9 January 2020 © The Author(s) 2020. This article is published with open access Abstract Marine sediments are one of the largest carbon reservoir on Earth, yet the microbial communities, especially the eukaryotes, that drive these ecosystems are poorly characterised. Here, we report implementation of a sampling system that enables injection of reagents into sediments at depth, allowing for preservation of RNA in situ. Using the RNA templates recovered, we investigate the ‘ribosomally active’ eukaryotic diversity present in sediments close to the water/sediment interface. We 1234567890();,: 1234567890();,: demonstrate that in situ preservation leads to recovery of a significantly altered community profile. Using SSU rRNA amplicon sequencing, we investigated the community structure in these environments, demonstrating a wide diversity and high relative abundance of stramenopiles and alveolates, specifically: Bacillariophyta (diatoms), labyrinthulomycetes and ciliates. The identification of abundant diatom rRNA molecules is consistent with microscopy-based studies, but demonstrates that these algae can also be exported to the sediment as active cells as opposed to dead forms.
    [Show full text]
  • The Classification of Lower Organisms
    The Classification of Lower Organisms Ernst Hkinrich Haickei, in 1874 From Rolschc (1906). By permission of Macrae Smith Company. C f3 The Classification of LOWER ORGANISMS By HERBERT FAULKNER COPELAND \ PACIFIC ^.,^,kfi^..^ BOOKS PALO ALTO, CALIFORNIA Copyright 1956 by Herbert F. Copeland Library of Congress Catalog Card Number 56-7944 Published by PACIFIC BOOKS Palo Alto, California Printed and bound in the United States of America CONTENTS Chapter Page I. Introduction 1 II. An Essay on Nomenclature 6 III. Kingdom Mychota 12 Phylum Archezoa 17 Class 1. Schizophyta 18 Order 1. Schizosporea 18 Order 2. Actinomycetalea 24 Order 3. Caulobacterialea 25 Class 2. Myxoschizomycetes 27 Order 1. Myxobactralea 27 Order 2. Spirochaetalea 28 Class 3. Archiplastidea 29 Order 1. Rhodobacteria 31 Order 2. Sphaerotilalea 33 Order 3. Coccogonea 33 Order 4. Gloiophycea 33 IV. Kingdom Protoctista 37 V. Phylum Rhodophyta 40 Class 1. Bangialea 41 Order Bangiacea 41 Class 2. Heterocarpea 44 Order 1. Cryptospermea 47 Order 2. Sphaerococcoidea 47 Order 3. Gelidialea 49 Order 4. Furccllariea 50 Order 5. Coeloblastea 51 Order 6. Floridea 51 VI. Phylum Phaeophyta 53 Class 1. Heterokonta 55 Order 1. Ochromonadalea 57 Order 2. Silicoflagellata 61 Order 3. Vaucheriacea 63 Order 4. Choanoflagellata 67 Order 5. Hyphochytrialea 69 Class 2. Bacillariacea 69 Order 1. Disciformia 73 Order 2. Diatomea 74 Class 3. Oomycetes 76 Order 1. Saprolegnina 77 Order 2. Peronosporina 80 Order 3. Lagenidialea 81 Class 4. Melanophycea 82 Order 1 . Phaeozoosporea 86 Order 2. Sphacelarialea 86 Order 3. Dictyotea 86 Order 4. Sporochnoidea 87 V ly Chapter Page Orders. Cutlerialea 88 Order 6.
    [Show full text]
  • Short Communication on the Classification of The
    SHORT COMMUNICATION ON THE CLASSIFICATION OF THE GENERA Labyrinthula, Schizochytrium AND Thraustochytrium (Labyrinthulids AND Thraustochytrids) Øjvind Moestrup Biological Institute, University of Copenhagen Universitetsparken 4 , DK- 2100 Copenhagen, Denmark E-mail: [email protected] Citation as: Moestrup Øjvind, 2019. On the classification of the genera Labyrinthula, Schizochytrium and Thraustochytrium (Labyrinthulids and Thraustochytrids). Tap chi Sinh hoc, 41(2): xx–xx. https://doi.org/10.15625/0866-7160/v41n2.xxxxx Species of the genera Labyrinthula, Schizochytrium, Thraustochytrium and related organisms have recently attracted attention in biotechnology, and here is a short note on how to classify these rather special organisms. The labyrinthulids and thraustochytrids belong to the heterokonts, a large group of very diverse organisms, from microscopic unicells to metre-long brown algae. The heterokonts comprise species that were formerly classified as algae, fungi and/or protozoa. Many heterokonts are autotrophic and contain chloroplasts, and such organisms are often classified as algae (golden algae, brown algae). Labyrinthulids and thraustochytrids, however, are heterotrophic and lack chloroplasts. They were until recently known as Labyrinthulomycetes or Labyrinthulea , indeed the new classification of Adl et al. (2019) uses the first of these names. It is an unfortunate name as it gives the misleading impression that they are fungi. Honigberg et al. (1964) and others considered them protozoa. Are heterokonts algae, protozoa or fungi? And, more specifically, what are labyrinthulids and thraustochytrids? The heterokonts are thought to be a very old group (probably precambrian), and this may account for their huge morphological diversity. In the WORMS list (World Register of Marine Species) heterokonts are classified as the Infrakingdom Heterokonta .
    [Show full text]
  • Marine Phytophthora Species Can Hamper Conservation and Restoration of Vegetated Coastal Ecosystems
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by College of William & Mary: W&M Publish W&M ScholarWorks VIMS Articles Virginia Institute of Marine Science 2016 Marine Phytophthora species can hamper conservation and restoration of vegetated coastal ecosystems LL Govers WAM in 't Veid JP Meffert TJ Bouma PCJ van Rijswick See next page for additional authors Follow this and additional works at: https://scholarworks.wm.edu/vimsarticles Part of the Aquaculture and Fisheries Commons Recommended Citation Govers, LL; in 't Veid, WAM; Meffert, JP; Bouma, TJ; van Rijswick, PCJ; Heusinkveld, JHT; Orth, R J.; van Katwijk, MM; and van der Heide, T, "Marine Phytophthora species can hamper conservation and restoration of vegetated coastal ecosystems" (2016). VIMS Articles. 795. https://scholarworks.wm.edu/vimsarticles/795 This Article is brought to you for free and open access by the Virginia Institute of Marine Science at W&M ScholarWorks. It has been accepted for inclusion in VIMS Articles by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Authors LL Govers, WAM in 't Veid, JP Meffert, TJ Bouma, PCJ van Rijswick, JHT Heusinkveld, R J. Orth, MM van Katwijk, and T van der Heide This article is available at W&M ScholarWorks: https://scholarworks.wm.edu/vimsarticles/795 Downloaded from http://rspb.royalsocietypublishing.org/ on October 25, 2018 Marine Phytophthora species can hamper rspb.royalsocietypublishing.org conservation and restoration of vegetated coastal ecosystems Laura L. Govers1,3, Willem A. Man in ‘t Veld4, Johan P. Meffert4, Tjeerd Research J.
    [Show full text]
  • Seagrass Communities of the Gulf Coast of Florida: Status and Ecology
    CLINTON J. DAWES August 2004 RONALD C. PHILLIPS GEROLD MORRISON CLINTON J. DAWES University of South Florida Tampa, Florida, USA RONALD C. PHILLIPS Institute of Biology of the Southern Seas Sevastopol, Crimea, Ukraine GEROLD MORRISON Environmental Protection Commission of Hillsborough County Tampa, Florida, USA August 2004 COPIES This document may be obtained from the following agencies: Tampa Bay Estuary Program FWC Fish and Wildlife Research Institute 100 8th Avenue SE 100 8th Avenue SE Mail Station I-1/NEP ATTN: Librarian St. Petersburg, FL 33701-5020 St. Petersburg, FL 33701-5020 Tel 727-893-2765 Fax 727-893-2767 Tel 727-896-8626 Fax 727-823-0166 www.tbep.org http://research.MyFWC.com CITATION Dawes, C.J., R.C. Phillips, and G. Morrison. 2004. Seagrass Communities of the Gulf Coast of Florida: Status and Ecology. Florida Fish and Wildlife Conservation Commission Fish and Wildlife Research Institute and the Tampa Bay Estuary Program. St. Petersburg, FL. iv + 74 pp. AUTHORS Clinton J. Dawes, Ph.D. Distinguished University Research Professor University of South Florida Department of Biology Tampa, FL 33620 [email protected] Ronald C. Phillips, Ph.D. Associate Institute of Biology of the Southern Seas 2, Nakhimov Ave. Sevastopol 99011 Crimea, Ukraine [email protected] Gerold Morrison, Ph.D. Director, Environmental Resource Management Environmental Protection Commission of Hillsborough County 3629 Queen Palm Drive Tampa, FL 33619 813-272-5960 ext 1025 [email protected] ii TABLE of CONTENTS iv Foreword and Acknowledgements 1 Introduction 6 Distribution, Status, and Trends 15 Autecology and Population Genetics 28 Ecological Roles 42 Natural and Anthropogenic Effects 49 Appendix: Taxonomy of Florida Seagrasses 55 References iii FOREWORD The waters along Florida’s Gulf of Mexico coastline, which stretches from the tropical Florida Keys in the south to the temperate Panhandle in the north, contain the most extensive and diverse seagrass meadows in the United States.
    [Show full text]
  • Fibrophrys Columna Gen. Nov., Sp. Nov: a Member of the Family Amphifilidae
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Tsukuba Repository Fibrophrys columna gen. nov., sp. nov: A member of the family Amphifilidae 著者 Takahashi Yuiki, Yoshida Masaki, Inouye Isao, Watanabe Makoto M. journal or European journal of protistology publication title volume 56 page range 41-50 year 2016-10 権利 (C) 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4 .0/ URL http://hdl.handle.net/2241/00145193 doi: 10.1016/j.ejop.2016.06.003 Fibrophrys columna gen. nov., sp. nov: a member of the family Amphifilidae Yuiki Takahashia,b, Masaki Yoshidac, Isao Inouyec, and Makoto M. Watanabec aGraduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan bToho Junior and Senior High School Affiliated to Toho University, Izumi-cho, Narashino, Chiba, 275-8511, Japan cFaculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan Corresponding author: Masaki Yoshida Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan Tel.: +81-29-853-4301; Fax: +81-29-853-4301 E-mail: [email protected] Abstract A novel Diplophrys-like organism, Fibrophrys columna, was isolated from Hiuchigaike Pond in Japan. F. columna showed a nearly orbicular or broadly elliptical cell shape and has fine filamentous, branching ectoplasmic elements emanating from both polar ends of the cell. Cells also contain orange, amber, or colorless lipid bodies.
    [Show full text]
  • Kingdom Chromista)
    J Mol Evol (2006) 62:388–420 DOI: 10.1007/s00239-004-0353-8 Phylogeny and Megasystematics of Phagotrophic Heterokonts (Kingdom Chromista) Thomas Cavalier-Smith, Ema E-Y. Chao Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK Received: 11 December 2004 / Accepted: 21 September 2005 [Reviewing Editor: Patrick J. Keeling] Abstract. Heterokonts are evolutionarily important gyristea cl. nov. of Ochrophyta as once thought. The as the most nutritionally diverse eukaryote supergroup zooflagellate class Bicoecea (perhaps the ancestral and the most species-rich branch of the eukaryotic phenotype of Bigyra) is unexpectedly diverse and a kingdom Chromista. Ancestrally photosynthetic/ major focus of our study. We describe four new bicil- phagotrophic algae (mixotrophs), they include several iate bicoecean genera and five new species: Nerada ecologically important purely heterotrophic lineages, mexicana, Labromonas fenchelii (=Pseudobodo all grossly understudied phylogenetically and of tremulans sensu Fenchel), Boroka karpovii (=P. uncertain relationships. We sequenced 18S rRNA tremulans sensu Karpov), Anoeca atlantica and Cafe- genes from 14 phagotrophic non-photosynthetic het- teria mylnikovii; several cultures were previously mis- erokonts and a probable Ochromonas, performed ph- identified as Pseudobodo tremulans. Nerada and the ylogenetic analysis of 210–430 Heterokonta, and uniciliate Paramonas are related to Siluania and revised higher classification of Heterokonta and its Adriamonas; this clade (Pseudodendromonadales three phyla: the predominantly photosynthetic Och- emend.) is probably sister to Bicosoeca. Genetically rophyta; the non-photosynthetic Pseudofungi; and diverse Caecitellus is probably related to Anoeca, Bigyra (now comprising subphyla Opalozoa, Bicoecia, Symbiomonas and Cafeteria (collectively Anoecales Sagenista). The deepest heterokont divergence is emend.). Boroka is sister to Pseudodendromonadales/ apparently between Bigyra, as revised here, and Och- Bicoecales/Anoecales.
    [Show full text]
  • A Revised Six-Kingdom System of Life
    Hi ul. R iv. ' 1998,', 73, p p . 203-266 printed in the United Kingdom © Cambridge Philosophical Society 203 A revised six-kingdom system of life T. CAVALIER-SMITH Evolutionary Biology Programme, Canadian Institute for Advanced Research , Department o f Botany , University o f British Columbia, Vancouver, BC, Canada V6T If4 (.Received 27 M arch 1 9 9 6 ; revised 15 December 1 9 9 7 ; accepted 18 December 1997) ABSTRACT A revised six-kingdom system of life is presented, down to the level of infraphylum. As in my 1983 system Bacteria are treated as a single kingdom, and eukaryotes are divided into only five kingdoms: Protozoa, Animalia, Fungi, Plantae and Chromista. Interm ediate high level categories (superkingdom, subkingdom, branch, infrakingdom, supcrphylum, subphylum and infraphylum) arc extensively used lo avoid splitting organisms into an excessive num ber of kingdoms and phyla (60 only being recognized). The two ‘zoological ’ kingdoms. Protozoa and Animalia, are subject to the International Code of Zoological Nomenclature, the kingdom Bacteria to the International Code of Bacteriological Nomenclature, and the three ‘botanical’ kingdoms (Plantae, Fungi, Chromista) lo the International Code of Botanical Nomenclature, Circumscrip­ tions of the kingdoms Bacteria and Plantae remain unchanged since Cavalicr-Smith (1981). The kingdom Fungi is expanded by adding M icrosporidia, because of protein sequence evidence that these amitochondrial intracellular parasites are related to conventional Fungi, not Protozoa. Fungi arc subdivided into four phyla and 20 classes; fungal classification at the rank of subclass and above is comprehensively revised. The kingdoms Protozoa and Animalia are modified in the light of molecular phylogenetic evidence that Myxozoa arc actually Animalia, not Protozoa, and that mesozoans arc related lo bilaterian animals.
    [Show full text]
  • Labyrinthula Diatomea N. Sp.—A Labyrinthulid Associated with Marine Diatoms
    Journal of Eukaryotic Microbiology ISSN 1066-5234 ORIGINAL ARTICLE Labyrinthula diatomea n. sp.—A Labyrinthulid Associated with Marine Diatoms Olga V. Popovaa, Tatyana A. Belevicha,b, Sergey A. Golysheva, Igor I. Kireeva,b,c & Vladimir V. Aleoshina,d a Belozersky Institute for Physico-Chemical Biology, Lomonosov Moscow State University, Leninskye Gory, 1, build. 40, 119991 Moscow, Russian Federation b Faculty of Biology, Lomonosov Moscow State University, Leninskye Gory, 1, build. 12, 119991 Moscow, Russian Federation c V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology, and Perinatology, Oparina street, 4, 117997 Moscow, Russian Federation d Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Bolshoy Karetny per. 19, build. 1, 127051 Moscow, Russian Federation Keywords ABSTRACT ITS haplogroups; rDNA phylogeny; Stramenopila. Labyrinthulomycetes are mostly fungus-like heterotrophic protists that absorb nutrients in an osmotrophic or phagotrophic manner. Members of order Correspondence Labyrinthulida produce unique membrane-bound ectoplasmic networks for V.V. Aleoshin, Belozersky Institute for Phy- movement and feeding. Among the various types of labyrinthulids’ food sub- sico-Chemical Biology, Lomonosov Moscow strates, diatoms play an important role due to their ubiquitous distribution and State University, Leninskye Gory, 1, 119991 abundant biomass. We isolated and cultivated new diatom consuming Moscow, Russian Federation Labyrinthulida strains from shallow coastal marine sediments. We described Telephone number: +7-495-9391440; Labyrinthula diatomea n. sp. that differs from all known labyrinthulids in both FAX number: +7-495-9393181; molecular and morphological features. We provided strain delimitation within e-mail: [email protected] the genus Labyrinthula based on ITS sequences via haplotype network construction and compared it with previous phylogenetic surveys.
    [Show full text]