Managing Seagrasses for Resilience to Climate Change
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
New Record of the Seagrass Species Halophila Major (Zoll.) Miquel in Vietnam: Evidence from Leaf Morphology and ITS Analysis
DOI 10.1515/bot-2012-0188 Botanica Marina 2013; 56(4): 313–321 Nguyen Xuan Vy*, Laura Holzmeyer and Jutta Papenbrock New record of the seagrass species Halophila major (Zoll.) Miquel in Vietnam: evidence from leaf morphology and ITS analysis Abstract: The seagrass Halophila major (Zoll.) Miquel (i) the number of cross veins, which ranges from 18 to 22, is reported for the first time from Vietnam. It was found and (ii) the ratio of the distance between the intramar- growing with other seagrass species nearshore, 4–6 m ginal vein and the lamina margin at the half-way point deep at Tre Island, Nha Trang Bay. Leaf morphology and along the leaf length, which is 1:20–1:25 (Kuo et al. 2006). phylogenetic analysis based on ribosomal internal tran- Recently, genetic markers, including plastid and nuclear scribed spacer sequences confirmed the identification. sequences, have been used to reveal the genetic relation- There was very little sequence differentiation among sam- ships among members of the genus Halophila. Among the ples of H. major collected in Vietnam and other countries molecular markers used, neither single sequence analysis in the Western Pacific region. A very low evolutionary of the plastid gene encoding the large subunit of ribulose- divergence among H. major populations was found. 1,5-bisphosphate-carboxylase-oxygenase (rbcL) and of the plastid maturase K (matK) nor analysis of the concat- Keywords: Halophila major; internal transcribed spacer; enated sequences of the two plastid markers has resolved new record; seagrass; Vietnam. the two closely related species H. ovalis and H. ovata (Lucas et al. -
"National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment. -
The Balance of Nutrient Losses and Gains in Seaccrass Meadows M
MARINE ECOLOGY PROGRESS SERIES Vol. 71: 85-96, 1991 Published March 28 Mar. Ecol. Prog. Ser. REVIEW The balance of nutrient losses and gains in seaccrass meadows M. A. ~emminga',P. G. ~arrison~,F. van ~ent' ' Delta Institute for Hydrobiological Research, Vierstraat 28,4401 EA Yerseke. The Netherlands Dept of Botany, University of British Columbia, 3529-6270 University Blvd, Vancouver, British Columbia, Canada V6T 2B1 ABSTRACT: Seagrasses abound in the dynamic environment of shallow marine waters. From the often high annual biomass production it can be deduced that seagrass meadows have high requirements for inorganic nutrients, although the nutrient demands will be met to some extent by internal recycling. A series of processes lead to nutrient losses from the seagrass bed. Export of leaves and leaf fragments with currents, leaching losses from photosynthetically active leaves and from senescent and dead plant material, and nutrlent transfer by mobile foraging animals, are processes speclfic to seagrass meadows; in addition, the nutrient losses are aggravated by 2 processes con~monlyoccurring in marine sedirnents: denitrification and diffusion of nutrients from the sediments to the overlying water column. The persistence in time of most seagrass meadows points to an existing balance between nutrient losses and gains. Three processes may contribute to the replenishment of nutrients: nitrogen-fixation, sedimentation and nutrient uptake by the leaves. Nitrogen-fixation undoubtedly is important, but continued biomass production requires other nutrients as well. Crucial contributions, therefore, must come from sedimenta- tion and/or leaf uptake. The concept of the seagrass meadow as an open system, with nutrient fluxes from and to the system varylng in time, allows for imbalances between nutrient losses and gains. -
Halophila Ovalis, Ruppia Megacarpa and Posidonia Coriacea
Edith Cowan University Research Online Theses : Honours Theses 1998 The in vitro propagation of seagrasses : halophila ovalis, ruppia megacarpa and posidonia coriacea Melissa Grace Henry Edith Cowan University Follow this and additional works at: https://ro.ecu.edu.au/theses_hons Part of the Botany Commons, and the Marine Biology Commons Recommended Citation Henry, M. G. (1998). The in vitro propagation of seagrasses : halophila ovalis, ruppia megacarpa and posidonia coriacea. https://ro.ecu.edu.au/theses_hons/742 This Thesis is posted at Research Online. https://ro.ecu.edu.au/theses_hons/742 THE IN VITRO PROPAGATION OF SEAGRASSES: HALOPHILA OVALIS, RUPPIA MEGACARPA AND POSIDONIA CORIACEA MELISSA GRACE HENRY THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF B.SC. (BIOLOGICAL SCIENCE) HONOURS SCHOOL OF NATURAL SCIENCES EDITH COW AN UNIVERSITY JUNE 1998 ABSTRACT Seagrass communities are of high ecological and economic significance. They provide a nursery area for commercial and recreational juvenile fish and crustacea. Seagrasses also play an important role in influencing the structure and function of many estuarine and nearshore marine environments. Unfortunately, the decline of seagrasses, as a result of human impact, has increased in recent years. This decline has become a major problem throughout the world. Current methods used to restore degraded seagrass beds are limited, the most promising being transplanting material from healthy donor beds. This approach is expensive because it is labor intensive and damages the donor bed. Consequently, large scale transplanting programmes are not considered to be feasible. An alternative to using donor material may be found in the propagation of seagrasses. -
University of California, Berkeley Student Research Papers, Fall 1996
Q H /ironmental Science, Policy and Management 107, Geography 142, IDS 158, and Integrative Biology 198 *• M6 B56 T he B iology and G eomorphology 1996 BIOS of T ropical Isla n d s RESERVES Student Research Papers, Fall 1996 Richard B. Gump South Pacific Biological Research Station Moorea, French Polynesia University of California, Berkeley A b o v e : The 1996 Moorea Class, on the front lawn of the Gump Research Station, with Cook's Bay and fringing reef in the background. Standing, from left: Jenmfer Conners, Morgan Hannaford (Graduate Student Instructor), Sandra Trujillo, Solomon Dobrowski, Brent Mishler (Professor, IB), Ylva Carosone, Stephanie Yelenik, Joanna Canepa, Kendra Bergstrom, Peter Weber (Graduate Student Instructor), Julianne Ludwig, Larry Rabin, Damien Filiatrault, Steve Strand (Executive Director, Gump Research Station), and Carole Hickman (Professor, IB). Reclining or seated, from left: Xavier Mayali, Chris Feldman, Sapna Khandwala, Isa Woo, Tracy Benning (Professor, ESPM), Patricia Sanchez Baracaldo (Graduate Student Instructor), and Michael Emmett. B elo w : The beach and lagoon atTetiaroa, site of a class field trip, with Tahiti (left) and Moorea (right) in the background. Environmental Science, Policy and Management 107, Geography 142, IDS 158, Integrative Biology 158 ' ? /A (e 1996 Student Research papers TABLE OF CONTENTS NK\\V0l( \cK $[05 Introductory remarks. Brent D. Mishler 1 The distribution and morphology of seagrass (Halophila Michael Alan Emmett 2 decipiens) in Moorea, French Polynesia. Zonation of lagoon algae in Moorea, French Polynesia. Xavier Mayali 15 Distributional patterns of mobile epifauna associated with Kendra G. Bergstrom 26 two species of brown algae (Phaeophyta) in a tropical reef ecosystem. -
Ecological Indicators for Assessing and Communicating Seagrass Status and Trends in Florida Bay§ Christopher J
Ecological Indicators 9S (2009) S68–S82 Contents lists available at ScienceDirect Ecological Indicators journal homepage: www.elsevier.com/locate/ecolind Ecological indicators for assessing and communicating seagrass status and trends in Florida Bay§ Christopher J. Madden a,*, David T. Rudnick a, Amanda A. McDonald a, Kevin M. Cunniff b, James W. Fourqurean c a Everglades Division, South Florida Water Management District, 8894 Belvedere Rd., West Palm Beach, FL 33411, USA b R.C.T. Engineering, Inc., 701 Northpoint Parkway, West Palm Beach, FL 33407, USA c Dept. of Biological Sciences and Southeast Environmental Research Center, Florida International University, Miami, FL 33199, USA ARTICLE INFO ABSTRACT Article history: A suite of seagrass indicator metrics is developed to evaluate four essential measures of seagrass Received 23 April 2008 community status for Florida Bay. The measures are based on several years of monitoring data using the Received in revised form 20 January 2009 Braun-Blanquet Cover Abundance (BBCA) scale to derive information about seagrass spatial extent, Accepted 11 February 2009 abundance, species diversity and presence of target species. As ecosystem restoration proceeds in south Florida, additional freshwater will be discharged to Florida Bay as a means to restore the bay’s hydrology Keywords: and salinity regime. Primary hypotheses about restoring ecological function of the keystone seagrass Florida Bay community are based on the premise that hydrologic restoration will increase environmental variability Seagrass and reduce hypersalinity. This will create greater niche space and permit multiple seagrass species to co- Status Indicators exist while maintaining good environmental conditions for Thalassia testudinum, the dominant climax Thalassia seagrass species. -
The 16Th International Congress on Marine Corrosion and Fouling
16th Annual International Congress on Marine Corrosion and Fouling ABSTRACT SUMMARIES The 16th International Congress on Marine Corrosion and Fouling 24-28- June 2012 in Seattle, Washington ORGANIZED ON BEHALF OF COMITÉ INTERNATIONAL PERMANENT PUR LA RECHERCHE SU LA PRÉSERVATION DES MATÉRIAUX EN MILIEU MARIN (COIPM) The COIPM Committee consists of: Chair 2010-2012: . Geoff Swain Florida Institute of Technology Secretary and Vice Chair: . Andrew Scardino Defence Science and Technology Organisation Treasurer: . Claire Hellio University of Portsmouth Committee Members: . Maureen Callow University of Birmingham . Tony Clare Newcastle University . Ricardo Coutinho Instituto de Estudos do Mar Almirante Paulo Moreira . Brenda Little Naval Research Laboratory . Steve McElvany Office of Naval Research . Marianne Pereira Hempel . Kiyoshi Shibata Chiba Institute of Technology . Serena Teo National University of Singapore . David Williams International Paint, Ltd Student Committee: . Emily Ralston Florida Institute of Technology . Sheelagh Conlan Liverpool John Moores University i ABSTRACT SUMMARIES 16th Annual International Congress on Marine Corrosion and Fouling Organization Congress Chairman: . Steve McElvany The Office of Naval Research Local Organizing Committee: . Geoff Swain Florida Institute of Technology . Linda Chrisey The Office of Naval Research . Paul Armistead The Office of Naval Research . Shaoyi Jiang The University of Washington . Brenda Little Naval Research Laboratory . Kristin Grehawick Strategic Analysis, Inc. Anthony Brennan -
Physiology and Biochemistry of the Tropical Seagrass Thalassia Testudinum in Response to Hypersalinity Stress and Labyrinthula Sp
UNF Digital Commons UNF Graduate Theses and Dissertations Student Scholarship 2011 Physiology and Biochemistry of the Tropical Seagrass Thalassia testudinum in Response to Hypersalinity Stress and Labyrinthula sp. Infection Stacey Marie Trevathan-Tackett University of North Florida Suggested Citation Trevathan-Tackett, Stacey Marie, "Physiology and Biochemistry of the Tropical Seagrass Thalassia testudinum in Response to Hypersalinity Stress and Labyrinthula sp. Infection" (2011). UNF Graduate Theses and Dissertations. 391. https://digitalcommons.unf.edu/etd/391 This Master's Thesis is brought to you for free and open access by the Student Scholarship at UNF Digital Commons. It has been accepted for inclusion in UNF Graduate Theses and Dissertations by an authorized administrator of UNF Digital Commons. For more information, please contact Digital Projects. © 2011 All Rights Reserved Physiology and Biochemistry of the Tropical Seagrass Thalassia testudinum in Response to Hypersalinity Stress and Labyrinthula sp. Infection by Stacey Marie Trevathan-Tackett A thesis submitted to the Department of Biology in partial fulfillment of the requirements for the degree of Master of Science in Biology University of North Florida College of Arts and Sciences December, 2011 Unpublished Work © 2011 Stacey Marie Trevathan-Tackett Signature Deleted Signature Deleted Signature Deleted Signature Deleted Signature Deleted Signature Deleted Acknowledgements I first would like to acknowledge NOAA and the Nancy Foster Scholarship for funding both school and living expenses for the majority of my Master‟s career allowing me to focus all of my time and efforts toward research. Also, I would like to thank the Dodson Grant, the Coastal Biology program and the Graduate School at UNF for their continued financial support and resources during graduate school. -
Grassland Resources and Development of Grassland Agriculture in Temperate China
124 Rangelands 10(3), June 1988 Grassland Resources and Development of Grassland Agriculture in Temperate China Zhu Tinachen Natural temperate grasslands occupy 2.4 million km2 or one-quarter ofthe area of China. They form a broad beltfrom the plains of the northeast to the Tibetan Plateau of the southwest (Fig. 1). The nature and distribution of thegrassland is determined in large part by the influence of the monsoon. In the north- east where the monsoon is well developed, the grassland owes its existenceto dry conditions in the spring. Westward and southwestward wherethe monsooninfluence is weaker, the grasslandsoccupy higherelevations (to as high as 5,000 m) in response to the semiarid and arid regional climate. Similarly, temperate grasslands occur at high elevations in mountains of the desert region in northwestern China, far beyond the continuous grassland belt. Some 4,000 species offlowering plants comprise thevegetation ofthese temper- ate grasslands.About 200 are important forage species. The livestock population in China is about 130 million Fig. I Steppe zone of China cattle units. Most of the livestock are dependent on these 1.Meadow steppe, 2.Typical steppe. 3.Desert steppe. 4. Shrub steppe. 5. Alpine steppe. natural temperategrasslands. GrasslandTypes responding to climate and distributed in the form of a belt. Meadows are not zonal; they are controlled by local envi- Based on the concept of zonal vegetation, the natural ronments.About 80 ofthe area of is occu- of China can be divided into two percent grassland temperategrasslands major pied by zone steppetypes and about 20 percent by meadow types: steppe and meadow. -
Growth and Population Dynamics of Posidonia Oceanica on the S~Anishmediterranean Coast: Elucidatina Seacrrass Decline
MARINE ECOLOGY PROGRESS SERIES Vol. 137: 203-213, 1996 Published June 27 Mar Ecol Prog Ser Growth and population dynamics of Posidonia oceanica on the S~anishMediterranean coast: elucidatina seacrrass decline Nuria ~arba'l*,Carlos M. ~uarte',Just cebrianl, Margarita E. ~allegos~, Birgit Olesen3, Kaj sand-~ensen~ 'Centre dlEstudis Avanqats de Blanes, C.S.I.C., Cami de Santa Barbara sin, E-17300 Blanes, Girona, Spain 'Departamento de Hidrobiologia, Universidad Autonoma Metropolitana- Iztapalapa, Michocan y Purisima, col. Vicentina, AP 55-535, 09340 Mexico D.F., Mexico 3Department of Plant Ecology, University of Aarhus, Nordlandsvej 68, DK-8240 Risskov. Denmark 'Freshwater Biological Laboratory. University of Copenhagen, 51 Helsingersgade, DK-3400 Hillered. Denmark ABSTRACT: The growth and population dynamics of Posidonia oceanica were examined in 29 mead- ows along 1000 km of the Spanish Mediterranean coast (from 36"46' to 42"22' N). oceanica devel- oped the densest meadows (1141 shoots m-') and the highest aboveground biomass (1400 g DW m") between 38 and 39"N. P. oceanica shoots produced, on average, 1 leaf every 47 d, though leaf forma- tion rates in the populations increased from north to south (range 5 7 to 8.9leaves shoot-' yr-'). P ocean- ica is a long-living seagrass, with shoots able to live for at least 30 yr P, oceanica recruited shoots at low rates (0.02 to 0.5 In units yr-l) which did not balance the mortality rates (0.06 to 0.5 In unlts yr.') found in most (57 %) of the meadows. If the present disturbance and rate of decline are maintained, shoot den- sity is predicted to decline by 50% over the coming 2 to 24 yr. -
Rare Phytomyxid Infection on the Alien Seagrass Halophila Stipulacea In
Research Article Mediterranean Marine Science Indexed in WoS (Web of Science, ISI Thomson) and SCOPUS The journal is available on line at http://www.medit-mar-sc.net DOI: http://dx.doi.org/10.12681/mms.14053 Rare phytomyxid infection on the alien seagrass Halophila stipulacea in the southeast Aegean Sea MARTIN VOHNÍK1,2, ONDŘEJ BOROVEC1,2, ELIF ÖZGÜR ÖZBEK3 and EMINE ŞÜKRAN OKUDAN ASLAN4 1 Department of Mycorrhizal Symbioses, Institute of Botany, Czech Academy of Sciences, Průhonice, 25243 Czech Republic 2 Department of Plant Experimental Biology, Faculty of Science, Charles University, Prague, 12844 Czech Republic 3 Marine Biology Museum, Antalya Metropolitan Municipality, Antalya, Turkey 4 Department of Marine Biology, Faculty of Fisheries, Akdeniz University, Antalya, Turkey Corresponding author: [email protected] Handling Editor: Athanasios Athanasiadis Received: 31 May 2017; Accepted: 9 October 2017; Published on line: 8 December 2017 Abstract Phytomyxids (Phytomyxea) are obligate endosymbionts of many organisms such as algae, diatoms, oomycetes and higher plants including seagrasses. Despite their supposed significant roles in the marine ecosystem, our knowledge of their marine diversity and distribution as well as their life cycles is rather limited. Here we describe the anatomy and morphology of several developmental stages of a phytomyxid symbiosis recently discovered on the petioles of the alien seagrass Halophila stipulacea at a locality in the southeast Aegean Sea. Its earliest stage appeared as whitish spots already on the youngest leaves at the apex of the newly formed rhizomes. The infected host cells grew in volume being filled with plasmodia which resulted in the formation of characteristic macroscopic galls. -
Global Seagrass Distribution and Diversity: a Bioregional Model ⁎ F
Journal of Experimental Marine Biology and Ecology 350 (2007) 3–20 www.elsevier.com/locate/jembe Global seagrass distribution and diversity: A bioregional model ⁎ F. Short a, , T. Carruthers b, W. Dennison b, M. Waycott c a Department of Natural Resources, University of New Hampshire, Jackson Estuarine Laboratory, Durham, NH 03824, USA b Integration and Application Network, University of Maryland Center for Environmental Science, Cambridge, MD 21613, USA c School of Marine and Tropical Biology, James Cook University, Townsville, 4811 Queensland, Australia Received 1 February 2007; received in revised form 31 May 2007; accepted 4 June 2007 Abstract Seagrasses, marine flowering plants, are widely distributed along temperate and tropical coastlines of the world. Seagrasses have key ecological roles in coastal ecosystems and can form extensive meadows supporting high biodiversity. The global species diversity of seagrasses is low (b60 species), but species can have ranges that extend for thousands of kilometers of coastline. Seagrass bioregions are defined here, based on species assemblages, species distributional ranges, and tropical and temperate influences. Six global bioregions are presented: four temperate and two tropical. The temperate bioregions include the Temperate North Atlantic, the Temperate North Pacific, the Mediterranean, and the Temperate Southern Oceans. The Temperate North Atlantic has low seagrass diversity, the major species being Zostera marina, typically occurring in estuaries and lagoons. The Temperate North Pacific has high seagrass diversity with Zostera spp. in estuaries and lagoons as well as Phyllospadix spp. in the surf zone. The Mediterranean region has clear water with vast meadows of moderate diversity of both temperate and tropical seagrasses, dominated by deep-growing Posidonia oceanica.