Grassland Resources and Development of Grassland Agriculture in Temperate China
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Inclusion of Asiatic Mammal Species on Cms Appendices
Convention on the Conservation of Migratory Species of Wild Animals Secretariat provided by the United Nations Environment Programme 14 th MEETING OF THE CMS SCIENTIFIC COUNCIL Bonn, Germany, 14-17 March 2007 CMS/ScC14/Doc.13 Agenda item 6(a) DRAFT PROPOSALS FOR THE INCLUSION OF ASIATIC MAMMAL SPECIES ON CMS APPENDICES (Prepared by the Secretariat) 1. The four draft proposals for the amendment of CMS Appendices attached to this note have been prepared by the Institut Royal des Sciences Naturelles de Belgique and have been submitted by Dr. Pierre Devillers, Scientific Councillor for the European Community and vice-chairman of the Scientific Council. 2. Preparation of these draft proposals is undertaken within the Central Eurasian Aridland Concerted Action and associated Cooperative Action approved by the 8 th Meeting of the Conference of the Parties to CMS (Recommendation 8.23), covering threatened migratory large mammals of the temperate and cold deserts, semi-deserts, steppes and associated mountains of Central Asia, the Northern Indian sub-continent, Western Asia, the Caucasus and Eastern Europe. 3. In particular, Rec. 8.23 “encourages Range States and other interested Parties to prepare, in cooperation with the Scientific Council and the Secretariat, the necessary proposals to include in Appendix I or Appendix II threatened species that would benefit from the Action”. For reasons of economy, documents are printed in a limited number, and will not be distributed at the meeting. Delegates are kindly requested to bring their copy to the meeting and not to request additional copies. DRAFT PROPOSAL FOR INCLUSION OF SPECIES ON THE APPENDICES OF THE CONVENTION ON THE CONSERVATION OF MIGRATORY SPECIES OF WILD ANIMALS Proposal to add in Appendix I Pantholops hodgsonii Document largely based on the species information provided in IUCN Redlist of Threatened Species database (2006) February 2007 2 1. -
Mid-Atlantic Native Meadows Guidelines for Planning, Preparation, Design, Installation, and Maintenance
Mid-Atlantic Native Meadows Guidelines for Planning, Preparation, Design, Installation, and Maintenance Alice Sturm, Mahan Rykiel Associates Stephanie Frischie, Xerces Society for Invertebrate Conservation Mid-Atlantic Native Meadows Guidelines for Planning, Preparation, Design, Installation, and Maintenance Alice Sturm, Mahan Rykiel Associates Stephanie Frischie, Xerces Society for Invertebrate Conservation The Xerces Society is a nonprofit organization that protects the natural world by conserving invertebrates and their habitat. Established in 1971, the Society is a trusted source for science-based information and advice and plays a leading role in promoting the conservation of pollinators and many other invertebrates. We collaborate with people and institutions at all levels and our work to protect bees, butterflies, and other pollinators encompasses all landscapes. Our team draws together experts from the fields of habitat restoration, entomology, plant ecology, education, farming, and conservation biology with a single passion: Protecting the life that sustains us. The Xerces Society for Invertebrate Conservation 628 NE Broadway, Suite 200, Portland, OR 97232 Tel (855) 232-6639 Fax (503) 233-6794 www.xerces.org Regional offices from coast to coast The Xerces Society is an equal opportunity employer and provider. Xerces® is a trademark registered in the U.S. Patent and Trademark Office Founded in 1983, Mahan Rykiel Associates is a 35-person landscape architecture, urban design, and planning firm located in Baltimore, Maryland. The firm works across scales to imagine and realize projects that enrich the human condition and support vibrant natural systems. Research and discovery guide project development that includes public parks, civic plazas, state infrastructure, mixed-use housing, private residences, healthcare facilities, hotels, and commercial centers. -
Stuart, Trees & Shrubs
Excerpted from ©2001 by the Regents of the University of California. All rights reserved. May not be copied or reused without express written permission of the publisher. click here to BUY THIS BOOK INTRODUCTION HOW THE BOOK IS ORGANIZED Conifers and broadleaved trees and shrubs are treated separately in this book. Each group has its own set of keys to genera and species, as well as plant descriptions. Plant descriptions are or- ganized alphabetically by genus and then by species. In a few cases, we have included separate subspecies or varieties. Gen- era in which we include more than one species have short generic descriptions and species keys. Detailed species descrip- tions follow the generic descriptions. A species description in- cludes growth habit, distinctive characteristics, habitat, range (including a map), and remarks. Most species descriptions have an illustration showing leaves and either cones, flowers, or fruits. Illustrations were drawn from fresh specimens with the intent of showing diagnostic characteristics. Plant rarity is based on rankings derived from the California Native Plant Society and federal and state lists (Skinner and Pavlik 1994). Two lists are presented in the appendixes. The first is a list of species grouped by distinctive morphological features. The second is a checklist of trees and shrubs indexed alphabetically by family, genus, species, and common name. CLASSIFICATION To classify is a natural human trait. It is our nature to place ob- jects into similar groups and to place those groups into a hier- 1 TABLE 1 CLASSIFICATION HIERARCHY OF A CONIFER AND A BROADLEAVED TREE Taxonomic rank Conifer Broadleaved tree Kingdom Plantae Plantae Division Pinophyta Magnoliophyta Class Pinopsida Magnoliopsida Order Pinales Sapindales Family Pinaceae Aceraceae Genus Abies Acer Species epithet magnifica glabrum Variety shastensis torreyi Common name Shasta red fir mountain maple archy. -
THE KAZAKH STEPPE Conserving the World's Largest Dry
THE KAZAKH STEPPE Conserving the world’s largest dry steppe region Photo: Chris Magin, IUCN Saryarka is an internationally significant mosaic of steppe and wetlands The Dry Steppe Region The steppe grasslands of Eurasia were once among the most extensive in the world, stretching from eastern Romania, Moldova and Ukraine in eastern Europe (often referred to as the Pontic steppe) east through Kazakhstan and western Russia). Together, the Pontic and Kazakh steppes, often collectively referred to as the Pontian steppe, comprise about 24% of the world’s temperate grasslands. They eventually link to the vast grasslands of eastern Asia extending to Mongolia, China and Siberian Russia, together creating the largest complex of temperate grasslands on earth. The remaining extent and ecological condition of these grasslands varies considerably by region. Today in eastern Europe, for example, only 3–5 % remain in a natural or near natural state, with only 0.2% protected. In contrast, the eastward extension of these steppes into Kazakhstan reveals lower levels of disturbance, where as much as 36% remain in a semi-natural or natural state. Although current levels of protection in this region are also very low, the steppes of Kazakhstan have the potential to offer significant opportunities for increased conservation and protection. The Kazakh steppe, also known as the Kirghiz steppe, is itself one of the largest dry steppe regions on the planet, covering approximately 804,500 square kilometres and extending more than 2,200 kilometres from north of the Caspian Sea east to the Altai Mountains. These grasslands lie at the southern end of the Ural Mountains, the traditional dividing line between Europe and Asia. -
Temperate Grasslandsgrasslands Temperate Grasslands
TemperateTemperate GrasslandsGrasslands Temperate Grasslands § One of the most extensive of the biomes § North America: prairies 350 million ha running from eastern deciduous forest border to western cordilleras Konza Prairie, Kansas Temperate Grasslands § One of the most extensive of the biomes § Eurasia: steppes 250 million ha running from Hungary to Manchuria Mongolian steppe Russian Steppe Temperate Grasslands § One of the most extensive of the biomes § Argentina, Uruguay: pampas Temperate Grasslands § One of the most extensive of the biomes § Argentina, Uruguay: pampas Cortaderia - pampas grass Temperate Grasslands § One of the most extensive of the biomes § South Africa: grassveldt Temperate Grasslands § Temperate grasslands are adapted to recurring drought (50 - 120 cm rain) § Temperate grasslands appear homogenous but important structural and floristic differences have developed in response to regional and local conditions (e.g. in prairie province) § increasing latitude & east to west: warm to cold and moist to dry Temperate Grasslands § American prairie gradients: west to east Curtis Prairie - tall grass, Wisconsin Shortgrass prairie, Nebraska Konza Prairie - mixed grass, Kansas Temperate Grasslands § American prairie gradients: forest - grassland Curtis Prairie - tall grass, Wisconsin Prairie-oak savanna Temperate Grasslands § soils are rich 'chernozens' or 'udolls’ § thick organic layer of very dark humus; active earthworm and soil fauna activity making this soil one of the most productive of terrestrial systems § light rainfall -
Wildflower Meadows
Online edition: ISSN 2009-6852 National Biodiversity Data Series No. 13. Print edition: ISSN 2009-6844 How-to-guide Creation and management of a wildfl ower meadow All-Ireland Pollinator Plan e I m 2015-2020 r t p n l e e m C a e t n a t a D t i y o t i n s c r o e o iv rd d i io n B at l ed na by tio th Na e www.biodiversityireland.ie/pollinator-plan How-to-guide 4 “How can I create a What is a wildflower wildflower meadow for meadow? A wildfower meadow is many things to many pollinators?” people. To some, a wildfower meadow is a brightly This is the Pollinator Plan’s most frequently asked coloured feld made up of annual species such as question. If we want to ensure our pollinators poppies and cornfowers (left photo, below). These are there when we need them, providing enough were the “weeds” of cereals such as barley. With food (fowers) is key. Planting a native wildfower selective herbicides and improved seed cleaning meadow can help, but creating a sustainable, practices these species have declined. pollinator friendly meadow is more complex than most people realise. That is why the experts at Other people have in mind the traditional Irish EcoSeeds have collaborated with the Pollinator hay meadow (right photo, below). In the last 50 Plan to help produce this How-to-Guide. It will help years the practice of hay making has declined you plan for and carry out your wildfower project. -
The Aridity Index Governs the Variation of Vegetation Characteristics in Alpine Grassland, Northern Tibet Plateau
The aridity index governs the variation of vegetation characteristics in alpine grassland, Northern Tibet Plateau Biying Liu1,2, Jian Sun2,3, Miao Liu2, Tao Zeng1 and Juntao Zhu2 1 College of Earth Sciences, Chengdu University of Technology, Chengdu, China 2 Synthesis Research Centre of Chinese Ecosystem Research Network, Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China 3 State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, China ABSTRACT The vegetation dynamic (e.g., community productivity) is an important index used to evaluate the ecosystem function of grassland ecosystem. However, the critical factors that affect vegetation biomass are disputed continuously, and most of the debates focus on mean annual precipitation (MAP) or temperature (MAT). This article integrated these two factors, used the aridity index (AI) to describe the dynamics of MAP and MAT, and tested the hypothesis that vegetation traits are influenced primarily by the AI. We sampled 275 plots at 55 sites (five plots at each site, including alpine steppe and meadow) across an alpine grassland of the northern Tibet Plateau, used correlation analysis and redundancy analysis (RDA) to explore which key factors determine the biomass dynamic, and explained the mechanism by which they affect the vegetation biomass in different vegetation types via structural equation modelling (SEM). The results supported our hypothesis, in all of the environmental factors collected, the AI made the greatest contribution to biomass variations in RDA , and the correlation between the AI and biomass was the largest (R D 0:85, p < 0:05). -
Description of the Ecoregions of the United States
(iii) ~ Agrl~:::~~;~":,c ullur. Description of the ~:::;. Ecoregions of the ==-'Number 1391 United States •• .~ • /..';;\:?;;.. \ United State. (;lAn) Department of Description of the .~ Agriculture Forest Ecoregions of the Service October United States 1980 Compiled by Robert G. Bailey Formerly Regional geographer, Intermountain Region; currently geographer, Rocky Mountain Forest and Range Experiment Station Prepared in cooperation with U.S. Fish and Wildlife Service and originally published as an unnumbered publication by the Intermountain Region, USDA Forest Service, Ogden, Utah In April 1979, the Agency leaders of the Bureau of Land Manage ment, Forest Service, Fish and Wildlife Service, Geological Survey, and Soil Conservation Service endorsed the concept of a national classification system developed by the Resources Evaluation Tech niques Program at the Rocky Mountain Forest and Range Experiment Station, to be used for renewable resources evaluation. The classifica tion system consists of four components (vegetation, soil, landform, and water), a proposed procedure for integrating the components into ecological response units, and a programmed procedure for integrating the ecological response units into ecosystem associations. The classification system described here is the result of literature synthesis and limited field testing and evaluation. It presents one procedure for defining, describing, and displaying ecosystems with respect to geographical distribution. The system and others are undergoing rigorous evaluation to determine the most appropriate procedure for defining and describing ecosystem associations. Bailey, Robert G. 1980. Description of the ecoregions of the United States. U. S. Department of Agriculture, Miscellaneous Publication No. 1391, 77 pp. This publication briefly describes and illustrates the Nation's ecosystem regions as shown in the 1976 map, "Ecoregions of the United States." A copy of this map, described in the Introduction, can be found between the last page and the back cover of this publication. -
Aksu-Zhabagly BIOSPHERE RESERVE National Commission Republic of Kazakhstan
Aksu-Zhabagly BIOSPHERE RESERVE National Commission Republic of Kazakhstan Kazakhstan National Committee Kazakhstan National Committee for the UNESCO Programme “Man and Biosphere” MAB, Institute of Zoology, 93 al-Farabi Str. Almaty, 050060 KAZAKHSTAN Kazakhstan National Committee Aksu-Zhabagly Biosphere Reserve NominatioN PART I: SUMMARY 1. PROPOSED NAME OF THE BIOSPHERE RESERVE: Aksu-Zhabagly Biosphere Reserve 2. COUNTRY: Kazakhstan Aksu-Zhabagly 4 FULFILLMENT OF THE THREE FUNCTIONS OF BIOSPHERE RESERVES 3. «Conservation — contribute to the conservation of landscapes, ecosystems, species and genetic variation» 3. 1 Aksu-Zhabagly biosphere reserve is located in the Western end of Talasskiy Alatau and Southern part of Karatau in the West Tien Shan. The whole region of the West Tien Shan is an Eastern outpost of Mediterranean atmospheric circulation, therefore it has a winter-spring rainfall. The mountain range of the West Tien Shan is a barrier that catches the moisture in the Western transport of air masses; in addition, this region is situated within the zone of the Southern deserts, where the annual temperature sum is high and about 4000-5000o C. As a result, this area is the most favorable for vegetation and preservation of many ancient relict species and plant communities. Moreover, the reserve’s ecosystems have a very close relationship with the natural systems of the Near East and the Mediterranean than to the rest of the ecosystems of the Tien Shan. The territory of Aksu Zhabagly has a high degree of representativeness at regional level. For example, it has almost all landscape types and sub-types of the West Tien Shan, except for deserts and gypsophilous subshrub communities, which are well below the reserve in altitude. -
A HOME for the DAURIA's RARE CREATURES Securing Steppe
A HOME FOR THE DAURIA’S RARE CREATURES Securing steppe fauna in the Daursky Biosphere Reserve Photo: Vadim Kiriliuk Adon-Chelon, ‘The Herd of Stone Horses’ – a site targeted for Argali Sheep reintroduction Torey Lakes - Russian The Dauria Steppe Ecoregion The transboundary Dauria steppe ecoregion occurs across Mongolia, Russia and China. Within Russia, the Dauria steppe spreads across the Zabaikalsky Province in Russia’s Far East. It is renowned for its high diversity of fauna including the Great Bustard, Daurian Crane, Swan Goose, Mongolian Gazelle, Argali Sheep, Siberian Marmot, and Pallas Cat. The high zoological diversity of the region has been attributed to a number of factors including a large range of habitat types and dispersion corridors, the overlap of several zoogeographic zones, and extreme variations in climatic conditions which triggers widespread migrations in many species. Despite the high biodiversity values of the region, Zabaikalsky Province has the lowest protected areas coverage amongst Russia’s eastern provinces. One of the few protected areas in the region is the exceptional Daursky Biosphere Reserve, situated near the Mongolian and China border, which unites a cluster of reserves including the Tasucheisky Wildlife Refuge. Representing the majority of major landscape types of the Dauria, the 45,790 hectare core area of the Daursky consists of wetlands and rocky hills, while the 163,530 hectare buffer zone contains mostly grassland and pine stands. The reserve also includes the significant rocks of Adon-Chelon (‘The Herd of Stone Horses’ in Buryat language), and a stand of the rare Krylov pine which is uniquely adapted to survive the conditions of the dry steppes. -
Grasslands and Prairies Grassland
Grasslands and Prairies Grassland Dominated by grasses (Poaceae) and grass-like plants (sedges, rushes) 30 – 40 % of world land surface Climate composed of moderate precipitation (10 - 50 inches/yr) and periodic drought Other environmental factors Fire Grazing Major Global Grasslands Temperate Grasslands North America Prairie, Great Plains Grasslands Eurasia Steppe South America Pampas Subtropical to Tropical Grasslands South America Cerrado, Llanos Africa Savanna, Veldt Australia Mitchell Grasslands Prairie From the historic French word for a tree-less meadow or pasture co-dominated by perennial grasses and forbs. Generally used by North American ecologists to describe a tree-less vegetation of grasses, dicotyledonous herbs, and small shrubs. Steppe From the Russian word “степ” for an extensive, flat grassland. Sometimes used by North American ecologists to describe a grassland composed of short statured, perennial grasses or bunch grasses. Temperate Grasslands Cold season alternating with Warm to Hot season 10 – 35 inches of annual precipitation alternating with drought Deep, porous soils (e.g., loess) Subtropical to Tropical Grasslands Cool to Warm seasons alternating with Warm to Hot seasons 20 – 50 inches of annual precipitation alternating with drought Soils vary from deep to thin, porous to clay pampas prairie steppe savannah Adaptations perennial, cespitose habit thin, narrow leaves that grow from the base deep, compact root systems G G G G G G G G G Fire “Grazing” Grazing: feeding primarily on grasses and grass-like plants Browsing: -
Biodiversity Profile of Afghanistan
NEPA Biodiversity Profile of Afghanistan An Output of the National Capacity Needs Self-Assessment for Global Environment Management (NCSA) for Afghanistan June 2008 United Nations Environment Programme Post-Conflict and Disaster Management Branch First published in Kabul in 2008 by the United Nations Environment Programme. Copyright © 2008, United Nations Environment Programme. This publication may be reproduced in whole or in part and in any form for educational or non-profit purposes without special permission from the copyright holder, provided acknowledgement of the source is made. UNEP would appreciate receiving a copy of any publication that uses this publication as a source. No use of this publication may be made for resale or for any other commercial purpose whatsoever without prior permission in writing from the United Nations Environment Programme. United Nations Environment Programme Darulaman Kabul, Afghanistan Tel: +93 (0)799 382 571 E-mail: [email protected] Web: http://www.unep.org DISCLAIMER The contents of this volume do not necessarily reflect the views of UNEP, or contributory organizations. The designations employed and the presentations do not imply the expressions of any opinion whatsoever on the part of UNEP or contributory organizations concerning the legal status of any country, territory, city or area or its authority, or concerning the delimitation of its frontiers or boundaries. Unless otherwise credited, all the photos in this publication have been taken by the UNEP staff. Design and Layout: Rachel Dolores