Crustacea: Isopoda)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Anchialine Cave Biology in the Era of Speleogenomics Jorge L
International Journal of Speleology 45 (2) 149-170 Tampa, FL (USA) May 2016 Available online at scholarcommons.usf.edu/ijs International Journal of Speleology Off icial Journal of Union Internationale de Spéléologie Life in the Underworld: Anchialine cave biology in the era of speleogenomics Jorge L. Pérez-Moreno1*, Thomas M. Iliffe2, and Heather D. Bracken-Grissom1 1Department of Biological Sciences, Florida International University, Biscayne Bay Campus, North Miami FL 33181, USA 2Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX 77553, USA Abstract: Anchialine caves contain haline bodies of water with underground connections to the ocean and limited exposure to open air. Despite being found on islands and peninsular coastlines around the world, the isolation of anchialine systems has facilitated the evolution of high levels of endemism among their inhabitants. The unique characteristics of anchialine caves and of their predominantly crustacean biodiversity nominate them as particularly interesting study subjects for evolutionary biology. However, there is presently a distinct scarcity of modern molecular methods being employed in the study of anchialine cave ecosystems. The use of current and emerging molecular techniques, e.g., next-generation sequencing (NGS), bestows an exceptional opportunity to answer a variety of long-standing questions pertaining to the realms of speciation, biogeography, population genetics, and evolution, as well as the emergence of extraordinary morphological and physiological adaptations to these unique environments. The integration of NGS methodologies with traditional taxonomic and ecological methods will help elucidate the unique characteristics and evolutionary history of anchialine cave fauna, and thus the significance of their conservation in face of current and future anthropogenic threats. -
Changes in Species Composition of Haploniscidae (Crustacea Isopoda)
Progress in Oceanography 180 (2020) 102233 Contents lists available at ScienceDirect Progress in Oceanography journal homepage: www.elsevier.com/locate/pocean Changes in species composition of Haploniscidae (Crustacea: Isopoda) across T potential barriers to dispersal in the Northwest Pacific ⁎ Nele Johannsena,b, Lidia Linsa,b,c, Torben Riehla,b, Angelika Brandta,b, a Goethe University, Biosciences, Institute for Ecology, Evolution und Diversity, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany b Senckenberg Research Institute and Natural History Museum, Marine Zoology, Senckenberganlage 25, 60325 Frankfurt am Main, Germany c Ghent University, Marine Biology Research Group, Krijgslaan 281/S8, 9000 Ghent, Belgium ARTICLE INFO ABSTRACT Keywords: Speciation processes as drivers of biodiversity in the deep sea are still not fully understood. One potential driver Hadal for species diversification might be allopatry caused by geographical barriers, such as ridges or trenches, or Ecology physiological barriers associated with depth. We analyzed biodiversity and biogeography of 21 morphospecies of Sea of Okhotsk the deep-sea isopod family Haploniscidae to investigate barrier effects to species dispersal in the Kuril- Deep sea Kamchatka Trench (KKT) area in the Northwest (NW) Pacific. Our study is based on 2652 specimens from three Abyssal genera, which were collected during the German-Russian KuramBio I (2012) and II (2016) expeditions as well as Isopoda Kuril Kamchatka Trench the Russian-German SokhoBio (2015) campaign. The sampling area covered two potential geographical barriers Distribution (the Kuril Island archipelago and the Kuril-Kamchatka Trench), as well as three depth zones (bathyal, abyssal, Northwest Pacific hadal). We found significant differences in relative species abundance between abyssal and hadal depths. -
Biodiversity: the UK Overseas Territories. Peterborough, Joint Nature Conservation Committee
Biodiversity: the UK Overseas Territories Compiled by S. Oldfield Edited by D. Procter and L.V. Fleming ISBN: 1 86107 502 2 © Copyright Joint Nature Conservation Committee 1999 Illustrations and layout by Barry Larking Cover design Tracey Weeks Printed by CLE Citation. Procter, D., & Fleming, L.V., eds. 1999. Biodiversity: the UK Overseas Territories. Peterborough, Joint Nature Conservation Committee. Disclaimer: reference to legislation and convention texts in this document are correct to the best of our knowledge but must not be taken to infer definitive legal obligation. Cover photographs Front cover: Top right: Southern rockhopper penguin Eudyptes chrysocome chrysocome (Richard White/JNCC). The world’s largest concentrations of southern rockhopper penguin are found on the Falkland Islands. Centre left: Down Rope, Pitcairn Island, South Pacific (Deborah Procter/JNCC). The introduced rat population of Pitcairn Island has successfully been eradicated in a programme funded by the UK Government. Centre right: Male Anegada rock iguana Cyclura pinguis (Glen Gerber/FFI). The Anegada rock iguana has been the subject of a successful breeding and re-introduction programme funded by FCO and FFI in collaboration with the National Parks Trust of the British Virgin Islands. Back cover: Black-browed albatross Diomedea melanophris (Richard White/JNCC). Of the global breeding population of black-browed albatross, 80 % is found on the Falkland Islands and 10% on South Georgia. Background image on front and back cover: Shoal of fish (Charles Sheppard/Warwick -
Three New Troglobitic Asellids from Western North America (Crustacea: Isopoda: Asellidael
Int. J. Speleol. 7 (1975) pp. 339-356. Three New Troglobitic Asellids from Western North America (Crustacea: Isopoda: Asellidael by Thomas E. BOWMAN* Troglobitic isopods of the family Asellidae, comprising about 42 species (Fleming, 1973), are widespread in the eastern United States, mostly in non-glaciated areas, but extending into some glaciated parts of Illinois and Indiana. To the west, tro- globitic asellids range to central Kansas, Oklahoma and Texas. West of this area, if we exclude the 4 Mexican species of Mexistenasellus (Cole and Minckley, 1972; Magniez, 1972; Argano, 1973) which belong to a separate family, Stenasellidae (Henry and Magniez, 1968, 1970), only 2 troglobitic asellids are known from North America: Asellus cali/amicus Miller (1933) from northern California and Canasellus pasquinii Argano (1972) from Veracruz state, Mexico. The 3 new species of- western troglobitic asellids described herein extend the records of blind asellids in North America south to Chiapas state, Mexico, and north to central Alberta, Canada (ca. 53°N), and add a second species from Califor- nia. The new species from Chiapas is very similar to Canasellus pasquinii Argano (1972); the new asellids from Alberta and California show no close affinities with known species. The generic status of North American species of Asellus is still unsettled. Henry and Magniez (1970) divided the species between Canasellus Stammer (1932) and Pseudabaicalasellus Henry and Magniez (1968) except A. tamalensis Harford and A. cali/amicus Miller, which they believed to be closely related to far-eastern forms belonging to Asellus (Asellus) and Nippanasellus Matsumoto (1962). I have indi- cated that this is unlikely for A. -
Descripción De Nuevas Especies Animales De La Península Ibérica E Islas Baleares (1978-1994): Tendencias Taxonómicas Y Listado Sistemático
Graellsia, 53: 111-175 (1997) DESCRIPCIÓN DE NUEVAS ESPECIES ANIMALES DE LA PENÍNSULA IBÉRICA E ISLAS BALEARES (1978-1994): TENDENCIAS TAXONÓMICAS Y LISTADO SISTEMÁTICO M. Esteban (*) y B. Sanchiz (*) RESUMEN Durante el periodo 1978-1994 se han descrito cerca de 2.000 especies animales nue- vas para la ciencia en territorio ibérico-balear. Se presenta como apéndice un listado completo de las especies (1978-1993), ordenadas taxonómicamente, así como de sus referencias bibliográficas. Como tendencias generales en este proceso de inventario de la biodiversidad se aprecia un incremento moderado y sostenido en el número de taxones descritos, junto a una cada vez mayor contribución de los autores españoles. Es cada vez mayor el número de especies publicadas en revistas que aparecen en el Science Citation Index, así como el uso del idioma inglés. La mayoría de los phyla, clases u órdenes mues- tran gran variación en la cantidad de especies descritas cada año, dado el pequeño núme- ro absoluto de publicaciones. Los insectos son claramente el colectivo más estudiado, pero se aprecia una disminución en su importancia relativa, asociada al incremento de estudios en grupos poco conocidos como los nematodos. Palabras clave: Biodiversidad; Taxonomía; Península Ibérica; España; Portugal; Baleares. ABSTRACT Description of new animal species from the Iberian Peninsula and Balearic Islands (1978-1994): Taxonomic trends and systematic list During the period 1978-1994 about 2.000 new animal species have been described in the Iberian Peninsula and the Balearic Islands. A complete list of these new species for 1978-1993, taxonomically arranged, and their bibliographic references is given in an appendix. -
Of the Genus Mexistenasellus from Veracruz, Mexico
Available online at www.sciencedirect.com Revista Mexicana de Biodiversidad Revista Mexicana de Biodiversidad 87 (2016) 1257–1264 www.ib.unam.mx/revista/ Taxonomy and systematics A new species of stygobitic isopod (Crustacea: Stenasellidae) of the genus Mexistenasellus from Veracruz, Mexico Una especie nueva de isópodo (Crustacea: Stenasellidae) estigobítico del género Mexistenasellus de Veracruz, México a,∗ b Fernando Álvarez , Antonio Guillén-Servent a Colección Nacional de Crustáceos, Instituto de Biología, Universidad Nacional Autónoma de México, Apartado postal 70-153, 04510 Ciudad de México, Mexico b Instituto de Ecología, A.C., Carretera antigua a Coatepec 351, El Haya, 91070 Xalapa, Veracruz, Mexico Received 8 March 2016; accepted 15 July 2016 Available online 17 November 2016 Abstract A new species of stygobitic isopod from Cerro Colorado Cave, Municipality of Apazapan, near Xalapa, Veracruz, is described. The new species is placed in Mexistenasellus due to the lack of eyes and pigmentation, a head distinct from pereonite 1, and 2 well developed pleonites. Other characters, such as the number of setae in the dactyli of the pereiopods, show slight variations from the original description of the genus. The new species can be distinguished from the previously known 7 species in the genus by the shape of the head, the proportions of the pleotelson and length of uropods. Color in life is pink as is characteristic of the species of Mexistenasellus. A key to the species of Mexistenasellus is provided. © 2016 Universidad Nacional Autónoma de México, Instituto de Biología. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). -
Isopoda, Asellota) with Some Phylogenetic Considerations Concerning Asellota
Crustaceana 48 (2) 1985, E. J. Brill, Leiden A CONTRIBUTION TO THE GENERAL MORPHOLOGY OF PROTOJANIRIDAE (ISOPODA, ASELLOTA) WITH SOME PHYLOGENETIC CONSIDERATIONS CONCERNING ASELLOTA BY B. SKET Institut za biologijo, Univerza E. Kardelja v Ljubljani, p.p. 141, YU 61001 Ljubljana, Yugoslavia Since most representatives of the superfamily Gnathostenetroidoidea have been described only for "microtaxonomical" purposes, some important features and even peculiarities of the species and probably of the entire group have been overlooked. I took advantage of possessing a good sample of the comparatively very large representative, viz., Enckella lucei major Sket, 1982 (as well as some other species of the family Protojaniridae) to demonstrate some such features. Unfortunately, of the family Gnathostenetroididae I could study only specimens of an undescribed species from the Bahamas, while comparison with other representatives was possible only through illustrations. I abstained from comparing Enckella with the numerous and diverse Janiroidea, leaving this to a more versed student of that special group. I also abstained from discussing the remarkable idea about possible Asellotan nature of Microcerberidae (WageJe, J 980) which is anyway of little importance for the present subject. Cephalothorax ("head"). — With the exception of having two pairs of antennae, the Enckella's head bears greater resemblance to a prognathous in sect head than to an Asellid. The cephalic capsula is closed to a great extent, incorporating completely the first thoracomere. The capsula is closed and slightly sclerotised also behind the insertions of the maxillipeds, uniting them with the set of other mouth appendages. The clypeolabrum protrudes for wards, its inclination downwards is much less expressed than in most other groups of Isopoda. -
And Peracarida
Contributions to Zoology, 75 (1/2) 1-21 (2006) The urosome of the Pan- and Peracarida Franziska Knopf1, Stefan Koenemann2, Frederick R. Schram3, Carsten Wolff1 (authors in alphabetical order) 1Institute of Biology, Section Comparative Zoology, Humboldt University, Philippstrasse 13, 10115 Berlin, Germany, e-mail: [email protected]; 2Institute for Animal Ecology and Cell Biology, University of Veterinary Medicine Hannover, Buenteweg 17d, D-30559 Hannover, Germany; 3Dept. of Biology, University of Washington, Seattle WA 98195, USA. Key words: anus, Pancarida, Peracarida, pleomeres, proctodaeum, teloblasts, telson, urosome Abstract Introduction We have examined the caudal regions of diverse peracarid and The variation encountered in the caudal tagma, or pancarid malacostracans using light and scanning electronic posterior-most body region, within crustaceans is microscopy. The traditional view of malacostracan posterior striking such that Makarov (1978), so taken by it, anatomy is not sustainable, viz., that the free telson, when present, bears the anus near the base. The anus either can oc- suggested that this region be given its own descrip- cupy a terminal, sub-terminal, or mid-ventral position on the tor, the urosome. In the classic interpretation, the telson; or can be located on the sixth pleomere – even when a so-called telson of arthropods is homologized with free telson is present. Furthermore, there is information that the last body unit in Annelida, the pygidium (West- might be interpreted to suggest that in some cases a telson can heide and Rieger, 1996; Grüner, 1993; Hennig, 1986). be absent. Embryologic data indicates that the condition of the body terminus in amphipods cannot be easily characterized, Within that view, the telson and pygidium are said though there does appear to be at least a transient seventh seg- to not be true segments because both structures sup- ment that seems to fuse with the sixth segment. -
Comparative Morphology and Evolution of the Asellote Isopod Crustaceans
The debate about the biological species concept - a review 257 WILLIAMS, G. C, 1975: Sex and Evolution. Princeton, New Jersey: Princeton Univ. Press. WILLIS, E. O., 1981: Is a Species an Interbreeding Unit, or an Internally Similar Part of a Phylogenetic Tree? Syst. Zool. 30, 84-85. WILLMANN, R., 1983: Biospecies und Phylogenetische Systematik. Z. zool. Syst. Evolut.-forsch. 21, 241-249. - 1985: Die Art in Raum und Zeit - Das Artkonzept in der Biologie und Palaontologie. Berlin, Hamburg: Paul Parey. WILSON, F.; WOODCOCK, L. T., 1960: Temperature determination of sex in a parthenogenetic para- site, Ooencyrtus submetallicus (Howard) (Hymenoptera: Encyrtidae). Australian J. Zoology 8, 153-169. Author's address: CHRISTOPH L. HAUSER, Institut fur Biologie I (Zoologie), Albert-Ludwigs-Uni- versitat, Albertstr. 21a, D-7800 Freiburg/Br. The road to the Janiroidea: Comparative morphology and evolution of the asellote isopod crustaceans By G. D. F. WILSON Received on 18. November 1986 Abstract This paper presents a new phylogenetic estimate of isopod crustaceans of the suborder Asellota with the aim of clarifying the evolution of the superfamily Janiroidea, a large and diverse group inhabiting all aqueous habitats. The phylogenetic analysis is based on a morphological evaluation of characters used in past classifications, as well as several new characters. The evolutionary polarity of the charac- ters was determined by outgroup analysis. The characters employed were from the pleopods, the copulatory organs, the first walking legs, and the cephalon. The resulting character data set was analyzed with numerical phylogenetic computer programs to find one most parsimonious clado- gram, which is translated into a classification using the sequencing convention. -
Guide to the Marine Isopod Crustaceans of the Caribbean
Guide to the MARINE ISOPOD CRUSTACEANS of the Caribbean H H h Guide to the MARINE ISOPOD CRUSTACEANS of the Caribbean Brian Kensley and Marilyn Schotte SMITHSONIAN INSTITUTION PRESS WASHINGTON, D.C., AND LONDON — — © 1989 by the Smithsonian Institution All rights reserved Designer: Linda McKnight Editor: Nancy Dutro Library of Congress Cataloging-in-PubHcation Data Kensley, Brian Frederick. Guide to the marine isopod crustaceans of the Caribbean / Brian Kensley and Marilyn Schotte. p. cm. Bibliography: p. Includes index. ISBN 0-87474-724-4 (alk. paper) 1. Isopoda— Caribbean Sea Classification. 2. Crustacea—Caribbean Sea Classification. I. Schotte, Marilyn. II. Title. QL444.M34K434 1989 595.3'7209153'35—dcl9 88-38647 CIP British Library Cataloging-in-Publication Data available Manufactured in the United States of America 10 98765432 1 98 97 96 95 94 93 92 91 90 89 00 The paper used in this publication meets the minimum requirements of the American National Standard for Performance of Paper for Printed Library Materials Z39.48-1984 Contents 1 Introduction 1 HISTORIC BACKGROUND 3 GEOGRAPHIC AREA COVERED IN THIS GUIDE 4 ARRANGEMENT OF THE GUIDE AND HOW TO USE IT 5 ACKNOWLEDGMENTS 7 Glossary of Technical Terms 13 Marine Isopods of the Caribbean 13 ORDER ISOPODA 15 SUBORDER ANTHURIDEA 73 SUBORDER ASELLOTA 107 SUBORDER EPICARIDEA 114 SUBORDER FLABELLIFERA 236 SUBORDER GNATHIIDEA 243 SUBORDER MICROCERBERIDEA 246 SUBORDER ONISCIDEA 251 SUBORDER VALVIFERA 261 Zoogeography 261 FAUNAE PROVINCES 262 ANALYSIS OF THE ISOPOD FAUNA 266 THE BAHAMAS 269 BERMUDA 269 CAVE ISOPODS 275 Appendix 277 Literature Cited 293 Index Introduction The title of this work will no doubt raise several questions in many readers' minds: why the Caribbean? why not the Caribbean and the Gulf of Mexico? why only the marine isopods? just what is the "Caribbean area"? We hope that the answers to some of these (and other) questions will become apparent. -
Sovraccoperta Fauna Inglese Giusta, Page 1 @ Normalize
Comitato Scientifico per la Fauna d’Italia CHECKLIST AND DISTRIBUTION OF THE ITALIAN FAUNA FAUNA THE ITALIAN AND DISTRIBUTION OF CHECKLIST 10,000 terrestrial and inland water species and inland water 10,000 terrestrial CHECKLIST AND DISTRIBUTION OF THE ITALIAN FAUNA 10,000 terrestrial and inland water species ISBNISBN 88-89230-09-688-89230- 09- 6 Ministero dell’Ambiente 9 778888988889 230091230091 e della Tutela del Territorio e del Mare CH © Copyright 2006 - Comune di Verona ISSN 0392-0097 ISBN 88-89230-09-6 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior permission in writing of the publishers and of the Authors. Direttore Responsabile Alessandra Aspes CHECKLIST AND DISTRIBUTION OF THE ITALIAN FAUNA 10,000 terrestrial and inland water species Memorie del Museo Civico di Storia Naturale di Verona - 2. Serie Sezione Scienze della Vita 17 - 2006 PROMOTING AGENCIES Italian Ministry for Environment and Territory and Sea, Nature Protection Directorate Civic Museum of Natural History of Verona Scientifi c Committee for the Fauna of Italy Calabria University, Department of Ecology EDITORIAL BOARD Aldo Cosentino Alessandro La Posta Augusto Vigna Taglianti Alessandra Aspes Leonardo Latella SCIENTIFIC BOARD Marco Bologna Pietro Brandmayr Eugenio Dupré Alessandro La Posta Leonardo Latella Alessandro Minelli Sandro Ruffo Fabio Stoch Augusto Vigna Taglianti Marzio Zapparoli EDITORS Sandro Ruffo Fabio Stoch DESIGN Riccardo Ricci LAYOUT Riccardo Ricci Zeno Guarienti EDITORIAL ASSISTANT Elisa Giacometti TRANSLATORS Maria Cristina Bruno (1-72, 239-307) Daniel Whitmore (73-238) VOLUME CITATION: Ruffo S., Stoch F. -
Richard C. Brusca Ernest W. Iverson ERRATA
IdefeFfL' life ISSN 0034-7744 f VOLUMEN 33 JULIO 1985 SUPLEMENTO 1 ICA REVISTA DE BIOL OPICAL Guide to the • v , Marine Isopod Crustacea of Pacific Costa Rica . - i* Richard C. Brusca Ernest W. Iverson ERRATA Brusca, R. C, & E.W. Iverson: A Guide to the Marine Isopod Crustacea of Pacific Costa Rica. Rev. Biol. Trop., 33 (Supl. 1), 1985. Should be page 6, rgt column, 27 lines from top maxillipeds page 6, rgt column, last word or page 7, rgt column, 14 lines from top Cymothoidae page 8, left column, 7 lines from bottom They viewed the maxillules to be * * page 8, left column, 16 lines from bottom thoracomere page 8, left column, last line Anthuridae page 22, rgt column, 4 lines from bottom pleotelson page 27, figure legend, third line enlarged page 33, rgt column, 2 lines from top ...yearly production. page 34, footnote (E. kincaidi... page 55, figure legend Brusca & Wallerstein, 1979a page 59, left column, 15 lines from bottom Brusca, 1984: 110 page 66, 4 lines from top pulchra Headings on odd pages should read: BRUSCA & IVERSON: A Guide to the Marine Isopod Crustacea of Pacific Costa Rica. ERRATA FOR A GUIDE TO THE MARINE ISOPOD CRUSTACEA OF PACIFIC COSTA RICA location of typo correction 5, rgt column, 2 lines from bottom Brusca, in press 6, rgt column, 27 lines from top maxillipeds page 6, rgt column, last word 7, rgt column, 14 lines from top Cymothoidae 8, left column, 7 lines from bottom •.viewed the 1st maxillae to be-. page 8, left column, 16 lines from bottom thoracomere page 8, left column, last line Anthuridae page 22 rgt column, 4 lines from bottom pleotelson page 27 figure legend, third line page 33 rgt colvmn, 2 lines from top ...yearly production.