Quantum Algorithms for Machine Learning

Total Page:16

File Type:pdf, Size:1020Kb

Quantum Algorithms for Machine Learning EcoleUniversité doctorale 386 Université de Paris de Paris Institut de Recherche en Informatique Fondamentale Quantum algorithms for machine learning Par: Alessandro Luongo "hèse de doctorat en Informatique Dirigée par Iordanis Kerenidis et par Frédéric 'agnie( Présentée et soutenue pu)liquement le 09/11/2020 $evant un jury composé de : 1imon PER$RI2 3R Université de Lorraine Rap%orteur 1imone SEVERINI PR Universit0 3ollege London Rap%orteur Elham & 1HEFI 3R Université Pierre et Marie Curie E7aminatrice PR Universit0 of Edin)urgh Fili%%o MI ""8 3R "élécom Paris President Iordanis KERENI$I1 $R Université de Paris $irecteur de th#se Frédéric MAGNIE: $R Université de Paris 3o-directeur de th#se 1 2 Quantum algorithms for machine learning Alessandro Luongo November 18, 2020 2 Résumé Cette thèse explore la possibilité d’exploiter l’ordinateur et les algorithmes quantiques dans le contexte de l’apprentissage automatique afin de faire de l’analyse de données plus rapide- ment. Nous savons depuis longtemps que l’ordinateur quantique peut offrir des avantages computationnels par rapport à l’ordinateur classique, car il permet un nouveau paradigme de calcul qui exploite les lois de la mécanique quantique pour offrir une accélération com- putationnelle. Dans cette thèse sont proposés des algorithmes quantiques - plus rapides que leur meilleure alternative classique - pour estimer les paramètres des modèles d’apprentissage automatique. En plus d’un ordinateur quantique avec correction d’erreur, nous supposons avoir un accès quantique à la base de données. En d’autres termes, nous faisons l’hypothèse que les données sont stockées dans une mémoire quantique, la contrepartie quantique de la mémoire vive. Dans cette thèse, on étudie des algorithmes pour l’apprentissage supervisé, non supervisé, et pour la statistique. La caractéristique en commun de ces algorithmes est que leur temps d’exécution dépend de manière polylogarithmique du nombre d’éléments du jeu de données, et de manière linéaire du nombre de “features”. Le temps d’exécution des algorithmes d’apprentissage automatique quantique présentés ici dépend de caractéris- tiques de la matrice qui représente les jeux de données étudiés, comme le rang, la norme de Frobenius, la sparsité, et l’erreur que l’on tolère dans l’analyse. On remarque que les meilleures algorithmes classiques sont souvent linéaires dans la dimension du jeu de données. Pour l’apprentissage non supervisé, on étudie la version quantique de l’algorithme k- means (q-means), un modèle de clustering très connu, et sa généralisation: “modèle de mélange gaussien”. Ce travail (QEM) peut être pensé comme la version quantique de l’ “espérance-maximisation“, un algorithme itératif d’importance considérable en apprentis- sage automatique classique. Dans le même contexte, on propose aussi des algorithmes quantiques pour estimer la matrice de covariance de données provenant de distributions non gaussiennes, résilients face à la présence de valeurs aberrantes, et un algorithme pour estimer le logarithme du déterminant d’une matrice symétrique définie positive. Pour l’apprentissage supervisé, nous proposons des algorithmes pour la réduction de la dimensionnalité (Quantum Slow Feature Analysis). La réduction de la dimensionnalité est un processus utilisé sur des bases des données de haute dimensionnalité pour améliorer la précision d’un classificateur. Ici nous proposons aussi un algorithme quantique pour la classification qui est adapté pour être exécuté sur des ordinateurs quantiques avec peu de qubits. Nous proposons également d’autres modèles d’apprentissage automatique qui peuvent être formulés comme un problème à valeur propre généralisé - le même problème qui est sous-jacent à la SFA classique - comme l’Analyse Canonique des Corrélations (CCA), et le “Goulot Gaussien Informationnel”. Puisque chacun de ces algorithmes représente seulement un résultat théorique (i.e. sous forme de preuves de garanties sur le temps d’exécution et de bornes sur l’erreur d’approximation), on doit s’assurer que les performances réelles des algorithmes quantiques offrent des avantages concrets par rapport aux meilleurs algorithmes classiques. Puisque nous n’avons pas accès à des ordinateurs quantiques assez puissants pour exécuter ces algorithmes, nous avons évalué leurs performances par des simulations classiques. Dans ces expériences nous avons évité de construire et simuler des circuits quantiques: nous avons plutôt directement simulé les opérations d’algèbre linéaire bruitée, correspondant à l’exécution des algorithmes quantiques. Les simulations ont été effectuées sur des bases de données standards utilisées dans la communauté de l’apprentissage classique pour qualifier de nouveaux algorithmes et modèles (comme le MNIST). Dans les simulations, nous avons ajouté les mêmes erreurs que l’on s’attendrait à avoir si l’algorithme était exécuté par un ordinateur quantique. Grâce à cela, nous avons étudié la résilience d’une analyse de don- nées aux erreurs de calcul insérées par les algorithmes quantiques, ce qui nous a permis 3 de comprendre quelles bases de données sont susceptibles d’être analysées efficacement par des algorithmes quantiques. Les expériences ont montré que l’impact du bruit n’affecte pas la qualité de l’analyse. De plus, l’impact des paramètres qui régissent la précision de calcul n’empêche pas des speedup sur les jeux de données massives. Pour conclure, cette thèse donne l’espoir que l’ordinateur quantique avec accès quan- tique à une base de données permettra de nouvelles possibilités dans l’apprentissage au- tomatique. Nous pensons que l’apprentissage automatique quantique pourra favoriser de nouvelles avancées technologiques, dès lors que des machine quantiques capables de sup- porter ces calculs seront prêtes. Mots clés: Apprentissage automatique quantique, computation quantique, simulation quantique, analyse de données quantique. 4 Abstract In this thesis we explore how we can leverage quantum computers and quantum algorithms in the context of machine learning, so as to process and analyze datasets and information faster. It has long been known that quantum computation can offer computational advan- tages with respect to classical computers. In this thesis we propose various quantum algorithms that return an estimate of a machine learning model, that are faster than their best classical alternatives. Along with an error-corrected quantum computer, we assume to have quantum access to a dataset. In other words, we assume that the data is stored in a quantum memory: the corre- sponding quantum version of the classical random-access memory. We study quantum algorithms for supervised and unsupervised learning, dimensionality reduction, and statis- tics. The common characteristic of these algorithms is that the runtime depends only poly-logarithmically in the number of elements in the dataset, and is usually only linear in the number of features. The runtime of the quantum machine learning algorithm also often depends on characteristics of the matrix that represent the data under analysis, such as its rank, the Frobenius norm, the sparsity, the condition number, and the error we tolerate in the analysis. Note that in the vast majority of the cases, the best classical algorithms are at least linear in the dimension of the data. For unsupervised learning, we study a quantum version of k-means (q-means), a classi- cal clustering algorithm and its generalization: the Gaussian Mixture Models. This work can be thought of as the quantum version of Expectation-Maximization (QEM): an itera- tive algorithm of considerable importance in classical machine learning. We also study a quantum algorithm to estimate covariance matrices of data that comes from non-Gaussian distributions, that is resilient to the presence of outliers, and quantum algorithms to esti- mate the log-determinant of symmetric positive definite matrices. For supervised learning, we put forward a quantum algorithm for supervised dimen- sionality reduction (Quantum Slow Feature Analysis). Dimensionality reduction is a pre- processing step that is used in high-dimensional datasets to increase the accuracy of a classifier. Here we propose also a quantum algorithm for classification that is particularly apt for quantum computers with not so many qubits (Quantum Frobenius Distance Clas- sifier). Similarly to QSFA, we enlist some of the classical machine learning algorithms that can be reformulated as a generalized eigenvalue problem - the same computational problem that is underneath the classical Slow Feature Analysis algorithm-, like Canonical Correspondence Analysis, and the Gaussian Information Bottleneck. Since each of these algorithms represents only a new theoretical result, (i.e we can provide guarantees on its runtime and bounds on the approximation error), we need to make sure that the real performances of the quantum algorithms offers concrete advantages with respect to the effective runtime and the accuracy that is offered by the best classical algorithms. As we don’t have access to big-enough quantum computers yet, we assessed the performance of these quantum algorithms via a classical simulation. The experiments bypassed the construction of the quantum circuit and directly performed the noisy linear algebraic operations carried out by the quantum algorithm. The simulations have been carried out on some datasets that are considered the standard benchmark of new machine learning algorithms, like the MNIST dataset, inserting the same kind of errors that we expect to have in the real
Recommended publications
  • Quantum Computing Overview
    Quantum Computing at Microsoft Stephen Jordan • As of November 2018: 60 entries, 392 references • Major new primitives discovered only every few years. Simulation is a killer app for quantum computing with a solid theoretical foundation. Chemistry Materials Nuclear and Particle Physics Image: David Parker, U. Birmingham Image: CERN Many problems are out of reach even for exascale supercomputers but doable on quantum computers. Understanding biological Nitrogen fixation Intractable on classical supercomputers But a 200-qubit quantum computer will let us understand it Finding the ground state of Ferredoxin 퐹푒2푆2 Classical algorithm Quantum algorithm 2012 Quantum algorithm 2015 ! ~3000 ~1 INTRACTABLE YEARS DAY Research on quantum algorithms and software is essential! Quantum algorithm in high level language (Q#) Compiler Machine level instructions Microsoft Quantum Development Kit Quantum Visual Studio Local and cloud Extensive libraries, programming integration and quantum samples, and language debugging simulation documentation Developing quantum applications 1. Find quantum algorithm with quantum speedup 2. Confirm quantum speedup after implementing all oracles 3. Optimize code until runtime is short enough 4. Embed into specific hardware estimate runtime Simulating Quantum Field Theories: Classically Feynman diagrams Lattice methods Image: Encyclopedia of Physics Image: R. Babich et al. Break down at strong Good for binding energies. coupling or high precision Sign problem: real time dynamics, high fermion density. There’s room for exponential
    [Show full text]
  • Simulating Quantum Field Theory with a Quantum Computer
    Simulating quantum field theory with a quantum computer John Preskill Lattice 2018 28 July 2018 This talk has two parts (1) Near-term prospects for quantum computing. (2) Opportunities in quantum simulation of quantum field theory. Exascale digital computers will advance our knowledge of QCD, but some challenges will remain, especially concerning real-time evolution and properties of nuclear matter and quark-gluon plasma at nonzero temperature and chemical potential. Digital computers may never be able to address these (and other) problems; quantum computers will solve them eventually, though I’m not sure when. The physics payoff may still be far away, but today’s research can hasten the arrival of a new era in which quantum simulation fuels progress in fundamental physics. Frontiers of Physics short distance long distance complexity Higgs boson Large scale structure “More is different” Neutrino masses Cosmic microwave Many-body entanglement background Supersymmetry Phases of quantum Dark matter matter Quantum gravity Dark energy Quantum computing String theory Gravitational waves Quantum spacetime particle collision molecular chemistry entangled electrons A quantum computer can simulate efficiently any physical process that occurs in Nature. (Maybe. We don’t actually know for sure.) superconductor black hole early universe Two fundamental ideas (1) Quantum complexity Why we think quantum computing is powerful. (2) Quantum error correction Why we think quantum computing is scalable. A complete description of a typical quantum state of just 300 qubits requires more bits than the number of atoms in the visible universe. Why we think quantum computing is powerful We know examples of problems that can be solved efficiently by a quantum computer, where we believe the problems are hard for classical computers.
    [Show full text]
  • Quantum Clustering Algorithms
    Quantum Clustering Algorithms Esma A¨ımeur [email protected] Gilles Brassard [email protected] S´ebastien Gambs [email protected] Universit´ede Montr´eal, D´epartement d’informatique et de recherche op´erationnelle C.P. 6128, Succursale Centre-Ville, Montr´eal (Qu´ebec), H3C 3J7 Canada Abstract Multidisciplinary by nature, Quantum Information By the term “quantization”, we refer to the Processing (QIP) is at the crossroads of computer process of using quantum mechanics in order science, mathematics, physics and engineering. It con- to improve a classical algorithm, usually by cerns the implications of quantum mechanics for infor- making it go faster. In this paper, we initiate mation processing purposes (Nielsen & Chuang, 2000). the idea of quantizing clustering algorithms Quantum information is very different from its classi- by using variations on a celebrated quantum cal counterpart: it cannot be measured reliably and it algorithm due to Grover. After having intro- is disturbed by observation, but it can exist in a super- duced this novel approach to unsupervised position of classical states. Classical and quantum learning, we illustrate it with a quantized information can be used together to realize wonders version of three standard algorithms: divisive that are out of reach of classical information processing clustering, k-medians and an algorithm for alone, such as being able to factorize efficiently large the construction of a neighbourhood graph. numbers, with dramatic cryptographic consequences We obtain a significant speedup compared to (Shor, 1997), search in a unstructured database with a the classical approach. quadratic speedup compared to the best possible clas- sical algorithms (Grover, 1997) and allow two people to communicate in perfect secrecy under the nose of an 1.
    [Show full text]
  • Quantum Machine Learning: Benefits and Practical Examples
    Quantum Machine Learning: Benefits and Practical Examples Frank Phillipson1[0000-0003-4580-7521] 1 TNO, Anna van Buerenplein 1, 2595 DA Den Haag, The Netherlands [email protected] Abstract. A quantum computer that is useful in practice, is expected to be devel- oped in the next few years. An important application is expected to be machine learning, where benefits are expected on run time, capacity and learning effi- ciency. In this paper, these benefits are presented and for each benefit an example application is presented. A quantum hybrid Helmholtz machine use quantum sampling to improve run time, a quantum Hopfield neural network shows an im- proved capacity and a variational quantum circuit based neural network is ex- pected to deliver a higher learning efficiency. Keywords: Quantum Machine Learning, Quantum Computing, Near Future Quantum Applications. 1 Introduction Quantum computers make use of quantum-mechanical phenomena, such as superposi- tion and entanglement, to perform operations on data [1]. Where classical computers require the data to be encoded into binary digits (bits), each of which is always in one of two definite states (0 or 1), quantum computation uses quantum bits, which can be in superpositions of states. These computers would theoretically be able to solve certain problems much more quickly than any classical computer that use even the best cur- rently known algorithms. Examples are integer factorization using Shor's algorithm or the simulation of quantum many-body systems. This benefit is also called ‘quantum supremacy’ [2], which only recently has been claimed for the first time [3]. There are two different quantum computing paradigms.
    [Show full text]
  • COVID-19 Detection on IBM Quantum Computer with Classical-Quantum Transfer Learning
    medRxiv preprint doi: https://doi.org/10.1101/2020.11.07.20227306; this version posted November 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license . Turk J Elec Eng & Comp Sci () : { © TUB¨ ITAK_ doi:10.3906/elk- COVID-19 detection on IBM quantum computer with classical-quantum transfer learning Erdi ACAR1*, Ihsan_ YILMAZ2 1Department of Computer Engineering, Institute of Science, C¸anakkale Onsekiz Mart University, C¸anakkale, Turkey 2Department of Computer Engineering, Faculty of Engineering, C¸anakkale Onsekiz Mart University, C¸anakkale, Turkey Received: .201 Accepted/Published Online: .201 Final Version: ..201 Abstract: Diagnose the infected patient as soon as possible in the coronavirus 2019 (COVID-19) outbreak which is declared as a pandemic by the world health organization (WHO) is extremely important. Experts recommend CT imaging as a diagnostic tool because of the weak points of the nucleic acid amplification test (NAAT). In this study, the detection of COVID-19 from CT images, which give the most accurate response in a short time, was investigated in the classical computer and firstly in quantum computers. Using the quantum transfer learning method, we experimentally perform COVID-19 detection in different quantum real processors (IBMQx2, IBMQ-London and IBMQ-Rome) of IBM, as well as in different simulators (Pennylane, Qiskit-Aer and Cirq). By using a small number of data sets such as 126 COVID-19 and 100 Normal CT images, we obtained a positive or negative classification of COVID-19 with 90% success in classical computers, while we achieved a high success rate of 94-100% in quantum computers.
    [Show full text]
  • CS286.2 Lectures 5-6: Introduction to Hamiltonian Complexity, QMA-Completeness of the Local Hamiltonian Problem
    CS286.2 Lectures 5-6: Introduction to Hamiltonian Complexity, QMA-completeness of the Local Hamiltonian problem Scribe: Jenish C. Mehta The Complexity Class BQP The complexity class BQP is the quantum analog of the class BPP. It consists of all languages that can be decided in quantum polynomial time. More formally, Definition 1. A language L 2 BQP if there exists a classical polynomial time algorithm A that ∗ maps inputs x 2 f0, 1g to quantum circuits Cx on n = poly(jxj) qubits, where the circuit is considered a sequence of unitary operators each on 2 qubits, i.e Cx = UTUT−1...U1 where each 2 2 Ui 2 L C ⊗ C , such that: 2 i. Completeness: x 2 L ) Pr(Cx accepts j0ni) ≥ 3 1 ii. Soundness: x 62 L ) Pr(Cx accepts j0ni) ≤ 3 We say that the circuit “Cx accepts jyi” if the first output qubit measured in Cxjyi is 0. More j0i specifically, letting P1 = j0ih0j1 be the projection of the first qubit on state j0i, j0i 2 Pr(Cx accepts jyi) =k (P1 ⊗ In−1)Cxjyi k2 The Complexity Class QMA The complexity class QMA (or BQNP, as Kitaev originally named it) is the quantum analog of the class NP. More formally, Definition 2. A language L 2 QMA if there exists a classical polynomial time algorithm A that ∗ maps inputs x 2 f0, 1g to quantum circuits Cx on n + q = poly(jxj) qubits, such that: 2q i. Completeness: x 2 L ) 9jyi 2 C , kjyik2 = 1, such that Pr(Cx accepts j0ni ⊗ 2 jyi) ≥ 3 2q 1 ii.
    [Show full text]
  • Taking the Quantum Leap with Machine Learning
    Introduction Quantum Algorithms Current Research Conclusion Taking the Quantum Leap with Machine Learning Zack Barnes University of Washington Bellevue College Mathematics and Physics Colloquium Series [email protected] January 15, 2019 Zack Barnes University of Washington UW Quantum Machine Learning Introduction Quantum Algorithms Current Research Conclusion Overview 1 Introduction What is Quantum Computing? What is Machine Learning? Quantum Power in Theory 2 Quantum Algorithms HHL Quantum Recommendation 3 Current Research Quantum Supremacy(?) 4 Conclusion Zack Barnes University of Washington UW Quantum Machine Learning Introduction Quantum Algorithms Current Research Conclusion What is Quantum Computing? \Quantum computing focuses on studying the problem of storing, processing and transferring information encoded in quantum mechanical systems.\ [Ciliberto, Carlo et al., 2018] Unit of quantum information is the qubit, or quantum binary integer. Zack Barnes University of Washington UW Quantum Machine Learning Supervised Uses labeled examples to predict future events Unsupervised Not classified or labeled Introduction Quantum Algorithms Current Research Conclusion What is Machine Learning? \Machine learning is the scientific study of algorithms and statistical models that computer systems use to progressively improve their performance on a specific task.\ (Wikipedia) Zack Barnes University of Washington UW Quantum Machine Learning Uses labeled examples to predict future events Unsupervised Not classified or labeled Introduction Quantum
    [Show full text]
  • Interactive Proofs for Quantum Computations
    Innovations in Computer Science 2010 Interactive Proofs For Quantum Computations Dorit Aharonov Michael Ben-Or Elad Eban School of Computer Science, The Hebrew University of Jerusalem, Israel [email protected] [email protected] [email protected] Abstract: The widely held belief that BQP strictly contains BPP raises fundamental questions: Upcoming generations of quantum computers might already be too large to be simulated classically. Is it possible to experimentally test that these systems perform as they should, if we cannot efficiently compute predictions for their behavior? Vazirani has asked [21]: If computing predictions for Quantum Mechanics requires exponential resources, is Quantum Mechanics a falsifiable theory? In cryptographic settings, an untrusted future company wants to sell a quantum computer or perform a delegated quantum computation. Can the customer be convinced of correctness without the ability to compare results to predictions? To provide answers to these questions, we define Quantum Prover Interactive Proofs (QPIP). Whereas in standard Interactive Proofs [13] the prover is computationally unbounded, here our prover is in BQP, representing a quantum computer. The verifier models our current computational capabilities: it is a BPP machine, with access to few qubits. Our main theorem can be roughly stated as: ”Any language in BQP has a QPIP, and moreover, a fault tolerant one” (providing a partial answer to a challenge posted in [1]). We provide two proofs. The simpler one uses a new (possibly of independent interest) quantum authentication scheme (QAS) based on random Clifford elements. This QPIP however, is not fault tolerant. Our second protocol uses polynomial codes QAS due to Ben-Or, Cr´epeau, Gottesman, Hassidim, and Smith [8], combined with quantum fault tolerance and secure multiparty quantum computation techniques.
    [Show full text]
  • Quantum Supremacy
    Quantum Supremacy Practical QS: perform some computational task on a well-controlled quantum device, which cannot be simulated in a reasonable time by the best-known classical algorithms and hardware. Theoretical QS: perform a computational task efficiently on a quantum device, and prove that task cannot be efficiently classically simulated. Since proving seems to be beyond the capabilities of our current civilization, we lower the standards for theoretical QS. One seeks to provide formal evidence that classical simulation is unlikely. For example: 3-SAT is NP-complete, so it cannot be efficiently classical solved unless P = NP. Theoretical QS: perform a computational task efficiently on a quantum device, and prove that task cannot be efficiently classically simulated unless “the polynomial Heierarchy collapses to the 3nd level.” Quantum Supremacy A common feature of QS arguments is that they consider sampling problems, rather than decision problems. They allow us to characterize the complexity of sampling measurements of quantum states. Which is more difficult: Task A: deciding if a circuit outputs 1 with probability at least 2/3s, or at most 1/3s Task B: sampling from the output of an n-qubit circuit in the computational basis Sampling from distributions is generically more difficult than approximating observables, since we can use samples to estimate observables, but not the other way around. One can imagine quantum systems whose local observables are easy to classically compute, but for which sampling the full state is computationally complex. By moving from decision problems to sampling problems, we make the task of classical simulation much more difficult.
    [Show full text]
  • Quantum Algorithms for Classical Lattice Models
    Home Search Collections Journals About Contact us My IOPscience Quantum algorithms for classical lattice models This content has been downloaded from IOPscience. Please scroll down to see the full text. 2011 New J. Phys. 13 093021 (http://iopscience.iop.org/1367-2630/13/9/093021) View the table of contents for this issue, or go to the journal homepage for more Download details: IP Address: 147.96.14.15 This content was downloaded on 16/12/2014 at 15:54 Please note that terms and conditions apply. New Journal of Physics The open–access journal for physics Quantum algorithms for classical lattice models G De las Cuevas1,2,5, W Dür1, M Van den Nest3 and M A Martin-Delgado4 1 Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 25, A-6020 Innsbruck, Austria 2 Institut für Quantenoptik und Quanteninformation der Österreichischen Akademie der Wissenschaften, Innsbruck, Austria 3 Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Strasse 1, D-85748 Garching, Germany 4 Departamento de Física Teórica I, Universidad Complutense, 28040 Madrid, Spain E-mail: [email protected] New Journal of Physics 13 (2011) 093021 (35pp) Received 15 April 2011 Published 9 September 2011 Online at http://www.njp.org/ doi:10.1088/1367-2630/13/9/093021 Abstract. We give efficient quantum algorithms to estimate the partition function of (i) the six-vertex model on a two-dimensional (2D) square lattice, (ii) the Ising model with magnetic fields on a planar graph, (iii) the Potts model on a quasi-2D square lattice and (iv) the Z2 lattice gauge theory on a 3D square lattice.
    [Show full text]
  • A Functional Architecture for Scalable Quantum Computing
    A Functional Architecture for Scalable Quantum Computing Eyob A. Sete, William J. Zeng, Chad T. Rigetti Rigetti Computing Berkeley, California Email: feyob,will,[email protected] Abstract—Quantum computing devices based on supercon- ducting quantum circuits have rapidly developed in the last few years. The building blocks—superconducting qubits, quantum- limited amplifiers, and two-qubit gates—have been demonstrated by several groups. Small prototype quantum processor systems have been implemented with performance adequate to demon- strate quantum chemistry simulations, optimization algorithms, and enable experimental tests of quantum error correction schemes. A major bottleneck in the effort to devleop larger systems is the need for a scalable functional architecture that combines all thee core building blocks in a single, scalable technology. We describe such a functional architecture, based on Fig. 1. A schematic of a functional layout of a quantum computing system. a planar lattice of transmon and fluxonium qubits, parametric amplifiers, and a novel fast DC controlled two-qubit gate. kBT should be much less than the energy of the photon at the Keywords—quantum computing, superconducting integrated qubit transition energy ~!01. In a large system where supercon- circuits, computer architecture. ducting circuits are packed together, unwanted crosstalk among devices is inevitable. To reduce or minimize crosstalk, efficient I. INTRODUCTION packaging and isolation of individual devices is imperative and substantially improves the performance of the system. The underlying hardware for quantum computing has ad- vanced to make the design of the first scalable quantum Superconducting qubits are made using Josephson tunnel computers possible. Superconducting chips with 4–9 qubits junctions which are formed by two superconducting thin have been demonstrated with the performance required to electrodes separated by a dielectric material.
    [Show full text]
  • Readout Rebalancing for Near Term Quantum Computers
    Readout Rebalancing for Near Term Quantum Computers Rebecca Hicks,1, ∗ Christian W. Bauer,2, † and Benjamin Nachman2, ‡ 1Physics Department, University of California, Berkeley, Berkeley, CA 94720, USA 2Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA (Dated: October 16, 2020) Readout errors are a significant source of noise for near term intermediate scale quantum computers. Mismeasuring a qubit as a |1i when it should be |0i occurs much less often than mismeasuring a qubit as a |0i when it should have been |1i. We make the simple observation that one can improve the readout fidelity of quantum computers by applying targeted X gates prior to performing a measurement. These X gates are placed so that the expected number of qubits in the |1i state is minimized. Classical post processing can undo the effect of the X gates so that the expectation value of any observable is unchanged. We show that the statistical uncertainty following readout error corrections is smaller when using readout rebalancing. The statistical advantage is circuit- and computer-dependent, and is demonstrated for the W state, a Grover search, and for a Gaussian state. The benefit in statistical precision is most pronounced (and nearly a factor of two in some cases) when states with many qubits in the excited state have high probability. I. INTRODUCTION the simple observation that one can improve the readout fidelity of quantum computers by applying targeted X Quantum computers hold great promise for a variety of gates prior to performing a measurement. These X gates scientific and industrial applications. However, existing are placed so that the expected number of qubits in the noisy intermediate-scale quantum (NISQ) computers [1] |1i state is minimized.
    [Show full text]