Analysis of the Precipitation Regime Over the Ligurian Sea
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Pelagos Sanctuary for Mediterranean Marine Mammals
Network of Conservation Educators & Practitioners The Pelagos Sanctuary for Mediterranean Marine Mammals Author(s): Giuseppe Notarbartolo di Sciara, David Hyrenbach, and Tundi Agardy Source: Lessons in Conservation, Vol. 2, pp. 91-109 Published by: Network of Conservation Educators and Practitioners, Center for Biodiversity and Conservation, American Museum of Natural History Stable URL: ncep.amnh.org/linc/ This article is featured in Lessons in Conservation, the official journal of the Network of Conservation Educators and Practitioners (NCEP). NCEP is a collaborative project of the American Museum of Natural History’s Center for Biodiversity and Conservation (CBC) and a number of institutions and individuals around the world. Lessons in Conservation is designed to introduce NCEP teaching and learning resources (or “modules”) to a broad audience. NCEP modules are designed for undergraduate and professional level education. These modules—and many more on a variety of conservation topics—are available for free download at our website, ncep.amnh.org. To learn more about NCEP, visit our website: ncep.amnh.org. All reproduction or distribution must provide full citation of the original work and provide a copyright notice as follows: “Copyright 2008, by the authors of the material and the Center for Biodiversity and Conservation of the American Museum of Natural History. All rights reserved.” Illustrations obtained from the American Museum of Natural History’s library: images.library.amnh.org/digital/ CASE STUDIES 91 The Pelagos Sanctuary for Mediterranean Marine Mammals Giuseppe Notarbartolo di Sciara,* David Hyrenbach, † and Tundi Agardy ‡ *Tethys Research Institute; Milano, Italy, email [email protected] † Duke University; Durham, NC, U.S.A., email [email protected] ‡ Sound Seas; Bethesda, MD, U.S.A., email [email protected] Source: R. -
Mistral and Tramontane Wind Speed and Wind Direction Patterns In
Mistral and Tramontane wind speed and wind direction patterns in regional climate simulations Anika Obermann, Sophie Bastin, Sophie Belamari, Dario Conte, Miguel Angel Gaertner, Laurent Li, Bodo Ahrens To cite this version: Anika Obermann, Sophie Bastin, Sophie Belamari, Dario Conte, Miguel Angel Gaertner, et al.. Mistral and Tramontane wind speed and wind direction patterns in regional climate simulations. Climate Dynamics, Springer Verlag, 2018, 51 (3), pp.1059-1076. 10.1007/s00382-016-3053-3. hal-01289330 HAL Id: hal-01289330 https://hal.sorbonne-universite.fr/hal-01289330 Submitted on 16 Mar 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Clim Dyn DOI 10.1007/s00382-016-3053-3 Mistral and Tramontane wind speed and wind direction patterns in regional climate simulations Anika Obermann1 · Sophie Bastin2 · Sophie Belamari3 · Dario Conte4 · Miguel Angel Gaertner5 · Laurent Li6 · Bodo Ahrens1 Received: 1 September 2015 / Accepted: 18 February 2016 © The Author(s) 2016. This article is published with open access at Springerlink.com Abstract The Mistral and Tramontane are important disentangle the results from large-scale error sources in wind phenomena that occur over southern France and the Mistral and Tramontane simulations, only days with well northwestern Mediterranean Sea. -
Western Ligurian Sea and Genoa Canyon Important Marine Mammal Area – IMMA
Western Ligurian Sea and Genoa Canyon Important Marine Mammal Area – IMMA Description Cuvier’s beaked whale ( Ziphius cavirostris G. Area Size Cuvier, 1823), is the only beaked whale 8,526 km 2 regularly inhabiting the Mediterranean Sea area, where this species has been found Qualifying Species and Criteria associated with continental slope and with Cuvier's beaked whale - submarine canyons and seamounts areas. The Ziphius cavirostris Cuvier's beaked whale Mediterranean Criterion B (i, ii); C (i, ii) subpopulation was being re-assessed in early Marine Mammal Diversity 2017 with the expectation that it would meet Criterion D (ii) at least one of the Red List criteria for [Stenella coeruleoalba, Physeter Vulnerable based on the results of basin-wide macrocephalus, Globicephala melas, density surface modelling (Cañadas et al Balaenoptera physalus, Grampus griseus ] 2016). Cuvier’s beaked whales have been Summary sighted in the Ligurian Sea especially in waters over and around canyons (Azzellino et al. The Genoa Canyon, located in the 2008, 2011, 2012; Azzellino et al. In press; westernmost part of the Ligurian Sea, has been identified as a high-density area for a Azzellino & Lanfredi, 2015; D’Amico et al., resident population of Mediterranean 2003; Lanfredi et al., 2016). In particular, the Cuvier’s beaked whales ( Ziphius cavirostris ). Genoa Canyon area has been identified as a A high correlation was also observed high-density area for Cuvier’s beaked whales between the presence of Cuvier’s beaked (MacLeod and Mitchell, 2006; Moulins et al., whales and the underlying canyon area; this 2007; Tepsich et al., 2014, Cañadas et al., has been validated by modelling studies. -
Photo-ID Studies of Fin Whales in the North Atlantic Ocean and the Mediterranean Sea
SC/59/PFI1 Photo-ID studies of fin whales in the North Atlantic Ocean and the Mediterranean Sea 1 2 3 4 5 JOOKE ROBBINS , DAN DENDANTO , JANIE GIARD , SIMONE PANIGADA , RICHARD SEARS AND MARGHERITA 4 ZANARDELLI 1Provincetown Center for Coastal Studies, 5 Holway Avenue, Provincetown, MA 02657 USA 2Allied Whale, College of the Atlantic, 105 Eden Street, Bar Harbor, ME 04609 USA 3Groupe de Recherche et d'Éducation sur les Mammifères Marins, C.P. 223, 108, de la cale sèche, Tadoussac, Québec G0T 2A0 CANADA 4Tethys Research Institute, Viale G.B. Gadio 2, 20121 Milano, ITALY 5Mingan Island Cetacean Study, 378 Bord de la Mer, Longue-Pointe-de-Mingan, Québec, G0G 1V0 CANADA ABSTRACT Stock structure hypotheses for North Atlantic fin whales, Balaenoptera physalus, have based largely molecular genetic analyses. This paper describes fin whale photo-identification catalogues in the North Atlantic Ocean and the Mediterranean Sea that may house data useful for testing these hypotheses. There are three independent fin whale catalogues in the western North Atlantic. The North Atlantic Fin Whale Catalogue presently contains 841 unique individuals sampled along the coast of North America, from the New York Bight north to the Gulf of St. Lawrence. Two catalogues in the Gulf of St. Lawrence, held by the Mingan Island Cetacean Study (MICS, n=430) and the Groupe de Recherche et d'Éducation sur les Mammifères Marins (GREMM, n=100), expect to begin reconcile their catalogues in the near future. A few small photo-ID holdings were identified in the eastern North Atlantic and the Europhlukes project provides an alternate option for photo-identification data across a wide range of species and institutions in the eastern North Atlantic. -
The Origins and Spread of Aspergillus Sydowii, an Opportunistic Pathogen of Caribbean Gorgonian Corals
THE ORIGINS AND SPREAD OF ASPERGILLUS SYDOWII, AN OPPORTUNISTIC PATHOGEN OF CARIBBEAN GORGONIAN CORALS A Dissertation Presented to the Faculty of the Graduate School of Cornell University In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Krystal Leeanne Rypien May 2008 © 2008 Krystal Leeanne Rypien THE ORIGINS AND SPREAD OF ASPERGILLUS SYDOWII, AN OPPORTUNISTIC PATHOGEN OF CARIBBEAN GORGONIAN CORALS Krystal Leeanne Rypien, Ph. D. Cornell University 2008 Coral reefs are increasingly suffering outbreaks of disease, causing dramatic declines in population abundance and diversity. One of the best-characterized coral diseases is aspergillosis, caused by the fungus Aspergillus sydowii. My dissertation investigates the origins and spread of aspergillosis in Caribbean gorgonian coral communities. The role of host resistance in aspergillosis is well established, however we know little about variation in resistance through time or the role of pathogen virulence. Using geographically distinct pathogen isolates in a clonally replicated design, I found equivocal evidence for variation in host response to pathogen isolates, with most fungal treatments showing no difference from the control. Interestingly, the two isolates that did induce a host response represent a pathogenic and an environmental isolate, suggesting that Aspergillus sydowii is a true opportunist. Aspergillus sydowii is a globally distributed saprophyte commonly found in soil, so its presence in marine systems raises questions about its origin. Using microsatellite markers, I analyzed the population structure of A. sydowii from diseased sea fans, diseased humans, and environmental sources worldwide. The results indicate a single global population. Moderate differentiation between isolates from sea fans and those from environmental sources, along with higher growth rates at 37°C by sea fan isolates, suggests that selection within the marine environment could be driving population subdivision. -
Jurisdictional Waters in the Mediterranean and Black Seas
DIRECTORATE-GENERAL FOR INTERNAL POLICIES POLICY DEPARTMENT DIRECTORATE-GENERAL FOR INTERNAL POLICIES STRUCTURAL AND COHESION POLICIESB POLICY DEPARTMENT AgricultureAgriculture and Rural and Development Rural Development STRUCTURAL AND COHESION POLICIES B CultureCulture and Education and Education Role The Policy Departments are research units that provide specialised advice Fisheries to committees, inter-parliamentary delegations and other parliamentary bodies. Fisheries RegionalRegional Development Development Policy Areas TransportTransport and andTourism Tourism Agriculture and Rural Development Culture and Education Fisheries Regional Development Transport and Tourism Documents Visit the European Parliament website: http://www.europarl.europa.eu/studies PHOTO CREDIT: iStock International Inc., Photodisk, Phovoir DIRECTORATE GENERAL FOR INTERNAL POLICIES POLICY DEPARTMENT B: STRUCTURAL AND COHESION POLICIES FISHERIES JURISDICTIONAL WATERS IN THE MEDITERRANEAN AND BLACK SEAS STUDY This document has been requested by the European Parliament’s Committee on Fisheries. AUTHORS Prof. Juan Luis Suárez de Vivero TECHNICAL TEAM Mrs Inmaculada Martínez Alba Mr Juan Manuel Martín Jiménez Mrs Concepción Jiménez Sánchez ADMINISTRATOR Mr Jesús Iborra Martín Policy Department for Structural and Cohesion Policies European Parliament E-mail: [email protected] EDITORIAL ASSISTANT Mrs Virginija Kelmelyté LANGUAGE VERSIONS Original: ES Translations: DE, EN, FR, IT. ABOUT THE PUBLISHER To contact the Policy Department or subscribe to its monthly bulletin, write to [email protected] Manuscript completed in December 2009. Brussels, © European Parliament, 2009 This document is available from the following website: http://www.europarl.europa.eu/studies DISCLAIMER The opinions given in this document are the sole responsibility of the authors and do not necessarily reflect the official position of the European Parliament. -
The Anomalous Warming of Summer 2003 in the Surface Layer of the Central Ligurian Sea (Western Mediterranean) S
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by HAL-INSU The anomalous warming of summer 2003 in the surface layer of the Central Ligurian Sea (Western Mediterranean) S. Sparnocchia, M. E. Schiano, P. Picco, R. Bozzano, A. Cappelletti To cite this version: S. Sparnocchia, M. E. Schiano, P. Picco, R. Bozzano, A. Cappelletti. The anomalous warming of summer 2003 in the surface layer of the Central Ligurian Sea (Western Mediterranean). Annales Geophysicae, European Geosciences Union, 2006, 24 (2), pp.443-452. <hal-00317950> HAL Id: hal-00317950 https://hal.archives-ouvertes.fr/hal-00317950 Submitted on 23 Mar 2006 HAL is a multi-disciplinary open access L'archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destin´eeau d´ep^otet `ala diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publi´esou non, lished or not. The documents may come from ´emanant des ´etablissements d'enseignement et de teaching and research institutions in France or recherche fran¸caisou ´etrangers,des laboratoires abroad, or from public or private research centers. publics ou priv´es. Ann. Geophys., 24, 443–452, 2006 www.ann-geophys.net/24/443/2006/ Annales © European Geosciences Union 2006 Geophysicae The anomalous warming of summer 2003 in the surface layer of the Central Ligurian Sea (Western Mediterranean) S. Sparnocchia1, M. E. Schiano2, P. Picco3, R. Bozzano4, and A. Cappelletti5 1CNR-ISMAR-TS, Viale R. Gessi 2, 34123 Trieste, Italy 2CNR-ISMAR-SP, Forte S. Teresa, 19036 Pozzuolo di Lerici (SP), Italy 3ENEA-CRAM, Forte S. -
Climatological Analysis of Temperature and Salinity Fields in The
Alma Mater Studiorum · Universita` di Bologna Scuola di Scienze Corso di Laurea Magistrale in Fisica Climatological analysis of temperature and salinity fields in the Mediterranean Sea Relatore: Presentata da: Prof. Nadia Pinardi Michela Giusti Correlatore: Dott. Simona Simoncelli Correlatore: Dott. Marina Tonani Sessione II Anno Accademico 2013/2014 Acknowledgements I am very grateful to my supervisor Professor Nadia Pinardi for his invaluable guidance and constant encouragement throughout my work and in the preparation of this thesis. Many thanks are also due to Dr. Simona Simoncelli, Dr. Marina Tonani and Alessandro Grandi for their thoughtful advice, precious help and cooperation. Special thanks go to my parents, Luigina and Franco, and my aunt Antonietta for their unfailing encouragement and trust, as well as their support, both material and immaterial, throughout my studies, and, last but not least, to my fiancée, Giacomo, for his infinite patience, wisdom, and caring attitude. To him I dedicate this thesis. i This page is intentionally left blank. Abstract A climatological field is a mean gridded field that represents the monthly or seasonal trend of an ocean parameter. This instrument allows to understand the physical conditions and physical processes of the ocean water and their impact on the world climate. To construct a climatolog- ical field, it is necessary to perform a climatological analysis on an historical dataset. In this dissertation, we have constructed the temperature and salinity fields on the Mediterranean Sea using the SeaDataNet 2 dataset. The dataset contains about 140000 CTD, bottles, XBT and MBT profiles, covering the period from 1900 to 2013. The temperature and salinity climatological fields are produced by the DIVA software using a Variational Inverse Method and a Finite Element numerical technique to interpolate data on a regular grid. -
Holocene Climate Variability in the North-Western Mediterranean Sea (Gulf of Lions)
Clim. Past, 12, 91–101, 2016 www.clim-past.net/12/91/2016/ doi:10.5194/cp-12-91-2016 © Author(s) 2016. CC Attribution 3.0 License. Holocene climate variability in the North-Western Mediterranean Sea (Gulf of Lions) B. Jalali1,2, M.-A. Sicre2, M.-A. Bassetti3, and N. Kallel1 1GEOGLOB, Université de Sfax, Faculté des Sciences de Sfax, route de Soukra km 4-BP.802, 3038, Sfax, Tunisia 2Sorbonne Universités (UPMC, Université Paris 06)-CNRS-IRD-MNHN, LOCEAN Laboratory, 4 place Jussieu, 75005 Paris, France 3CEFREM, Université de Perpignan, Avenue J.-P. Alduy, 66860 Perpignan, France Correspondence to: B. Jalali ([email protected]) Received: 11 June 2015 – Published in Clim. Past Discuss.: 16 July 2015 Accepted: 15 December 2015 – Published: 19 January 2016 Abstract. Sea surface temperatures (SSTs) and land-derived et al., 2012; Martrat et al., 2014). Most of them reveal that input time series were generated from the Gulf of Li- Mediterranean Sea surface temperatures (SSTs) have under- ons inner-shelf sediments (NW Mediterranean Sea) us- gone a long-term cooling punctuated by several cold relapses ing alkenones and high-molecular-weight odd-carbon num- (CRs; Cacho et al., 2001; Frigola et al., 2007). While orbital bered n-alkanes (TERR-alkanes), respectively. The SST forcing likely explains this long-term tendency, solar activ- record depicts three main phases: a warm Early Holocene ity and volcanism contribute to forced variability (Mayewski ( ∼ 18 ± 0.4 ◦C) followed by a cooling of ∼ 3 ◦C between et al., 2004; Wanner et al., 2011) together with internal vari- 7000 and 1000 BP, and rapid warming from ∼ 1850 AD ability (i.e. -
Reactivated Rift Structures in the Ligurian Sea Revealed
https://doi.org/10.5194/se-2021-9 Preprint. Discussion started: 5 February 2021 c Author(s) 2021. CC BY 4.0 License. Basin inversion: Reactivated rift structures in the Ligurian Sea revealed by OBS Martin Thorwart1, Anke Dannowski2, Ingo Grevemeyer2, Dietrich Lange2, Heidrun Kopp1,2, Florian Petersen2, Wayne Crawford3, Anne Paul4 and the AlpArray Working Group5 5 1 CAU, Institute of Geosciences, Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany 2 GEOMAR, Marine Geodynamics, Helmholtz Centre for Ocean Research Kiel, 24148 Kiel, Germany 3 IPGP, Laboratoire de Géosciences Marines, Institut de Physique du Globe de Paris, Paris, 75238 Cedex 5, France 4 Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, UGE, ISTerre, 38000 Grenoble, France 5 For the complete team list visit the link which appears at the end of the paper. 10 Correspondence to: Anke Dannowski ([email protected]) or Martin Thorwart ([email protected]) Abstract. The northern margin of the Ligurian Basin shows notable seismicity at the Alpine front, including frequent magnitude 4 events. Seismicity decreases offshore towards the Basin centre and Corsica, revealing a diffuse distribution of low magnitude earthquakes. We analyse data of the amphibious AlpArray seismic network with focus on the offshore 15 component, the AlpArray OBS network, consisting of 24 broadband ocean bottom seismometers deployed for eight months, to reveal the seismicity and depth distribution of micro-earthquakes beneath the Ligurian Sea. Two clusters occurred between ~10 km to ~16 km depth below sea surface, within the lower crust and uppermost mantle. Thrust faulting focal mechanisms indicate compression and an inversion of the Ligurian Basin, which is an abandoned Oligocene rift basin. -
Untangling the Mistral and Seasonal Atmospheric Forcing Driving Deep
https://doi.org/10.5194/os-2021-72 Preprint. Discussion started: 9 August 2021 c Author(s) 2021. CC BY 4.0 License. Untangling the Mistral and seasonal atmospheric forcing driving deep convection in the Gulf of Lion: 2012-2013 Douglas Keller Jr.1, Yonatan Givon2, Romain Pennel1, Shira Raveh-Rubin2, and Philippe Drobinski1 1LMD/IPSL, École Polytechnique, Institut Polytechnique de Paris, ENS, PSL Research University, Sorbonne Université, CNRS, Palaiseau, France 2Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel Correspondence: Douglas Keller Jr. ([email protected]) Abstract. Deep convection in the Gulf of Lion is believed to be primarily driven by the Mistral winds. However, our findings show that the seasonal atmospheric change provides roughly 2/3 of the buoyancy loss required for deep convection to occur, for the 2012 to 2013 year, with the Mistral supplying the final 1/3. Two NEMOMED12 ocean simulations of the Mediterranean Sea were run for the Aug. 1st, 2012 to July 31st, 2013 year, forced with two sets of atmospheric forcing data from a RegIPSL 5 coupled run within the Med-CORDEX framework. One set of atmospheric forcing data was left unmodified, while the other was filtered to remove the signal of the Mistral. The Control simulation featured deep convection, while the Seasonal did not. A simple model was derived, relating the anomaly scale forcing (the difference between the Control and Seasonal runs) and the seasonal scale forcing to the ocean response through the Stratification Index. This simple model revealed that the Mistral’s effect on buoyancy loss depends more on its strength rather than its frequency or duration. -
Variability of Circulation Features in the Gulf of Lion NW Mediterranean Sea
Oceanologica Acta 26 (2003) 323–338 www.elsevier.com/locate/oceact Original article Variability of circulation features in the Gulf of Lion NW Mediterranean Sea. Importance of inertial currents Variabilité de la circulation dans le golfe du Lion (Méditerranée nord-occidentale). Importance des courants d’inertie Anne A. Petrenko * Centre d’Océanologie de Marseille, LOB-UMR 6535, Faculté des Sciences de Luminy, 13288 Marseille cedex 09, France Received 9 October 2001; revised 5 July 2002; accepted 18 July 2002 Abstract ADCP data from two cruises, Moogli 2 (June 1998) and Moogli 3 (January 1999), show the variability of the circulation features in the Gulf of Lion, NW Mediterranean Sea. The objective of the present study is to determine whether the hydrodynamic features are due to local forcings or seasonal ones. During both cruises, the Mediterranean Northern Current (NC) is clearly detected along the continental slope and intrudes on the eastern side of the shelf. East of the gulf, its flux is ~2 Sv both in June and January in opposition to previous literature results. Otherwise, the NC characteristics exhibit usual seasonal differences. During the summer, the NC is wider (35 km), shallower (~200 m), and weaker (maximum currents of 40–50 cm s–1) than during the winter (respectively, 28 km, 250–300 m, 70 cm s–1). Moreover the NC is tilted vertically during the winter, following the more pronounced cyclonic dome structure of that season. Its meanders are interpreted as due to baroclinic instabilities propagating along the shelf break. Other circulation features are also season-specific. The summer stratification allows the development, after strong wind variations, of inertial currents with their characteristic two-layer baroclinic structure.