Downloaded From
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Antimicrobial Activity of Flavonoids and Steroids Isolated from Two Chromolaena Species
Revista Brasileira de Ciências Farmacêuticas Brazilian Journal of Pharmaceutical Sciences vol. 39, n. 4, out./dez., 2003 Antimicrobial activity of flavonoids and steroids isolated from two Chromolaena species Silvia Helena Taleb-Contini1, Marcos José Salvador1, Evandro Watanabe2, Izabel Yoko Ito2, Dionéia Camilo Rodrigues de Oliveira2* 1Departamento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 2 Departamentos de Física e Química e de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo The crude extracts (dichloromethanic and ethanolic) and some Unitermos • Chromolaena compounds (8 flavonoids and 5 steroids) isolated from Chromolaena • Asteraceae *Correspondence: squalida (leaves and stems) and Chromolaena hirsuta (leaves and • Flavonoids D. C. R. de Oliveira flowers) have been evaluated against 22 strains of microorganisms • Steroids Departamento de Física e Química Faculdade de Ciências Farmacêuticas including bacteria (Gram-positive and Gram-negative) and yeasts. • Antimicrobial activity de Ribeirão Preto, USP All crude extracts, flavonoids and steroids evaluated have been Av. do Café, s/n 14040-903, Ribeirão Preto - SP, Brasil shown actives, mainly against Gram-positive bacteria. E mail: [email protected] INTRODUCTION Concentration (MIC) in the range of 64 to 250 µg/mL) was showed for crude extract of Castanea sativa. The Flavonoids are phenolic substances widely analyse by TLC and HPLC of the active fraction showed distributed in all vascular plants. They are a group of about the presence of flavonoids rutin, hesperidin, quercetin, 4000 naturally compounds known, and have been shown to apigenin, morin, naringin, galangin and kaempferol. have contribute to human health through our daily diet. -
Antibiotic Additive and Synergistic Action of Rutin, Morin and Quercetin Against Methicillin Resistant Staphylococcus Aureus
Amin et al. BMC Complementary and Alternative Medicine (2015) 15:59 DOI 10.1186/s12906-015-0580-0 RESEARCH ARTICLE Open Access Antibiotic additive and synergistic action of rutin, morin and quercetin against methicillin resistant Staphylococcus aureus Muhammad Usman Amin1†, Muhammad Khurram2*†, Baharullah Khattak1† and Jafar Khan1† Abstract Background: To determine the effect of flavonoids in conjunction with antibiotics in methicillin resistant Staphylococcus aureus (MRSA) a study was designed. The flavonoids included Rutin, Morin, Qurecetin while antibiotics included ampicillin, amoxicillin, cefixime, ceftriaxone, vancomycin, methicillin, cephradine, erythromycin, imipenem, sulphamethoxazole/trimethoprim, ciprofloxacin and levolfloxacin. Test antibiotics were mostly found resistant with only Imipenem and Erythromycin found to be sensitive against 100 MRSA clinical isolates and S. aureus (ATCC 43300). The flavonoids were tested alone and also in different combinations with selected antibiotics. Methods: Antibiotics and flavonoids sensitivity assays were carried using disk diffusion method. The combinations found to be effective were sifted through MIC assays by broth macro dilution method. Exact MICs were determined using an incremental increase approach. Fractional inhibitory concentration indices (FICI) were determined to evaluate relationship between antibiotics and flavonoids is synergistic or additive. Potassium release was measured to determine the effect of antibiotic-flavonoids combinations on the cytoplasmic membrane of test bacteria. Results: Antibiotic and flavonoids screening assays indicated activity of flavanoids against test bacteria. The inhibitory zones increased when test flavonoids were combined with antibiotics facing resistance. MICs of test antibiotics and flavonoids reduced when they were combined. Quercetin was the most effective flavonoid (MIC 260 μg/ml) while morin + rutin + quercetin combination proved most efficient with MIC of 280 + 280 + 140 μg/ml. -
Breeding Buckwheat for Increased Levels of Rutin, Quercetin and Other Bioactive Compounds with Potential Antiviral Effects
plants Review Breeding Buckwheat for Increased Levels of Rutin, Quercetin and Other Bioactive Compounds with Potential Antiviral Effects Zlata Luthar 1, Mateja Germ 1, Matevž Likar 1 , Aleksandra Golob 1, Katarina Vogel-Mikuš 1,2, Paula Pongrac 1,2 , Anita Kušar 3 , Igor Pravst 3 and Ivan Kreft 3,* 1 Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; [email protected] (Z.L.); [email protected] (M.G.); [email protected] (M.L.); [email protected] (A.G.); [email protected] (K.V.-M.); [email protected] (P.P.) 2 Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia 3 Nutrition Institute, Tržaška 40, SI-1000 Ljubljana, Slovenia; [email protected] (A.K.); [email protected] (I.P.) * Correspondence: [email protected]; Tel.: +386-1-3007981 Received: 9 October 2020; Accepted: 23 November 2020; Published: 24 November 2020 Abstract: Common buckwheat (Fagopyrum esculentum Moench) and Tartary buckwheat (Fagopyrum tataricum (L.) Gaertn.) are sources of many bioactive compounds, such as rutin, quercetin, emodin, fagopyrin and other (poly)phenolics. In damaged or milled grain under wet conditions, most of the rutin in common and Tartary buckwheat is degraded to quercetin by rutin-degrading enzymes (e.g., rutinosidase). From Tartary buckwheat varieties with low rutinosidase activity it is possible to prepare foods with high levels of rutin, with the preserved initial levels in the grain. The quercetin from rutin degradation in Tartary buckwheat grain is responsible in part for inhibition of α-glucosidase in the intestine, which helps to maintain normal glucose levels in the blood. -
Determination of the Major Flavonoid from Qina (Eucalyptus Globules L.) Using Shift Reagent, UV and IR Spectrophotometry
Determination Of The Major Flavonoid From Qina (Eucalyptus globules L.) Using Shift Reagent, UV And IR Spectrophotometry. BY Leni Ali Edris Adam B.Sc. Science and Education, El-Zeim Alazhari University( 2003) Postgraduate Diploma in Applied Chemistry, Gezira University( 2009) A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Chemistry Department of Applied Chemistry and Chemical Technology Faculty of Engineering and Technology Supervisor: Prof.Mohamed Abdel Karim Mohamed Co-supervisor:Dr. Mohamed Osman Babiker October -2012 ~1~ Determination Of The Major Flavonoid From Qina (Eucalyptus globules L.) Using Shift Reagent, UV And IR Spectrophotometry. BY Leni Ali Edris Adam Examination Committee: Name Position Signature Prof.Mohamed Abdel Karim Mohame Chairperson ................. Dr. Abo Bakr Khidir Ziada Intarnal Examiner …………. Dr. Abd Elsalam Abdalla Dafa Alla Extarnal Examiner …….. Date OF Examination: 6\10\2012 ~2~ Dedication This work is dedicated to My father who Deserved all respect, my mother For her care and passion, my husband for his help and support, my family and Friends. ~3~ Acknowledgements I thank Allah, Almighty for help. I wish to express my deep gratitude to my supervisor Prof. Mohamed Abdel Karim Mohamed for supervision and advice. I am grateful to all those who helped me to finish this thesis. My thanks are also extended to my colleagues for kind support. ~4~ Abstract Qina bark (Eucalyptus globules.L) is used in ethnomedicine as anti- inflammatory and antimalarial remedy.This study was aimed to extract and determine the physiochemical properties of the major flavonoid of quina bark. The plant material was collected from northern Kordofan and extracted with ethanol. -
Chamaecrista Rotundifolia Scientific Name Chamaecrista Rotundifolia (Pers.) Greene
Tropical Forages Chamaecrista rotundifolia Scientific name Chamaecrista rotundifolia (Pers.) Greene Subordinate taxa: Prostrate under regular defoliation (cv. Chamaecrista rotundifolia (Pers.) Greene var. Wynn) grandiflora (Benth.) H.S. Irwin & Barneby Chamaecrista rotundifolia (Pers.) Greene var. Tall form (ATF 3231) rotundifolia Synonyms var. rotundifolia: Basionym: Cassia rotundifolia Pers.; Cassia bifoliolata DC. ex Collad. var. grandiflora: Basionym: Cassia rotundifolia var. grandiflora Benth.; Cassia bauhiniifolia Kunth; Ascending-erect form (CPI 85836) Prostrate form (ATF 2222) Chamaecrista bauhiniifolia (Kunth) Gleason Family/tribe Family: Fabaceae (alt. Leguminosae) subfamily: Caesalpinioideae tribe: Cassieae subtribe: Cassiinae. Morphological description Perennial or self-regenerating annual (in areas with Leaves alternate, bifoliolate (cv. Wynn) heavy frost or long dry season); prostrate herb when young, suffrutescent with age; variable in width of plant and size of foliage, stipules and flowers; main stem erect Large leafed form (ATF 3203) to about 1 m high (rarely to 2.5 m), and laterals ascendant; taproot mostly to about 1 cm diameter. Stems pubescent to subglabrous, 45‒110 cm long, not rooting at nodes. Leaves ascending, bifoliolate, nictinastic; stipules lanceolate-cordate 4‒11 mm long; petioles 3‒10 mm long, eglandular. Leaflets asymmetrically subrotund to broadly obovate, rounded apically, 5‒55 mm long, 3‒35 mm wide, often mucronulate; venation slightly prominent on both surfaces; petiolule reduced to thickened Bifoliolate leaves, lanceolate-cordate stipules, leaflets asymmetrically pulvinule. Flowers in racemose axillary clusters of 1‒2 subrotund to broadly obovate (‒3) flowers. Pedicels filiform, straight, from very short to Flowering and immature pods (ATF three times the length of the leaves. Sepals greenish or 3231) reddish-brown, lanceolate, usually ciliate, up to 5 mm long. -
African Journal of Biotechnology
OPEN ACCESS African Journal of Biotechnology September 2019 ISSN 1684-5315 DOI: 10.5897/AJB www.academicjournals.org About AJB The African Journal of Biotechnology (AJB) is a peer reviewed journal which commenced publication in 2002. AJB publishes articles from all areas of biotechnology including medical and pharmaceutical biotechnology, molecular diagnostics, applied biochemistry, industrial microbiology, molecular biology, bioinformatics, genomics and proteomics, transcriptomics and genome editing, food and agricultural technologies, and metabolic engineering. Manuscripts on economic and ethical issues relating to biotechnology research are also considered. Indexing CAB Abstracts, CABI’s Global Health Database, Chemical Abstracts (CAS Source Index) Dimensions Database, Google Scholar, Matrix of Information for The Analysis of Journals (MIAR), Microsoft Academic, Research Gate Open Access Policy Open Access is a publication model that enables the dissemination of research articles to the global community without restriction through the internet. All articles published under open access can be accessed by anyone with internet connection. The African Journals of Biotechnology is an Open Access journal. Abstracts and full texts of all articles published in this journal are freely accessible to everyone immediately after publication without any form of restriction. Article License All articles published by African Journal of Biotechnology are licensed under the Creative Commons Attribution 4.0 International License. This permits anyone -
An HPLC-DAD Method to Quantify Flavonoids in Sonchus Arvensis and Able to Classify the Plant Parts and Their Geographical Area Through Principal Component Analysis
separations Article An HPLC-DAD Method to Quantify Flavonoids in Sonchus arvensis and Able to Classify the Plant Parts and Their Geographical Area through Principal Component Analysis Rifki Husnul Khuluk 1 , Amalia Yunita 1, Eti Rohaeti 1,2, Utami Dyah Syafitri 2,3, Roza Linda 4, Lee Wah Lim 5, Toyohide Takeuchi 5 and Mohamad Rafi 1,2,* 1 Departement of Chemistry, Faculty of Mathematics and Natural Science, IPB University, Jalan Tanjung Kampus IPB Dramaga, Bogor 16680, Indonesia; [email protected] (R.H.K.); [email protected] (A.Y.); [email protected] (E.R.) 2 Tropical Biopharmaca Research Center, Research and Community Empowerment Institute, IPB University, Jalan Taman Kencana No. 3 Kampus IPB Taman Kencana, Bogor 16128, Indonesia; [email protected] 3 Department of Statistics, Faculty of Mathematics and Natural Science, IPB University, Jalan Meranti Kampus IPB Dramaga, Bogor 16680, Indonesia 4 Department of Chemistry Education, Faculty of Education, Riau University, Jalan Pekanbaru-Bangkinang KM 12.5 Kampus Bina Widya, Pekanbaru 28293, Indonesia; [email protected] 5 Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; [email protected] (L.W.L.); [email protected] (T.T.) * Correspondence: [email protected]; Tel.: +62-2518624567 Abstract: A simple and efficient method has been developed for the simultaneous determination of eight flavonoids (orientin, hyperoside, rutin, myricetin, luteolin, quercetin, kaempferol, and apigenin) in Sonchus arvensis by high-performance liquid chromatography diode array detector (HPLC-DAD). Citation: Khuluk, R.H.; Yunita, A.; This method was utilized to differentiate S. -
Genetic Diversity of Chamaecrista Fasciculata (Fabaceae) from the USDA Germplasm Collection
University of Vermont ScholarWorks @ UVM College of Agriculture and Life Sciences Faculty Publications College of Agriculture and Life Sciences 3-4-2019 Genetic diversity of Chamaecrista fasciculata (Fabaceae) from the USDA germplasm collection Erika Bueno University of Vermont Ted Kisha USDA Agricultural Research Service, Washington DC Sonja L. Maki Carleton College, USA Eric J.B. Von Wettberg University of Vermont Susan Singer Carleton College, USA Follow this and additional works at: https://scholarworks.uvm.edu/calsfac Part of the Community Health Commons, Human Ecology Commons, Nature and Society Relations Commons, Place and Environment Commons, and the Sustainability Commons Recommended Citation Bueno E, Kisha T, Maki SL, von Wettberg EJ, Singer S. Genetic diversity of Chamaecrista fasciculata (Fabaceae) from the USDA germplasm collection. BMC research notes. 2019 Dec 1;12(1):117. This Article is brought to you for free and open access by the College of Agriculture and Life Sciences at ScholarWorks @ UVM. It has been accepted for inclusion in College of Agriculture and Life Sciences Faculty Publications by an authorized administrator of ScholarWorks @ UVM. For more information, please contact [email protected]. Bueno et al. BMC Res Notes (2019) 12:117 https://doi.org/10.1186/s13104-019-4152-0 BMC Research Notes RESEARCH NOTE Open Access Genetic diversity of Chamaecrista fasciculata (Fabaceae) from the USDA germplasm collection Erika Bueno1, Ted Kisha2, Sonja L. Maki3,4, Eric J. B. von Wettberg1* and Susan Singer3,5 Abstract Objective: Chamaecrista fasciculata is a widespread annual legume across Eastern North America, with potential as a restoration planting, biofuel crop, and genetic model for non-papillinoid legumes. -
Contributions to the Solution of Phylogenetic Problem in Fabales
Research Article Bartın University International Journal of Natural and Applied Sciences Araştırma Makalesi JONAS, 2(2): 195-206 e-ISSN: 2667-5048 31 Aralık/December, 2019 CONTRIBUTIONS TO THE SOLUTION OF PHYLOGENETIC PROBLEM IN FABALES Deniz Aygören Uluer1*, Rahma Alshamrani 2 1 Ahi Evran University, Cicekdagi Vocational College, Department of Plant and Animal Production, 40700 Cicekdagi, KIRŞEHIR 2 King Abdulaziz University, Department of Biological Sciences, 21589, JEDDAH Abstract Fabales is a cosmopolitan angiosperm order which consists of four families, Leguminosae (Fabaceae), Polygalaceae, Surianaceae and Quillajaceae. The monophyly of the order is supported strongly by several studies, although interfamilial relationships are still poorly resolved and vary between studies; a situation common in higher level phylogenetic studies of ancient, rapid radiations. In this study, we carried out simulation analyses with previously published matK and rbcL regions. The results of our simulation analyses have shown that Fabales phylogeny can be solved and the 5,000 bp fast-evolving data type may be sufficient to resolve the Fabales phylogeny question. In our simulation analyses, while support increased as the sequence length did (up until a certain point), resolution showed mixed results. Interestingly, the accuracy of the phylogenetic trees did not improve with the increase in sequence length. Therefore, this study sounds a note of caution, with respect to interpreting the results of the “more data” approach, because the results have shown that large datasets can easily support an arbitrary root of Fabales. Keywords: Data type, Fabales, phylogeny, sequence length, simulation. 1. Introduction Fabales Bromhead is a cosmopolitan angiosperm order which consists of four families, Leguminosae (Fabaceae) Juss., Polygalaceae Hoffmanns. -
Pelagia Research Library
Available online a t www.pelagiaresearchlibrary.com Pelagia Research Library Der Pharmacia Sinica, 2011, 2 (2): 285-298 ISSN: 0976-8688 CODEN (USA): PSHIBD Studies on Ameliorative Effects of Morin, Rutin, Quercetin and Vitamin-E against the Doxorubicin-induced Cardiomyopathy 1Raja Kumar Parabathina*, 2E.Muralinath, 3P. Lakshmana Swamy, 3V. V. S. N. Hari Krishna and 4G. Srinivasa Rao 1Department of Biochemistry, Acharya Nagarjuna University, Guntur. Andhra Pradesh, India 2Department of Veterinary Physiology, NTR College of Veterinary Science, Gannavaram, Andhra Pradesh, India 3Department of Biotechnology, Acharya Nagarjuna University, Guntur. Andhra Pradesh, India 4Department of Pharmacology and Toxicology, NTR College of Veterinary Science, Gannavaram, Andhra Pradesh, India ______________________________________________________________________________ ABSTRACT The present study was used to evaluate the effects of naturally occurring antioxidants vitamin-E, morin, rutin and quercetin on the doxorubicin (DOX)-induced cardiomyopathy in a rabbit model. The authors evaluated the ameliorative effects flavonoids and vitamin-E against DOX administration. Thirty New Zealand white rabbits aged between 5-6 months and averaging 2.5-3.0 kg in weight were divided into 5 groups of 6 in each were treated with vitamin E (50 IU/kg body weight) and flavonoids morin, rutin and quercetin (20mg/kg body weight) for four weeks and two doses of doxorubicin (10mg/kg body weight) at the end of 28 days. The flavonoids affected the levels of serum enzymes SGOT, SGPT, ALP, minerals Sodium, Potassium and Phosphorus, oxidative markers catalase (CAT), lipid peroxidation, glutathione-s- transferase (GST), reduced glutathione (GSH) both in whole erythrocytes and tissues of liver, heart and kidneys. The study concludes that the flavonoids have a protective role in the abatement of doxorubicin- induced cardiomyopathy by regulating the oxidative stress. -
Guide to Theecological Systemsof Puerto Rico
United States Department of Agriculture Guide to the Forest Service Ecological Systems International Institute of Tropical Forestry of Puerto Rico General Technical Report IITF-GTR-35 June 2009 Gary L. Miller and Ariel E. Lugo The Forest Service of the U.S. Department of Agriculture is dedicated to the principle of multiple use management of the Nation’s forest resources for sustained yields of wood, water, forage, wildlife, and recreation. Through forestry research, cooperation with the States and private forest owners, and management of the National Forests and national grasslands, it strives—as directed by Congress—to provide increasingly greater service to a growing Nation. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable sex, marital status, familial status, parental status, religion, sexual orientation genetic information, political beliefs, reprisal, or because all or part of an individual’s income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at (202) 720-2600 (voice and TDD).To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W. Washington, DC 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer. Authors Gary L. Miller is a professor, University of North Carolina, Environmental Studies, One University Heights, Asheville, NC 28804-3299. -
Cloudless Sulphur Phoebis Sennae (Linnaeus) (Insecta: Lepidoptera: Pieridae: Coliadinae) 1 Donald W
EENY-524 Cloudless Sulphur Phoebis sennae (Linnaeus) (Insecta: Lepidoptera: Pieridae: Coliadinae) 1 Donald W. Hall, Thomas J. Walker, and Marc C. Minno2 Introduction Distribution The cloudless sulphur, Phoebis sennae (Linnaeus), is one of The cloudless sulphur is widspread in the southern United our most common and attractive Florida butterflies and is States, and it strays northward to Colorado, Nebraska, Iowa, particularly prominent during its fall southward migration. Illinois, Indiana and New Jersey (Minno et al. 2005), and Its genus name is derived from Phoebe, the sister of Apollo, even into Canada (Riotte 1967). It is also found southward a god of Greek and Roman mythology (Opler and Krizek through South America to Argentina and in the West Indies 1984). The specific epithet, sennae, is for the genus Senna (Heppner 2007). to which many of the cloudless sulphur’s larval host plants belong. Description Adults Wing spans range from 4.8 to 6.5 cm (approximately 1.9 to 2.6 in) (Minno and Minno 1999). Adults are usually bright yellow, but some summer form females are pale yellow or white (Minno and Minno 1999, Opler and Krizek 1984). Females have a narrow black border on the wings and a dark spot in the middle of the front wing. Males are season- ally dimorphic with winter forms being larger and with darker markings ventrally (Opler and Krizek 1984). Eggs The eggs are cream colored when laid but later turn to orange. Figure 1. Lareral view of adult male cloudless sulphur, Phoebis sennae (Linnaeus), nectaring at smallfruit beggarticks, Bidens mitis. Credits: Marc Minno, University of Florida 1.