Pontifícia Universidade Católica Do Rio Grande Do Sul Programa De Pós-Graduação Em Zoologia

Total Page:16

File Type:pdf, Size:1020Kb

Pontifícia Universidade Católica Do Rio Grande Do Sul Programa De Pós-Graduação Em Zoologia Pontifícia Universidade Católica do Rio Grande do Sul Programa de Pós-Graduação em Zoologia Análises genômicas da onça-pintada (Panthera onca): caracterização do genoma completo e investigação de regiões sob seleção através de comparações interespecíficas e populacionais Henrique Vieira Figueiró Tese de Doutorado Porto Alegre -2016- PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE BIOCIÊNCIAS PROGRAMA DE PÓS-GRADUAÇÃO EM ZOOLOGIA Análises genômicas da onça-pintada (Panthera onca): caracterização do genoma completo e investigação de regiões sob seleção através de comparações interespecíficas e populacionais Henrique Vieira Figueiró Orientador: Dr. Eduardo Eizirik TESE DE DOUTORADO PORTO ALEGRE – RS – BRASIL 2016 SUMÁRIO Agradecimentos...............................................................................................................................................................III Resumo................................................................................................................................................................................V Abstract.............................................................................................................................................................................VII Apresentação....................................................................................................................................................................IX Capítulo 1 – Introdução Geral.....................................................................................................................................1 Capítulo II – Jaguar genome sheds light on the complex evolution of the big cats…………….…..…20 Capítulo III – Exome sequencing reveals signatures of local adaptation in natural jaguar populations....................................................................................................................................................................124 Capítulo IV – Discussão Geral.................................................................................................................................171 Perspectivas...................................................................................................................................................................178 Referências.....................................................................................................................................................................179 I “You, me or nobody is gonna hit as hard as life. But it ain’t about how hard you hit. It’s about how hard you can get hit and keep moving forward.” Rocky Balboa II AGRADECIMENTOS O doutorado mais que um título, é a soma de todas as influências que recebemos em nossa vida, não apenas como profissionais, mas também como pessoas. É impossível agradecer todos que me influenciaram e tornaram esse caminho possível. Desde sempre contei com o apoio de professores, colegas, amigos e especialmente minha família para as minhas decisões. Antes de tudo, à minha família, que sempre me apoiou em tudo que foi necessário. Meu pai, que me ensinou a sonhar e especialmente minha mãe, que sempre lutou muito e é meu exemplo de vida. Aos meus amigos que sempre estiveram lá, algumas vezes longe, mas mesmo assim presentes. Muito obrigado Karen, Luísa, Gustavo, Mari e Guilherme, vocês são demais. À Helenita, por ser essa pessoa tão especial que tanto me apoiou nesse último ano. Ao meu orientador, Eduardo Eizirik, pela orientação, por ser um exemplo de pesquisador e ter me ensinado tanto ao longo dos anos, indo além do meio acadêmico. Muito obrigado. Às minhas duas padawans! Fernanda e Sarah, muito obrigado. Vocês foram essenciais e aprendi muito com as duas, mais do que vocês podem imaginar. Vocês vão longe e tenho muito orgulho de ter acompanhado a formação de vocês. À Cris, que começou me co-orientando na bancada quando entrei no laboratório e foi uma das pessoas mais importantes para a execução do meu doutorado. Muito obrigado pela parceria e amizade durante esse tempo. À Maíra, que sem dúvida chegou na hora certa! Muito obrigado por todo o apoio, sugestões e auxílio nesse momento tão conturbado que é o final de um doutorado. Talita, Manoel, Fernanda Pedone, Ricardo, Flávia, Laura, o nome de vocês não poderia faltar aqui. Muito obrigado pela amizade, conselhos, risadas e momentos do café no Genoma. III Aos genômicos! Todas as gerações que passaram pelo laboratório. Aprendi muito com todos vocês. À todas as técnicas que passaram pelo laboratório, muito obrigado, sem vocês o Genoma não seria nem de perto o que é hoje. Meu agradecimento especial à Cladi, que mais me acompanhou durante meus momentos de bancada, e até hoje ainda lembro dos ensinamentos dela. Aos mestres que eu tive durante essa jornada. Guto e Eros, que foram exemplos de professores e uma das maiores influências para eu ter escolhido a biologia. Os professores da Biociências, em especial o Bicca, o Gervásio, o Sandro. E a professora Eliane Santarém, que provavelmente mudou meu rumo como pesquisador, mostrando como biologia molecular é interessante. Ao professor Rasmus Nielsen, por ter me aceitado no grupo de pesquisa dele. Com certeza, foi um dos momentos mais importantes da minha formação como pesquisador. Ao pessoal do Nielsen lab. Foi muito legal poder conhecer um pouco do resto do mundo através de vocês. Um agradecimento especial ao Tyler, Ke e a Lydia. À Barbara e ao Andy e seus gatos Bear e Mia. Com certeza, vocês tornaram essa experiência de estar longe de casa muito melhor. Foi uma experiência incrível ter compartilhado esse ano com vocês. Muito obrigado por me receberem na casa de vocês. Aos colaboradores dos projetos desenvolvidos durante o doutorado. Todos aqueles que contribuíram com amostras ou participaram de alguma etapa do projeto. Em especial, o professo William Murphy no Texas A&M University, o grupo do laboratório de Biotecnologia Animal da ESALQ-USP e os pesquisadores do Centro de Pesquisa René Rachou na FIOCRUZ-MG, além de todos coautores dos trabalhos que compõem a tese. Ao CNPq e a CAPES pela bolsa de doutorado e doutorado-sanduíche, respectivamente. E todas as agências financiadoras devidamente lembradas nos artigos que compõem essa tese. À PUCRS pela infraestrutura, e todos seus funcionários por tornarem esse ambiente tão agradável IV RESUMO Nos últimos 10 anos, o sequenciamento genômico de alto desempenho revolucionou a biologia evolutiva. Com os avanços gerados pelo sequenciamento do genoma completo de espécies- modelo, agora é possível aplicar essas técnicas em animais com praticamente nenhum recurso genético disponível. O sequenciamento completo de genomas, bem como o uso de técnicas de representação reduzida, permitem explorar questões evolutivas complexas como, por exemplo, detecção de hibridação e assinaturas de seleção natural em uma escala genômica. Dentre os grupos taxonômicos que podem se beneficiar de tais técnicas está o gênero Panthera. O grupo é composto por cinco espécies atuais (P. onca, P. tigris, P. leo, P. pardus e P. uncia), todas elas apresentando grande porte e atuando como predadores de topo nos ambientes que ocupam. Devido às baixas densidades, alarmante perda de habitat e constantes conflitos com humanos, o nível de ameaça em que essas espécies se encontram é preocupante. Dentre as espécies do grupo, está a onça-pintada (P. onca), única integrante do gênero na região Neotropical e o principal foco deste trabalho. Nesse sentido, o presente estudo busca caracterizar pela primeira vez o genoma da onça-pintada, incluindo análises comparativas com as outras quatro espécies do gênero. Além disso, o trabalho tem como objetivo avaliar as populações de onça no Brasil e buscar assinaturas de seleção divergente nos biomas que ela ocupa. Para o sequenciamento do genoma da espécie, foram utilizadas quatro bibliotecas genômicas, com uma cobertura estimada de 84x. A sequência do genoma completo permitiu a anotação de 25.441 genes e a descrição de outros componentes do genoma (p.ex. ncRNA, microssatélites, numts). Adicionalmente, foi sequenciado o genoma de um leopardo (P. pardus) com cobertura estimada de 25x. Com esses dois novos genomas, completou-se um conjunto abrangendo todas as cinco espécies do gênero, permitindo a realização de análises de discordância filogenética para o grupo e detecção de seleção positiva utilizando um conjunto de 13.143 genes ortólogos. Foi possível demonstrar eventos de hibridação durante o processo de especiação das espécies do gênero, bem como sinais de seleção positiva em genes envolvidos em características que se destacam nos grandes felídeos. Entre eles, fenótipos potencialmente afetados por genes sob seleção incluem o crânio e membros robustos da onça-pintada, o comportamento social no leão, adaptação ao frio no leopardo das neves e a presença de listras no tigre. Com o uso de captura de exoma, que tem como objetivo o sequenciamento do conjunto de exons da espécie, foi possível realizar uma nova avaliação das características genéticas de populações de onça-pintada, bem como a detecção de assinaturas de adaptação local. Entre os resultados obtidos está a presença de genes sob seleção relacionados com metabolismo energético em populações da Amazônia, adaptações relacionadas com V desenvolvimento corporal no Pantanal e imunidade na Mata Atlântica. Adicionalmente, foram observados diversos genes de pigmentação com assinaturas de seleção em diferentes biomas. Esses genes, além de afetarem a coloração dos animais, possuem efeitos pleiotrópicos
Recommended publications
  • Supplemental Figure 1. Vimentin
    Double mutant specific genes Transcript gene_assignment Gene Symbol RefSeq FDR Fold- FDR Fold- FDR Fold- ID (single vs. Change (double Change (double Change wt) (single vs. wt) (double vs. single) (double vs. wt) vs. wt) vs. single) 10485013 BC085239 // 1110051M20Rik // RIKEN cDNA 1110051M20 gene // 2 E1 // 228356 /// NM 1110051M20Ri BC085239 0.164013 -1.38517 0.0345128 -2.24228 0.154535 -1.61877 k 10358717 NM_197990 // 1700025G04Rik // RIKEN cDNA 1700025G04 gene // 1 G2 // 69399 /// BC 1700025G04Rik NM_197990 0.142593 -1.37878 0.0212926 -3.13385 0.093068 -2.27291 10358713 NM_197990 // 1700025G04Rik // RIKEN cDNA 1700025G04 gene // 1 G2 // 69399 1700025G04Rik NM_197990 0.0655213 -1.71563 0.0222468 -2.32498 0.166843 -1.35517 10481312 NM_027283 // 1700026L06Rik // RIKEN cDNA 1700026L06 gene // 2 A3 // 69987 /// EN 1700026L06Rik NM_027283 0.0503754 -1.46385 0.0140999 -2.19537 0.0825609 -1.49972 10351465 BC150846 // 1700084C01Rik // RIKEN cDNA 1700084C01 gene // 1 H3 // 78465 /// NM_ 1700084C01Rik BC150846 0.107391 -1.5916 0.0385418 -2.05801 0.295457 -1.29305 10569654 AK007416 // 1810010D01Rik // RIKEN cDNA 1810010D01 gene // 7 F5 // 381935 /// XR 1810010D01Rik AK007416 0.145576 1.69432 0.0476957 2.51662 0.288571 1.48533 10508883 NM_001083916 // 1810019J16Rik // RIKEN cDNA 1810019J16 gene // 4 D2.3 // 69073 / 1810019J16Rik NM_001083916 0.0533206 1.57139 0.0145433 2.56417 0.0836674 1.63179 10585282 ENSMUST00000050829 // 2010007H06Rik // RIKEN cDNA 2010007H06 gene // --- // 6984 2010007H06Rik ENSMUST00000050829 0.129914 -1.71998 0.0434862 -2.51672
    [Show full text]
  • Pantanal - Birds and Jaguars 9 Day/ 8 Night Tour
    PANTANAL - BIRDS AND JAGUARS 9 DAY/ 8 NIGHT TOUR OVERVIEW The Pantanal is a natural region encompassing the world's largest tropical wetland area. It is located mostly within the Brazilian state of Mato Grosso do Sul, but it extends into Mato Grosso and portions of Bolivia and Paraguay. The name "Pantanal" comes from the Portuguese word pântano, meaning wetland, bog, swamp, quagmire or marsh. The Pantanal offers any birder or wildlife enthusiast the perfect combination of great birding and mammal spotting opportunities! The habitat is “birder friendly” as it’s relatively open which makes birding easier and more relaxing. It is one of the best places in the world to see the endangered and stunning Hyacinth Macaw, hundreds of Jabirus, Maguari Storks, Wood Storks, Herons and Ibises and literally thousands of Caimans. This, together with excellent chances of seeing Jaguar, fantastic photographic opportunities and spectacular scenery makes a birding trip to the Pantanal a must! We will spend seven days within the world’s largest freshwater wetland that covers approximately 195000 km². During this time we shall travel all the way to the end of the famous Transpantaneira dirt road (145km), well known for its amazing birds and wildlife. Once at the end of the Transpantaneira road we will spend the last three days based at the Hotel Porto Jofre where we will take daily boat trips looking for various species of birds and our main mammal target, South Americas largest cat…. the mighty Jaguar! We then move onto the 80 000 acre Chapada dos Guimaraes National Park for a further two nights; this Cerrado habitat (seasonally dry woodland and scrub) will provide us with a change of habitat, more stunning scenery and further opportunities for a whole host of new bird species.
    [Show full text]
  • Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino-Like Mouse Models: Tracking the Role of the Hairless Gene
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2006 Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino-like Mouse Models: Tracking the Role of the Hairless Gene Yutao Liu University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Life Sciences Commons Recommended Citation Liu, Yutao, "Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino- like Mouse Models: Tracking the Role of the Hairless Gene. " PhD diss., University of Tennessee, 2006. https://trace.tennessee.edu/utk_graddiss/1824 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Yutao Liu entitled "Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino-like Mouse Models: Tracking the Role of the Hairless Gene." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Life Sciences. Brynn H. Voy, Major Professor We have read this dissertation and recommend its acceptance: Naima Moustaid-Moussa, Yisong Wang, Rogert Hettich Accepted for the Council: Carolyn R.
    [Show full text]
  • Rule Mining on Microrna Expression Profiles For
    Faculty of Engineering and Information Technology University of Technology, Sydney Rule Mining on MicroRNA Expression Profiles for Human Disease Understanding A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy by Renhua Song July 2016 CERTIFICATE OF AUTHORSHIP/ORIGINALITY I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text. I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis. Signature of Candidate i Acknowledgments First, and foremost, I would like to express my gratitude to my chief supervisor, Assoc. Prof. Jinyan Li, and to my co-supervisors Assoc. Prof. Paul Kennedy and Assoc. Prof. Daniel Catchpoole. I am extremely grateful for all the advice and guidance so unselfishly given to me over the last three and half years by these three distinguished academics. This research would not have been possible without their high order supervision, support, assistance and leadership. The wonderful support and assistance provided by many people during this research is very much appreciated by me and my family. I am very grateful for the help that I received from all of these people but there are some special individuals that I must thank by name. A very sincere thank you is definitely owed to my loving husband Jing Liu, not only for his tremendous support during the last three and half years, but also his unfailing and often sorely tested patience.
    [Show full text]
  • Cellular and Molecular Signatures in the Disease Tissue of Early
    Cellular and Molecular Signatures in the Disease Tissue of Early Rheumatoid Arthritis Stratify Clinical Response to csDMARD-Therapy and Predict Radiographic Progression Frances Humby1,* Myles Lewis1,* Nandhini Ramamoorthi2, Jason Hackney3, Michael Barnes1, Michele Bombardieri1, Francesca Setiadi2, Stephen Kelly1, Fabiola Bene1, Maria di Cicco1, Sudeh Riahi1, Vidalba Rocher-Ros1, Nora Ng1, Ilias Lazorou1, Rebecca E. Hands1, Desiree van der Heijde4, Robert Landewé5, Annette van der Helm-van Mil4, Alberto Cauli6, Iain B. McInnes7, Christopher D. Buckley8, Ernest Choy9, Peter Taylor10, Michael J. Townsend2 & Costantino Pitzalis1 1Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK. Departments of 2Biomarker Discovery OMNI, 3Bioinformatics and Computational Biology, Genentech Research and Early Development, South San Francisco, California 94080 USA 4Department of Rheumatology, Leiden University Medical Center, The Netherlands 5Department of Clinical Immunology & Rheumatology, Amsterdam Rheumatology & Immunology Center, Amsterdam, The Netherlands 6Rheumatology Unit, Department of Medical Sciences, Policlinico of the University of Cagliari, Cagliari, Italy 7Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK 8Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), University of Birmingham, Birmingham B15 2WB, UK 9Institute of
    [Show full text]
  • Genome-Wide Association Study Identifies Loci for Arterial Stiffness
    www.nature.com/scientificreports OPEN Genome-wide association study identifes loci for arterial stifness index in 127,121 UK Biobank Received: 1 February 2019 Accepted: 5 June 2019 participants Published: xx xx xxxx Kenneth Fung1, Julia Ramírez 2, Helen R. Warren2,3, Nay Aung 1, Aaron M. Lee1, Evan Tzanis2,3, Stefen E. Petersen 1,3 & Patricia B. Munroe2,3 Arterial stifness index (ASI) is a non-invasive measure of arterial stifness using infra-red fnger sensors (photoplethysmography). It is a well-suited measure for large populations as it is relatively inexpensive to perform, and data can be acquired within seconds. These features raise interest in using ASI as a tool to estimate cardiovascular disease risk as prior work demonstrates increased arterial stifness is associated with elevated systolic blood pressure, and ASI is predictive of cardiovascular disease and mortality. We conducted genome-wide association studies (GWASs) for ASI in 127,121 UK Biobank participants of European-ancestry. Our primary analyses identifed variants at four loci reaching genome-wide signifcance (P < 5 × 10−8): TEX41 (rs1006923; P = 5.3 × 10−12), FOXO1 (rs7331212; P = 2.2 × 10−11), C1orf21 (rs1930290, P = 1.1 × 10−8) and MRVI1 (rs10840457, P = 3.4 × 10−8). Gene- based testing revealed three signifcant genes, the most signifcant gene was COL4A2 (P = 1.41 × 10−8) encoding type IV collagen. Other candidate genes at associated loci were also involved in smooth muscle tone regulation. Our fndings provide new information for understanding the development of arterial stifness. Arterial stifness measures have been reported as independent markers of vascular ageing1,2, hypertension3,4, car- diovascular disease (CVD)5,6 and mortality6,7.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • ENVIRONMENT POLICIES EVOLUTION Part 6 1988 Chico Mendes Brasil
    Environmental Policies – Part 6 ENVIRONMENT POLICIES EVOLUTION Part 6 António Gonçalves Henriques 1 1988 Chico Mendes Brasil • Sometimes called "The Ghandi of the Amazon" Chico Mendes was a rubber tapper who lived and worked in Brazil's Amazon region. Largest river basin in the world Area of river basin: 6 300 000 km2 Area of rainforest: 5 500 000 km2 2 António Gonçalves Henriques 2020-10-22 1 Environmental Policies – Part 6 Amazonia Area of river basin: 6 300 000 km2 Area of rainforest: 5 500 000 km2 Brazil: 58.4% Peru: 12.8%, Bolivia: 7.7%, Colombia: 7.1%, Venezuela: 6.1%, Guyana: 3.1%, Suriname: 2.5%, French Guyana: 1.4%, Ecuador with 1%. 3 Amazonia Amazon basin forest north of Manaus 4 António Gonçalves Henriques 2020-10-22 2 Environmental Policies – Part 6 Amazonia Members of an uncontacted tribe encountered in the Brazilian state of Acre in 2009 5 Amazonia Members of an uncontacted tribe encountered in the Brazilian state of Acre in 2009 6 António Gonçalves Henriques 2020-10-22 3 Environmental Policies – Part 6 Amazonia Glaucous macaw Ka’apor capuchin Amazon river dolphin Jocotoco antpitta (Anodorhynchus glaucus) (Cebus kaapori) (Inia geoffrensis) (Grallaria ridgelyi) Bald Uakari South American Jaguar Black caiman (Cacajao calvus) (Panthera Onca) (Melanosuchus niger) Some rare or endangered species of fauna in Amazonia 7 Deforestation of Amazonia Wildfires in Brazil's indigenous territory, 2017 8 António Gonçalves Henriques 2020-10-22 4 Environmental Policies – Part 6 Deforestation of Amazonia Deforestation in the state of Maranhão 9 Deforestation of Amazonia Fires and deforestation in the state of Rondônia 10 António Gonçalves Henriques 2020-10-22 5 Environmental Policies – Part 6 Deforestation of Amazonia Impact of deforestation on natural habitat of trees 11 1988 Chico Mendes Brasil • To save the rainforest, Chico Mendes and the rubber workers union asked the government to set up reserves as they wanted people to use the forest without damaging it.
    [Show full text]
  • Whole Exome Sequencing in Families at High Risk for Hodgkin Lymphoma: Identification of a Predisposing Mutation in the KDR Gene
    Hodgkin Lymphoma SUPPLEMENTARY APPENDIX Whole exome sequencing in families at high risk for Hodgkin lymphoma: identification of a predisposing mutation in the KDR gene Melissa Rotunno, 1 Mary L. McMaster, 1 Joseph Boland, 2 Sara Bass, 2 Xijun Zhang, 2 Laurie Burdett, 2 Belynda Hicks, 2 Sarangan Ravichandran, 3 Brian T. Luke, 3 Meredith Yeager, 2 Laura Fontaine, 4 Paula L. Hyland, 1 Alisa M. Goldstein, 1 NCI DCEG Cancer Sequencing Working Group, NCI DCEG Cancer Genomics Research Laboratory, Stephen J. Chanock, 5 Neil E. Caporaso, 1 Margaret A. Tucker, 6 and Lynn R. Goldin 1 1Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; 2Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; 3Ad - vanced Biomedical Computing Center, Leidos Biomedical Research Inc.; Frederick National Laboratory for Cancer Research, Frederick, MD; 4Westat, Inc., Rockville MD; 5Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; and 6Human Genetics Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA ©2016 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2015.135475 Received: August 19, 2015. Accepted: January 7, 2016. Pre-published: June 13, 2016. Correspondence: [email protected] Supplemental Author Information: NCI DCEG Cancer Sequencing Working Group: Mark H. Greene, Allan Hildesheim, Nan Hu, Maria Theresa Landi, Jennifer Loud, Phuong Mai, Lisa Mirabello, Lindsay Morton, Dilys Parry, Anand Pathak, Douglas R. Stewart, Philip R. Taylor, Geoffrey S. Tobias, Xiaohong R. Yang, Guoqin Yu NCI DCEG Cancer Genomics Research Laboratory: Salma Chowdhury, Michael Cullen, Casey Dagnall, Herbert Higson, Amy A.
    [Show full text]
  • Supplementary Data
    Supplementary Fig. 1 A B Responder_Xenograft_ Responder_Xenograft_ NON- NON- Lu7336, Vehicle vs Lu7466, Vehicle vs Responder_Xenograft_ Responder_Xenograft_ Sagopilone, Welch- Sagopilone, Welch- Lu7187, Vehicle vs Lu7406, Vehicle vs Test: 638 Test: 600 Sagopilone, Welch- Sagopilone, Welch- Test: 468 Test: 482 Responder_Xenograft_ NON- Lu7860, Vehicle vs Responder_Xenograft_ Sagopilone, Welch - Lu7558, Vehicle vs Test: 605 Sagopilone, Welch- Test: 333 Supplementary Fig. 2 Supplementary Fig. 3 Supplementary Figure S1. Venn diagrams comparing probe sets regulated by Sagopilone treatment (10mg/kg for 24h) between individual models (Welsh Test ellipse p-value<0.001 or 5-fold change). A Sagopilone responder models, B Sagopilone non-responder models. Supplementary Figure S2. Pathway analysis of genes regulated by Sagopilone treatment in responder xenograft models 24h after Sagopilone treatment by GeneGo Metacore; the most significant pathway map representing cell cycle/spindle assembly and chromosome separation is shown, genes upregulated by Sagopilone treatment are marked with red thermometers. Supplementary Figure S3. GeneGo Metacore pathway analysis of genes differentially expressed between Sagopilone Responder and Non-Responder models displaying –log(p-Values) of most significant pathway maps. Supplementary Tables Supplementary Table 1. Response and activity in 22 non-small-cell lung cancer (NSCLC) xenograft models after treatment with Sagopilone and other cytotoxic agents commonly used in the management of NSCLC Tumor Model Response type
    [Show full text]
  • Qt4vh1p2c4 Nosplash E372185
    Copyright 2014 by Janine Micheli-Jazdzewski ii Dedication I would like to dedicate this thesis to Rock, who is not with us anymore, TR, General Jack D. Ripper, and Page. Thank you for sitting with me while I worked for countless hours over the years. iii Acknowledgements I would like to express my special appreciation and thanks to my advisor Dr. Deanna Kroetz, you have been a superb mentor for me. I would like to thank you for encouraging my research and for helping me to grow as a research scientist. Your advice on both research, as well as on my career have been priceless. I would also like to thank my committee members, Dr. Laura Bull, Dr. Steve Hamilton and Dr. John Witte for guiding my research and expanding my knowledge on statistics, genetics and clinical phenotypes. I also want to thank past and present members of my laboratory for their support and help over the years, especially Dr. Mike Baldwin, Dr. Sveta Markova, Dr. Ying Mei Liu and Dr. Leslie Chinn. Thanks are also due to my many collaborators that made this research possible including: Dr. Eric Jorgenson, Dr. David Bangsberg, Dr. Taisei Mushiroda, Dr. Michiaki Kubo, Dr. Yusuke Nakamura, Dr. Jeffrey Martin, Joel Mefford, Dr. Sarah Shutgarts, Dr. Sulggi Lee and Dr. Sook Wah Yee. A special thank you to the RIKEN Center for Genomic Medicine that generously performed the genome-wide genotyping for these projects. Thanks to Dr. Steve Chamow, Dr. Bill Werner, Dr. Montse Carrasco, and Dr. Teresa Chen who started me on the path to becoming a scientist.
    [Show full text]
  • Identification of 42 Genes Linked to Stage II Colorectal Cancer Metastatic Relapse
    Int. J. Mol. Sci. 2016, 17, 598; doi:10.3390/ijms17040598 S1 of S16 Supplementary Materials: Identification of 42 Genes Linked to Stage II Colorectal Cancer Metastatic Relapse Rabeah A. Al-Temaimi, Tuan Zea Tan, Makia J. Marafie, Jean Paul Thiery, Philip Quirke and Fahd Al-Mulla Figure S1. Cont. Int. J. Mol. Sci. 2016, 17, 598; doi:10.3390/ijms17040598 S2 of S16 Figure S1. Mean expression levels of fourteen genes of significant association with CRC DFS and OS that are differentially expressed in normal colon compared to CRC tissues. Each dot represents a sample. Table S1. Copy number aberrations associated with poor disease-free survival and metastasis in early stage II CRC as predicted by STAC and SPPS combined methodologies with resident gene symbols. CN stands for copy number, whereas CNV is copy number variation. Region Cytoband % of CNV Count of Region Event Gene Symbols Length Location Overlap Genes chr1:113,025,076–113,199,133 174,057 p13.2 CN Loss 0.0 2 AKR7A2P1, SLC16A1 chr1:141,465,960–141,822,265 356,305 q12–q21.1 CN Gain 95.9 1 SRGAP2B MIR5087, LOC10013000 0, FLJ39739, LOC10028679 3, PPIAL4G, PPIAL4A, NBPF14, chr1:144,911,564–146,242,907 1,331,343 q21.1 CN Gain 99.6 16 NBPF15, NBPF16, PPIAL4E, NBPF16, PPIAL4D, PPIAL4F, LOC645166, LOC388692, FCGR1C chr1:177,209,428–177,226,812 17,384 q25.3 CN Gain 0.0 0 chr1:197,652,888–197,676,831 23,943 q32.1 CN Gain 0.0 1 KIF21B chr1:201,015,278–201,033,308 18,030 q32.1 CN Gain 0.0 1 PLEKHA6 chr1:201,289,154–201,298,247 9093 q32.1 CN Gain 0.0 0 chr1:216,820,186–217,043,421 223,235 q41 CN
    [Show full text]