(2) Chattanooga Shale at Google Indexer on July 12, 2021 Downloaded From

Total Page:16

File Type:pdf, Size:1020Kb

(2) Chattanooga Shale at Google Indexer on July 12, 2021 Downloaded From Downloaded from http://sp.lyellcollection.org/ by guest on September 29, 2021 ITEMS (x) Kap Frankl~ granlte Devonian/Devonian Kejser Franz Joseph Fjord, East Greenland [73 ° 15' N, 22 ° Io' w]. Radiometric age K-Ar (/l/~ = 4"72 × IO-l°year-1; 2e = 0"583 × Io-X°year-1) KF-XtI, t80, I82 (biotite and muscovite): K = 7-87%, a°Ar* = I "37 × xo-4cma/g, 4°Ar*/4°K = [o'o255], age: 393m.y. Age: 393 4- 12m.y. (3% error in Haller& Kulp i962); 393 4- xom.y. (Kulp I96X ). Stratigraphical age. The granite intrudes the Vilddal Series (Middle Devonian) and is uncon- formably covered by the unfossiliferous Kap Franklin Series, which itself is followed by the Randb61 Series (Middle Devonian). The granite is one of a series of'late Caledonian' intrusive rocks of which a pegmatite elsewhere (HN-7b , not stratigraphically related), was dated as 394m.y.; (adopted age = 395 -4- xom.y.). The 'main Caledonian' orogeny, based on five scattered samples of metamorphic rocks, was given as 42o to 4oom.y. The end of the main orogeny from one sample was 4o5 4- xom.y. Refgt'~e$ BOTLER, H. I954. Die stratigraphische Gleiderung der mitteldevonischen Serien im Gebiet von Kap Franklin am Kejser Franz Joseph Fjord in Zentral-Ostgr6nland. Medd. GrBnland, xx6 (7), x-122. HALtmR, J. & KUTP, J. L. x962. Absolute age determinations in East Greenland. Medd. Grenland, xTx (x), x-77. KULP, J. L, x96 x. [W. B. Harland & A. G. Smith] Stratigraphical comment. The ages of the two limiting fossiliferous formations within the Givetian are indistinguishable on vertebrate evidence. The most recent statement of the faunas was by Jarvik (x96x). The pre-intrusion Vilddal Series is probably Givetian on the evidence of Gyro- ptychius cf. grgnlandicus. The post-intrusion RandbS1 Series is Lower Givefian on the evidence of Asterolepis cf. sKves6derberghi and Coccosteus el. halmodeus; whereas cf. Thursius macrolepidotus suggests a correlation with the Wick Flagstone Group of Scotland, which WestoU (195 I) regarded as high Eifelian. R~fgrgl~g$ JnaviK, E. I96I. Greenland Devonian vertebrates. In Geology of the Arctic. (ed. Raasch, G. O.) x, I97-2o 4. Toronto. WESTOTL, T. S. I95x. The vertebrate-bearing strata of Scotland. Int. geol. Congr. x8 (2), 5-2x. P. F. Friend This determination warrants further investigation, because if the structural relationships are as described and illustrated, it shows remarkably precise stratigraphical dating of a large intrusion and may throw some light on the rate of geological processes. W. B. Harland (2) Chattanooga Shale U. Devonian]U. Devonian Young's Bend area, Tennessee, U.S.A. 269 Downloaded from http://sp.lyellcollection.org/ by guest on September 29, 2021 /terns Radiometric age ~38U-2°6Pb (no constants given) on uraniferous shale. Depth Pb* Age (ft) U(ppm) Pb(ppm) 2°4Pb/2°~Pb ~°TPb/~°6Pb ~°sPb/~°6Pb (%) (m.y.) I75-12 1124-1 i924-6 u o.7684-o. I6 I'844-o'o4 13"2 45oa+7 o I76.95 9o.64-o.9 47.4+x-o o.o39o-t-o.ooo 5 o.6224-o.oo5 1.514-o-o2 28- 7 35oa+15 I8O'OO 68"34-o- 7 31.84-o.5 o'o375-t-o'ooo5 o'6o74-o'oo6 1"464-O'Ol 3 I"4 35°a4- I2 Age: 35oa4- Iom.y. (Cobb & Kulp I96o ). Stratigraphical age. The samples came from core Yn-9 from the upper black unit of the Gassaway member of the Chattanooga shale. Because the core was taken from only a few feet below the Devonian-Mississippian boundary, Cobb & Kulp (196o) assume that the adopted figure provides a firm minimum age for the Devonian-Mississippian boundary. Clark (I96 t) has challenged this conclusion, and by comparing the conodont content of the black shale unit with that of the standard conodont zonation of Europe, he suggests that the age of the unit ranges from upper- lower Upper Devonian to lower-middle Upper Devonian. The biostratigraphic age could be more precisely defined if the stratigraphical position of the core within the black shale unit were more accurately known. References BATES, T. F. & Sa'~HL, E. O. 1957. Mineralogy, petrography and radioactivity of representative samples of Chattanooga shale. Bull. geol. Soc. Amer. 68, i3o5-14. CHOW, T. J. & McKINNEY, C. R. 1958. Mass spectrometric determination of lead in manganese nodules. Analyt. Chem. 3 o, 1499-5o 3. Ct~RK, D. L. 196I. U-Pb age determinations and Upper Devonian stratigraphy. Bull. geol. Soc. Amer. 72, 163-6. -- & BEcmm, J. H. 196o. Upper Devonian correlations in western Utah and eastern Nevada. Bull. geol. Soc. Amer. 7 x, I67I-4 . COBB, J. C. & KULP, J. L. 196o. U-Pb age of the Chattanooga shale. Bull. geol. Soc. Amer. 7 x, 223-4. H.~ss, W. H. 1956. Age and correlation of the Chattanooga shale and the Maury formation. Prof. Pap. U.S. geol. Surv. 2116. Kvr.P, J. L. I96 I. [A. G. Smith] Radiometric comment. From a detailed mineralogical and petrographical study of the Chattanooga shale, Bates & Strahl (I 957) concluded that the uranium is authigenic and was precipitated from sea-water. According to Cobb & Kulp (196o) this effectively separates the uranium from any radiogenic lead previously associated with it. Any common lead could be detrital or precipitated. The greater part of any detrital lead would have been carried by feldspar. There is about 9% (Bates & Strahl 1957) in the shale, much of which is considered authigenic. Cobb & Kulp there- fore conclude that most of the common lead was precipitated from sea-water, and they estimate its isotopic composition from that inferred for oceanic lead in late Devonian time: 2°ePb/~°4Pb = I8"3; ~°TPb/2°4Pb = I5"7; ~°sPb/2°4Pb = 38"6. This composition is obtained by extrapolating backwards in time the isotopic composition of modern oceanic lead (Chow & McKinney 1958), assuming that the average U/Pb ratio in crustal rocks has not changed significantly since the late Devonian. The large uncertainties inherent in this procedure effectively eliminate con- sideration of 2asU-2°TPb ages. The two most probable types of alteration in the black shale--bulk lead loss and/or preferential loss of 2°6Pb--are believed to be negligible, and the ~3sU-2°6Pb ages are considered reliable minimum ages of the analysed samples. [A. G. Smith] 270 Downloaded from http://sp.lyellcollection.org/ by guest on September 29, 2021 /tems Stratigraphical comment. Clark & Becker (x96o) interpret the conodont assemblage as indicating their Zone C, which is correlated with the Upper Cheiloceras or Lower Platydymenia Stufe of Europe. These are the lowest two of four Stufe comprising the Famennien. P. F. Friend (3) Bentonltes ha Grnad Gr~ve Formation Devonian]Devonian Shiphead, Cape Gasp6, Quebec, Canada [480 46' N, 64 ° x4' W]. Radiometric age K-Ar (2p = 4"76 × Io-l°year-X; ire = o'589 × Io-l°year-1; *°K]K = o.oII8 at.%) '°K (ppm) '°Ar*#°K Age (m.y.) Biotite AK-I I3 (+325 mesh) 4"oI o.o245 3764-~6 AK-I38 (--325 mesh) 3"9o o'o253 388+27 Sanidine AK-136 (--270 to +325 mesh) 6.98 o'o251 3844-19 AK-I37 (--325 mesh) 5"43 o'o253 3874- I9 AK-X20 (--I20 to +270 mesh) 9" I8 0"0258 3944-20 Mean age: 3854-x5 [4-3]m.y. Stratigraphical age. The samples came from unmetamorphosed bentonites in the lowermost xoo ft of the Shiphead (total thickness 28oft), lowest member of the Grand Gr~ve Formation (9ooft thick). The last-named has been assigned to the Lower Coblenzian Substage of the Devonian System (=Oriskany Substage). Rgferel~e$ CUMMXNO, L. M. I959. Silurian and Lower Devonian formations in the eastern part of Gasp6 Peninsula, Quebec. Mem. geol. Surv. Can. 3o4 . SMITH, D. W. G., B.~DSO~RO, H., FOLINSBE~, R. E. & LIVSON, J. i96I. K/Ar age of Lower Devonian bentonites of Gasp6, Quebec, Canada. Bull. geol. Soc. Amer. 72, I7I-4. [A. G. Smith] Radiometric comment. Quartz-feldspar aggregates and mixed-layer clays were also dated, and gave 34---m.y. and 325 m.y. respectively. The authors have not included these in the mean age. A. G. Smith (4) Hecla Hoek mlca-schlsts Devonian/Ordovician Raudfjorden, Spitsbergen [79 ° 47' N, I2 ° E]. Radiometric age (I) K-Ar (2p = 4.72 × IO-l°year-1; ;te = 0-584 × Io-10year -1) K20 (%) 4°At (mm3/g) atm. 4°At (?) 4°Ar*/4°K Age (m.y.) Biotite n-829 6.07 o. 0899 3" 6 [o. 0252] 389± I4 ~--275 5 "65 o "0935 I4"8 [0"0249] 3844 - I3 ~-686 9"42 o. I576 5"6 [o'o278] 4254- 22 Mean age: 399 [+ 13] m.y. 271 Downloaded from http://sp.lyellcollection.org/ by guest on September 29, 2021 /tems (2) Rb-Sr (2 = x.47 × IO-11Year-x) Age (m.y.) Rb (ppm) Sr (ppm) STSr*(ppm) 8~Sr*/S~Rb 2 = z "39 2 = z "47 Biotite H-828 515 25" 8 o. 82 [o" oo562] [404] 382 4- 8 E-276B 54 x 7" z 0"86 [0"00561] [403] 379-4-6 ~-276B 542 7" 3 o" 86 [o" oo56o ] [4o2] 38o 4- 6 E-276B 54 x 8"8 O'85 [O'OO555] [398] 3754-6 Mean age: [4o2+x]m.y. (2 = x-39); [379 4- x]m.y. (2 = z'47 ). Adopted age using both methods: 383 4- xo m.y. (Hamilton, Harland & Miller I962). Stratigraphical age. The samples analysed came from schists correlated with the lower Hecla Hock rocks, unconformably overlain by unmetamorphosed Red Bay Conglomerates; 3oom above the unconformity there is a fish fauna.
Recommended publications
  • Abstract Book Progeo 2Ed 20
    Abstract Book BUILDING CONNECTIONS FOR GLOBAL GEOCONSERVATION Editors: G. Lozano, J. Luengo, A. Cabrera Internationaland J. Vegas 10th International ProGEO online Symposium ABSTRACT BOOK BUILDING CONNECTIONS FOR GLOBAL GEOCONSERVATION Editors Gonzalo Lozano, Javier Luengo, Ana Cabrera and Juana Vegas Instituto Geológico y Minero de España 2021 Building connections for global geoconservation. X International ProGEO Symposium Ministerio de Ciencia e Innovación Instituto Geológico y Minero de España 2021 Lengua/s: Inglés NIPO: 836-21-003-8 ISBN: 978-84-9138-112-9 Gratuita / Unitaria / En línea / pdf © INSTITUTO GEOLÓGICO Y MINERO DE ESPAÑA Ríos Rosas, 23. 28003 MADRID (SPAIN) ISBN: 978-84-9138-112-9 10th International ProGEO Online Symposium. June, 2021. Abstracts Book. Editors: Gonzalo Lozano, Javier Luengo, Ana Cabrera and Juana Vegas Symposium Logo design: María José Torres Cover Photo: Granitic Tor. Geosite: Ortigosa del Monte’s nubbin (Segovia, Spain). Author: Gonzalo Lozano. Cover Design: Javier Luengo and Gonzalo Lozano Layout and typesetting: Ana Cabrera 10th International ProGEO Online Symposium 2021 Organizing Committee, Instituto Geológico y Minero de España: Juana Vegas Andrés Díez-Herrero Enrique Díaz-Martínez Gonzalo Lozano Ana Cabrera Javier Luengo Luis Carcavilla Ángel Salazar Rincón Scientific Committee: Daniel Ballesteros Inés Galindo Silvia Menéndez Eduardo Barrón Ewa Glowniak Fernando Miranda José Brilha Marcela Gómez Manu Monge Ganuzas Margaret Brocx Maria Helena Henriques Kevin Page Viola Bruschi Asier Hilario Paulo Pereira Carles Canet Gergely Horváth Isabel Rábano Thais Canesin Tapio Kananoja Joao Rocha Tom Casadevall Jerónimo López-Martínez Ana Rodrigo Graciela Delvene Ljerka Marjanac Jonas Satkünas Lars Erikstad Álvaro Márquez Martina Stupar Esperanza Fernández Esther Martín-González Marina Vdovets PRESENTATION The first international meeting on geoconservation was held in The Netherlands in 1988, with the presence of seven European countries.
    [Show full text]
  • Oligocene - Early Miocene Ruminants from the Valley of Lakes (Central Mongolia) 213-235 ©Naturhistorisches Museum Wien, Download Unter
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Annalen des Naturhistorischen Museums in Wien Jahr/Year: 2002 Band/Volume: 103A Autor(en)/Author(s): Vislobokova Inesa, Daxner-Höck [Daxner] Gudrun Artikel/Article: Oligocene - Early Miocene Ruminants from the Valley of Lakes (Central Mongolia) 213-235 ©Naturhistorisches Museum Wien, download unter www.biologiezentrum.at Ann. Naturhist. Mus. Wien 103 A 213–235 Wien, März 2002 Oligocene - Early Miocene Ruminants from the Valley of Lakes (Central Mongolia) 1 2 by Inesa VISLOBOKOVA & Gudrun DAXNER-HÖCK (With 9 text-figures, 1 table and 1 plate) Manuscript submitted on July 30th 2001, the revised manuscript on November 20th 2001 Abstract Fossil ruminants from Oligocene and Lower Miocene deposits in Mongolia are referred to six families and 17 genera. New data support the stratigraphic model based on rodent biozonation and 40Ar/39Ar-dating of basalts. The occurrence of the gelocids Paragelocus and Pseudogelocus and diverse bovids are first recor- ded from the Late Oligocene of Asia. Pseudogelocus mongolicus n. sp. is described. Zusammenfassung Aus dem Oligozän und Unter-Miozän der Mongolei wurden Ruminantia beschrieben, die 6 Familien und insgesamt 17 Gattungen angehören. Sie unterstützen das Stratigraphie-Konzept das auf der Biozonierung nach Nagetieren und auf der 40Ar/39Ar-Datierung von Basalten beruht. Es gelang der erste Nachweis der Gelocidae Paragelocus und Pseudogelocus und einer Vielfalt von Boviden des Ober-Oligozäns in Asien. Pseudogelocus mongolicus n. sp. wird neu beschrieben. Introduction The present paper describes ruminant remains collected in the Valley of Lakes in Central Mongolia during the 1995-1997 field seasons.
    [Show full text]
  • 03 Lukeneder ACTA LAYAUT
    Acta Geologica Polonica, Vol. 63 (2013), No. 1, pp. 89–104 DOI: 10.2478/agp-2013-0003 Palaeoenvironmental evolution of the Southern Alps across the Faraoni Level equivalent: new data from the Trento Plateau (Upper Hauterivian, Dolomites, N. Italy) ALEXANDER LUKENEDER1 AND PATRICK GRUNERT 2 1 Natural History Museum, Geological-Paleontological Department, Burgring 7, A-1010 Vienna, Austria. E-mail: [email protected] 2 University of Graz, Institute for Earth Sciences, Heinrichstraße 26, A-8010 Graz, Austria. E-mail: [email protected] ABSTRACT: Lukeneder, A. and Grunert, P. 2013. Palaeoenvironmental evolution of the Southern Alps across the Faraoni Level equivalent: new data from the Trento Plateau (Upper Hauterivian, Dolomites, N. Italy). Acta Geologica Polonica, 63 (1), 89–104. Warszawa. New stratigraphic and palaeoenvironmental data are presented for the northeastern part of the Trento Plateau (Puez area, Southern Alps, Italy). The studied section corresponds to the upper Hauterivian Balearites balearis and “Pseudothurmannia ohmi” ammonite zones and normal palaeomagnetic chron upper M5. A c. 30-cm-thick bed is identified as the equivalent of the Faraoni Level, based on its position within the Pseudothurmannia mortilleti Sub- 13 zone, the composition of its ammonite fauna and the peak of a minor positive trend in the δ Cbulk record. Microfa- cies and geochemical proxies compare well with those of the southeastern part of the Trento Plateau and indicate palaeoceanographic continuity along the eastern margin of the plateau. The abundances of radiolarians and nanno- conids suggest a turnover in the trophic structure from eutrophic conditions around the Faraoni Level equivalent to oligotrophic conditions.
    [Show full text]
  • Mammal Footprints from the Miocene-Pliocene Ogallala
    Mammalfootprints from the Miocene-Pliocene Ogallala Formation, easternNew Mexico by ThomasE. Williamsonand SpencerG. Lucas, New Mexico Museum of Natural History and Science,1801 Mountain Road NW Albuquerque, New Mexico 87104-7375 Abstract well-develooed mudcracks. The track- ways are diveloped on the mudstone Mammal trackways preserved in the drape but are preserved as infillings at the Miocene-Pliocene Ogallala Formation of base of the overlying conglomerate (Figs. eastern New Mexico represent the first 2-4). Most tracks are preserved on the report of mammal fossils-from this unit in underside of a single, thick conglomerate New Mexico. These trackwavs are Dre- block (Fig. 3). A few isolated mammal served as infillings in a conglomerate near the base of the Ogallala Formation. At least prints were also observed on the under- four mammalian ichnotaxa are represented, side of adjacent blocks.he depth of the including a single trackway of a large camel infillings suggest that tracks were made in (Gambapessp. A), several prints of an uncer- a relatively soft substrate. Some prints are tain family of artiodactyl (Gambapessp B), a accompanied by marks indicating slip- single trackway of a large feloid carnivoran page on a slick, wet substrate (Fig. 5C). (Bestiopeda sp.), and several indistinct im- Infillings of mudcracks and narrow, cylin- pressions, probably representing more than drical burrows and raindrop impressions one trackway of a small canid carnivoran are Dreserved over some areas of the (Chelipus sp ). The footprints are preserved in a channel-margin facies of an Ogallala tracliway slab. Mammal trackways repre- braided stream. sent at least four ichnotaxa.
    [Show full text]
  • Materialsbookjurassiccretaceou
    УДК: 551.762.3/763.12 ББК 26.323 The International Scientific Conference on the Jurassic/Cretaceous boundary. September 7-13, 2015, Samara (Russia). – Togliatti: Kassandra, 2015. – 102 p. The present volume compiles short papers with new data on the Jurassic-Cretaceous boundary strata and their fauna of different regions of Russia (Volga region, Siberia, Crimea, Primorye) and of North America. Most papers are devoted to problems of biostratigraphy and paleontology of marine animals and their trace fossils. Besides this, some data on magnetostratigraphy, interregional correlations, history of defining J/K boundary in the Decisions of ISC, and eoomic value of the interval. For geologists, paleontologists, stratigraphers, students of geological and geographical profiles. Responsible editors: E.Yu. Baraboshkin, D.E. Bykov Editorial board: M.A. Rogov, A.Yu. Guzhikov, V.V. Arkadiev, V.V. Gusev, A.A. Konovalova Technical editor: A.P. Ippolitov Layouts: A.P. Ippolitov English translation of papers by V.V. Efimov, I.A. Meleshin, E.L.Vasileva, A.P.Pronin and F.M. Kuanyshev: A.P. Ippolitov Международная научная конференция по проблеме границы юрской и мело- вой систем. 7-13 сентября 2015 г., г.Самара (Россия): Материалы совещания. – Тольятти: Издательство «Кассандра», 2015. – 102 с. В сборнике опубликованы новые данные о пограничных отложениях юры и мела различных регионов России (Поволжье, Сибирь, Крым, Приморье) и Северной Америки. Большинство работ посвящено био- стратиграфии и палеонтологии морских животных и следов их жизнедеятельности. Кроме того, приво- дятся сведения о магнитостратиграфии, межрегиональной корреляции, истории проведения границы юры и мела в постановлениях МСК, и экономической важности этого интервала. Сборник представляет интерес для геологов, палеонтологов, стратиграфов, студентов геологиче- ского и географического факультетов.
    [Show full text]
  • Stratigraphic Implications of a New Lower Cretaceous Ammonoid Fauna from the Puez Area (Valanginian – Aptian, Dolomites, Southern Alps, Italy)
    Geo.Alp, Vol. 3, S. 55–83, 2006 STRATIGRAPHIC IMPLICATIONS OF A NEW LOWER CRETACEOUS AMMONOID FAUNA FROM THE PUEZ AREA (VALANGINIAN – APTIAN, DOLOMITES, SOUTHERN ALPS, ITALY) Alexander Lukeneder1 & Christian Aspmair2 With 6 figures and 8 plates 1 Natural History Museum, Geological-Palaeontological Department, Burgring 7, A-1010 Wien, Austria, e-mail: [email protected] 2 Prissian 102, I – 39010 Tisens (BZ), Italy Abstract Lower Cretaceous ammonoids (n = 424) were collected at the Puez locality in the Dolomites of Southern Tyrol. The cephalopod fauna from the marly limestones to marls here indicates Late Valanginian to Early Aptian age. The deposition of the marly limestones and marls of this interval occurred during depositional- ly unstable conditions. The underlying Biancone Formation (Maiolica Formation) is of Early Valanginian, whereas the lowermost Rosso Ammonitico is of Jurassic to Berriasian age. The ammonoid fauna consists of 27 different genera, each represented by 1-2 species. The assemblage at the Puez section is dominated by the Phylloceratina (30%) and the Ammonitina (34%). Phyllopachyceras (17%) and Phylloceras (13%) (both Phylloceratina) are the most frequent components, followed by Lytoceras (12%) (Lytoceratina), and Barremites (10%) and Melchiorites (8%) (both Ammonitina). The cephalopod fauna is purely of Mediterranean origin. Zusammenfassung Unterkreide Ammonoideen (424 Exemplare) der Puez Lokalität in den Dolomiten Süd-Tirols wurden unter- sucht. Die Fauna der mergeligen Kalke und Mergel von Puez zeigen ein Alter von Ober-Valanginium bis Unter-Aptium an. Die mergeligen Kalke und Mergel dieses Abschnitts lagerten sich unter instabiler Bedingungen ab. Die unterlagernde Biancone Formation (Maiolica Formation) zeigt Unter-Valanginium an, wogegen die tiefste Formation des Rosso Ammonitico auf Ober-Jura bis Berriasium hindeutet.
    [Show full text]
  • First Nimravid Skull from Asia Alexander Averianov1,2, Ekaterina Obraztsova3, Igor Danilov1,2, Pavel Skutschas3 & Jianhua Jin1
    www.nature.com/scientificreports OPEN First nimravid skull from Asia Alexander Averianov1,2, Ekaterina Obraztsova3, Igor Danilov1,2, Pavel Skutschas3 & Jianhua Jin1 Maofelis cantonensis gen. and sp. nov. is described based on a complete cranium from the middle- upper Eocene Youganwo Formation of Maoming Basin, Guangdong Province, China. The new taxon Received: 08 September 2015 has characters diagnostic for Nimravidae such as a short cat-like skull, short palate, ventral surface of petrosal dorsal to that of basioccipital, serrations on the distal carina of canine, reduced anterior Accepted: 21 April 2016 premolars, and absence of posterior molars (M2-3). It is plesiomorphic nimravid taxon similar to Published: 10 May 2016 Nimravidae indet. from Quercy (France) in having the glenoid pedicle and mastoid process without ventral projections, a planar basicranium in which the lateral rim is not ventrally buttressed, and P1 present. The upper canine is less flattened than in other Nimravidae.Maofelis cantonensis gen. and sp. nov. exemplifies the earliest stage of development of sabertooth specialization characteristic of Nimravidae. This taxon, together with other middle-late Eocene nimravid records in South Asia, suggests origin and initial diversification of Nimravidae in Asia. We propose that this group dispersed to North America in the late Eocene and to Europe in the early Oligocene. The subsequent Oligocene diversification of Nimravidae took place in North America and Europe, while in Asia this group declined in the Oligocene, likely because of the earlier development of open habitats on that continent. Nimravids are cat-like hypercarnivores that developed saber-tooth morphology early in the Cenozoic and were top predators in the late Eocene – late Oligocene mammal communities of the Northern Hemisphere1–3.
    [Show full text]
  • Text of Draft
    Reconnaissance bedrock geologic map for the northern Alaska Peninsula area, southwest Alaska Including the Dillingham, Iliamna, Lake Clark, Taylor Mountains and the western part of the Kenai and Seldovia 1:250,000-scale quadrangles Compiled by Frederic H. Wilson, Robert B. Blodgett, Charles D. Blomé, Solmaz Mohadjer, Cindi C. Preller, Edward P. Klimasauskas, Bruce M. Gamble, and Warren L. Coonrad DISCLAIMER This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. This World-Wide-Web publication was prepared by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed in this report, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. Although all data and software published on this Web-site have been used by the USGS, no warranty, expressed or implied, is made by the USGS as to the accuracy of the data and related materials and (or) the functioning of the software. The act of distribution shall not constitute any such warranty, and no responsibility is assumed by the USGS in the use of this data, software, or related materials.
    [Show full text]
  • 71St Annual Meeting Society of Vertebrate Paleontology Paris Las Vegas Las Vegas, Nevada, USA November 2 – 5, 2011 SESSION CONCURRENT SESSION CONCURRENT
    ISSN 1937-2809 online Journal of Supplement to the November 2011 Vertebrate Paleontology Vertebrate Society of Vertebrate Paleontology Society of Vertebrate 71st Annual Meeting Paleontology Society of Vertebrate Las Vegas Paris Nevada, USA Las Vegas, November 2 – 5, 2011 Program and Abstracts Society of Vertebrate Paleontology 71st Annual Meeting Program and Abstracts COMMITTEE MEETING ROOM POSTER SESSION/ CONCURRENT CONCURRENT SESSION EXHIBITS SESSION COMMITTEE MEETING ROOMS AUCTION EVENT REGISTRATION, CONCURRENT MERCHANDISE SESSION LOUNGE, EDUCATION & OUTREACH SPEAKER READY COMMITTEE MEETING POSTER SESSION ROOM ROOM SOCIETY OF VERTEBRATE PALEONTOLOGY ABSTRACTS OF PAPERS SEVENTY-FIRST ANNUAL MEETING PARIS LAS VEGAS HOTEL LAS VEGAS, NV, USA NOVEMBER 2–5, 2011 HOST COMMITTEE Stephen Rowland, Co-Chair; Aubrey Bonde, Co-Chair; Joshua Bonde; David Elliott; Lee Hall; Jerry Harris; Andrew Milner; Eric Roberts EXECUTIVE COMMITTEE Philip Currie, President; Blaire Van Valkenburgh, Past President; Catherine Forster, Vice President; Christopher Bell, Secretary; Ted Vlamis, Treasurer; Julia Clarke, Member at Large; Kristina Curry Rogers, Member at Large; Lars Werdelin, Member at Large SYMPOSIUM CONVENORS Roger B.J. Benson, Richard J. Butler, Nadia B. Fröbisch, Hans C.E. Larsson, Mark A. Loewen, Philip D. Mannion, Jim I. Mead, Eric M. Roberts, Scott D. Sampson, Eric D. Scott, Kathleen Springer PROGRAM COMMITTEE Jonathan Bloch, Co-Chair; Anjali Goswami, Co-Chair; Jason Anderson; Paul Barrett; Brian Beatty; Kerin Claeson; Kristina Curry Rogers; Ted Daeschler; David Evans; David Fox; Nadia B. Fröbisch; Christian Kammerer; Johannes Müller; Emily Rayfield; William Sanders; Bruce Shockey; Mary Silcox; Michelle Stocker; Rebecca Terry November 2011—PROGRAM AND ABSTRACTS 1 Members and Friends of the Society of Vertebrate Paleontology, The Host Committee cordially welcomes you to the 71st Annual Meeting of the Society of Vertebrate Paleontology in Las Vegas.
    [Show full text]
  • Phytoliths of the Barstow Formation Through the Middle Miocene Climatic Optimum: Preliminary Findings Katharine M
    Phytoliths of the Barstow Formation through the Middle Miocene Climatic Optimum: preliminary findings Katharine M. Loughney 1,2 and Selena Y. Smith 1, 1 Museum of Paleontology, University of Michigan, 1109 Geddes Ave., Ann Arbor, MI 48109 2 Department of Earth & Environmental Sciences, University of Michigan, 1100 North University Ave., Ann Arbor, MI 48109 abstract—The Middle Miocene Climatic Optimum (MMCO) was an interval of signif- icant warming between 17.0 – 14.0 Ma, and a record of the interval is preserved in its entirety in the type Barstow Formation (19.3 – 13.3 Ma) of southern California. In order to understand the biotic impacts of the MMCO, it is necessary to understand vegetation; however, macrofloral records from the middle Miocene in this region are rare and do not span the MMCO. Phytoliths (plant silica) can be preserved in continental sediments even when macrofossil or pollen remains are not, and they can be diagnostic of specific plant clades and/or functional groups, some of which are useful environmental indica- tors. Sixty-eight sediment samples were collected from 12 stratigraphic sections measured within the Barstow Formation in the Mud Hills, Calico Mountains, and Daggett Ridge, and 39 samples were processed for phytoliths. Ten samples yielded phytoliths, although phytoliths were rare in most of these samples. Paleosols from the uppermost part of the Barstow Formation yielded the most abundant and most diverse phytolith assemblages, including grass bilobates and echinate spheres of palms; grass phytoliths were also identi- fied in samples from the Owl Conglomerate and Middle members but were rare. These phytolith data provide evidence that grasses were present throughout deposition of the Barstow Formation, and that they coexisted with palms in mixed-vegetation habitats.
    [Show full text]
  • Schmitz, M. D. 2000. Appendix 2: Radioisotopic Ages Used In
    Appendix 2 Radioisotopic ages used in GTS2020 M.D. SCHMITZ 1285 1286 Appendix 2 GTS GTS Sample Locality Lat-Long Lithostratigraphy Age 6 2s 6 2s Age Type 2020 2012 (Ma) analytical total ID ID Period Epoch Age Quaternary À not compiled Neogene À not compiled Pliocene Miocene Paleogene Oligocene Chattian Pg36 biotite-rich layer; PAC- Pieve d’Accinelli section, 43 35040.41vN, Scaglia Cinerea Fm, 42.3 m above base of 26.57 0.02 0.04 206Pb/238U B2 northeastern Apennines, Italy 12 29034.16vE section Rupelian Pg35 Pg20 biotite-rich layer; MCA- Monte Cagnero section (Chattian 43 38047.81vN, Scaglia Cinerea Fm, 145.8 m above base 31.41 0.03 0.04 206Pb/238U 145.8, equivalent to GSSP), northeastern Apennines, Italy 12 28003.83vE of section MCA/84-3 Pg34 biotite-rich layer; MCA- Monte Cagnero section (Chattian 43 38047.81vN, Scaglia Cinerea Fm, 142.8 m above base 31.72 0.02 0.04 206Pb/238U 142.8 GSSP), northeastern Apennines, Italy 12 28003.83vE of section Eocene Priabonian Pg33 Pg19 biotite-rich layer; MASS- Massignano (Oligocene GSSP), near 43.5328 N, Scaglia Cinerea Fm, 14.7 m above base of 34.50 0.04 0.05 206Pb/238U 14.7, equivalent to Ancona, northeastern Apennines, 13.6011 E section MAS/86-14.7 Italy Pg32 biotite-rich layer; MASS- Massignano (Oligocene GSSP), near 43.5328 N, Scaglia Cinerea Fm, 12.9 m above base of 34.68 0.04 0.06 206Pb/238U 12.9 Ancona, northeastern Apennines, 13.6011 E section Italy Pg31 Pg18 biotite-rich layer; MASS- Massignano (Oligocene GSSP), near 43.5328 N, Scaglia Cinerea Fm, 12.7 m above base of 34.72 0.02 0.04 206Pb/238U
    [Show full text]
  • Lines in Paradoxides Forchhammeri - Evidence of Lateral Inhibition
    Spatial organization of tubercles and terrace lines in Paradoxides forchhammeri - evidence of lateral inhibition 0YVIND HAMMER Hammer, 0. 2000. Spatial organization of tubercles and terrace lines in Paradoxides forchhammeri - evidence of lateral inhibition. -Acta Palaeontologica Polonica 45,3, 251-270. Spatial statistics on the positions of trilobite tubercles indicate the existence of a develop- mental spacing mechanism. Similar spacing between sensory bristles, due to lateral inhi- bition, is well known in insects, and the genetic basis for these patterns has been thor- oughly studied. Tubercles (granules) in the Middle Cambrian trilobite Paradoxides forchhammeri are spaced out, but otherwise randomly positioned. Assuming that similar genetic principles are in operation for the positioning of peripheral neuronal elements in all arthropods, it can even be speculated that genes with functions similar to Delta, Notch, achaete and scute were active in trilobite cuticular patterning. Also, in f? forchhammeri, terrace lines (ridges) seem to display transitions into granulation, indicating that these two types of structure share an underlying pattern formation mechanism. Key words : Trilobites, tubercles, terrace lines, pattern formation, evolution, Notch. 0yvind Hammer [[email protected]],Paleontological Museum, University of Oslo, Sars gt. 1, 0562 Oslo, Norway. Introduction Trilobite tubercles (Starrmer 1980; Wilmot 1991; Whittington 1997) are cuticular structures that may have formed in connection with sensory devices such as setae or other mechano- or chemoreceptors. As such, they may be compared with sensilla in the cuticles of other arthropods (Starrmer 1980). In particular, the molecular basis for the development of spaced bristles in Drosophila has been the subject of extensive re- search (reviewed in Simpson et al.
    [Show full text]