86 Richard A. Muller Richard A. Muller In

Total Page:16

File Type:pdf, Size:1020Kb

86 Richard A. Muller Richard A. Muller In 86 Time’s Books Richard A. Muller NOW: The Physics of Time. New York and London: Norton, 2016. 364pp. Richard A. Muller in NOW: The Physics of Time brings to the conversation about time the relatively new and most welcome perspective of an eminent experimental cosmologist. His book may well be, as he claims, “the only cur- rent book written specifically about time by a physicist deeply involved in experimental work” (8), for Muller, as Lee Smolin testifies “has initiated some of the most important experiments of our time” including at least one for which a former student of his, Saul Perlmutter, won a Nobel Prize. His book draws on years in the laboratory, and it is a lucid, highly original discussion of time replete with experiments to determine the existence and nature of time. During most of human history, time has proven a puzzle best left to philoso- phers and theologians. The most famous of these, St. Augustine, devoted a full chapter of his Confessions to a masterly line of reasoning about time which, despite some sniping over the centuries remains quite possibly the thorough discussion of the subject using logic, scripture, and reason. In contrast Muller’s gold standard for judging the truthfulness of assertions about time, as well as the relevance of evidence, is the scientist’s standard that, for any assertion or discovery to be true, it must be able to be falsified. If something is not falsifi- able then, he contends, while it may well prove valuable in other areas of life, it cannot be labeled as “true” or as a “fact.” The issue of falsifiability or lack of falsifiability underlies his painstaking refutation of Sir Arthur Eddington’s 1928 entropy arrow of time (160-76), which J. T. Fraser previously had rightly also doubted sufficient to prove a direction in time. Muller similarly criticizes Stephen Hawking’s 1988 discussion of an anthropic arrow of time (183-84). Muller charges Hawking with merely asserting that the anthropic arrow must be true or “we wouldn’t be discussing the issue. QED.” Such rationalizing he dismisses as “useless” (183). While he sees both Eddington’s and Hawking’s arguments as fatally flawed, his nemesis remains entropy, for in the 90 years since Eddington famously formulated his arrow of time as the arrow of entropy, no experiments have been completed, devised, or, even, proposed that might demonstrate its truth. Since correlation, he cautions, is not causation (172)—a good slogan for all experimentalists as well as a clear warning for all time- smiths—Eddington’s arrow of entropy does not account for the arrow of time. Taking a quite different tack, Muller builds his own theory upon Einstein’s “advances … in our understanding of time,” which he argues were “monumen- tal,” and on Richard Feynman’s addition of “backward time travel” (291). After their ground-breaking work, however, Muller believes, “progress in understand- ing time has been virtually nil” (291). He then proposes a new theory based © koninklijke brill nv, leiden, 2018 | doi 10.1163/15685241-12341406 Time’s Books 87 upon Einstein, Feynman, and recent discoveries and observations (rather than any of those various arrows), which he calls “the Cosmological Origin of Time” (296) or the “Now Theory of Time Creation” (302). Crucial for Muller’s theory of whichever title is the ongoing action of the Big Bang. Ever since initiating the 4D explosion of timespace, the Big Bang has been continuously expand- ing, and, as we’ve recently discovered, has also been continually accelerating. “Just as space is being generated by the Hubble expansion, so time is being created,” Muller argues (293). “The continuous and ongoing creation of new time sets both the arrow of time and its pace. Every moment the universe gets a little bigger and there is a little more time, and it is this leading edge of time that we refer to as now” (293 cf. 304). (This theory neatly sidesteps the problem presented by the absence of now in the physics of the non-living world since in Muller’s theory the new creation of time or new now creates the flow of time from past to present in the totality of the universe.) The implications for physics are considerable since in Muller’s theory “now is not movable. Now is the leading edge of the 4D Big Bang. Now is the moment that has just been created. The time axis for a true space-time diagram does not extend to infinity. Time stops at now” (293). The problem with past theo- ries, according to Muller, was their interpreting this “computational tool [the space-time diagram] as a deep truth” (304). His own painstakingly argued the- ory offers a radically different view of time from that of a large segment of con- temporary physics whose proponents maintain that time does not flow. His argument should also provoke intriguing responses from at least some of those many theoretical physicists who believe “that time fundamentally does not even exist.” (See Craig Callender, “Is Time an Illusion?” in Scientific American, June 2010: 41-47, note p. 41; compare Julian Barbour, The End of Time [London: Phoenix, 2000].) Muller also differs from many (most?) of his colleagues who posit a continuous present without a past or future; thus any notion of the past or future remains for them simply an illusion. Instead, he sees Now as continu- ally advancing as “the leading edge of time” (293). Time does flow according to his theory; there is both past and future; and the present continually arrives as space and time expand. As a result, only the past is determined, not the present in which humans have free will. Most importantly, this theory is pos- sibly falsifiable since time is linked to space, and since space is expanding at an accelerating rate “it is natural to expect that the rate of time is also accel- erating” and that clocks will “exhibit a cosmological time acceleration” that in principle could be “detected and measured …” (296). Because “[a] theory is of no use to science unless it is capable of being dis- proved,” as Julian Barbour cogently observed (358), Muller, unlike Eddington, suggests several experiments to do the necessary detection and measurement KronoScope 18 (2018) 81-98.
Recommended publications
  • Chairman of the Opening Session
    The Universe had (probably) an origin: on singularity theorems & quantum fluctuations Emilio Elizalde ICE/CSIC & IEEC Campus UAB, Barcelona Cosmology and the Quantum Vacuum III, Benasque, Sep 4-10, 2016 Some facts (a few rather surprising...) • Adam Riess, NP 2011, at Starmus (Tenerife), about Hubble: • “Hubble obtained the distances and redshifts of distant nebulae…” • “Hubble discovered that the Universe was expanding…” • No mention to Vesto Slipher, an extraordinary astronomer • Brian Schmidt, NP 2011, at Starmus (Tenerife) & Lisa Randall, Harvard U, in Barcelona, about Einstein: SHOES- • “Einstein was the first to think about the possibility of a ‘dark energy’…” Supernovae • No mention to Fritz Zwicky, another extraordinary astronomer • Fritz Zwicky discovered dark matter in the early 1930s while studying how galaxies move within the Coma Cluster • He was also the first to postulate and use nebulae as gravitational lenses (1937) • How easily* brilliant astronomers get dismissed • How easily* scientific myths arise *in few decades How did the “Big Bang” get its name ? http://www.bbc.co.uk/science/space/universe/scientists/fred_hoyle • Sir Fred Hoyle (1915–2001) English astronomer noted primarily for the theory of stellar nucleosynthesis (1946,54 groundbreaking papers) • Work on Britain's radar project with Hermann Bondi and Thomas Gold • William Fowler NP’83: “The concept of nucleosynthesis in stars was first established by Hoyle in 1946” • He found the idea universe had a beginning to be pseudoscience, also arguments for a creator, “…for it's an irrational process, and can't be described in scientific terms”; “…belief in the first page of Genesis” • Hoyle-Gold-Bondi 1948 steady state theory, “creation or C-field” • BBC radio's Third Programme broadcast on 28 Mar 1949: “… for this to happen you would need such a Big Bang!” Thus: Big Bang = Impossible blow!! But now: Big Bang ≈ Inflation ! • Same underlying physics as in steady state theory, “creation or C-field” • Richard C.
    [Show full text]
  • What Is the Universe Made Of? How Old Is the Universe?
    What is the Universe made of? How old is it? Charles H. Lineweaver University of New South Wales ABSTRACT For the past 15 years most astronomers have assumed that 95% of the Universe was in some mysterious form of cold dark matter. They also assumed that the cosmo- logical constant, ΩΛ, was Einstein’s biggest blunder and could be ignored. However, recent measurements of the cosmic microwave background combined with other cos- mological observations strongly suggest that 75% of the Universe is made of cosmo- logical constant (vacuum energy), while only 20% is made of non-baryonic cold dark matter. Normal baryonic matter, the stuff most physicists study, makes up about 5% of the Universe. If these results are correct, an unknown 75% of the Universe has been identified. Estimates of the age of the Universe depend upon what it is made of. Thus, our new inventory gives us a new age for the Universe: 13.4 ± 1.6 Gyr. “The history of cosmology shows us that in every age devout people believe that they have at last discovered the true nature of the Universe.” (E. Harrison in Cosmology: The Science of the Universe 1981) 1 Progress A few decades ago cosmology was laughed at for being the only science with no data. Cosmology was theory-rich but data-poor. It attracted armchair enthusiasts spouting speculations without data to test them. It was the only science where the errors could be kept in the exponents – where you could set the speed of light c =1, not for dimensionless convenience, but because the observations were so poor that it didn’t matter.
    [Show full text]
  • Tinkering with Time the NEW TIME TRAVELERS: a JOURNEY to the on Our FRONTIERS of PHYSICS by DAVID TOOMEY Bookshelf W
    BOOKS & ARTS Tinkering with time THE NEW TIME TRAVELERS: A JOURNEY TO THE On our FRONTIERS OF PHYSICS BY DAVID TOOMEY bookshelf W. W. Norton & Co.: 2007. 320 pp. $25.95 Years ago, David Toomey picked up H. G. Wells’ moving clocks tick slowly, making time travel The Time Machine and couldn’t put it down. to the future possible. We now know a number The Mathematics of He was most interested in the drawing-room of solutions to Einstein’s equations of general Egypt, Mesopotamia, discussion between the time traveller and his relativity (1915) that are sufficiently twisted to China, India, and Islam: friends in which time as a fourth dimension was allow time travel to the past: Kurt Gödel’s 1949 A Sourcebook discussed, but wanted to know more about just rotating universe; the Morris–Thorne–Yurtsever edited by Victor J. Katz how that time machine might work. Toomey was wormhole (1988); the Tipler–van Stockum infinite therefore delighted to learn that that drawing- rotating cylinder, moving cosmic strings (myself), Princeton Univ. Press: room conversation continues today — this time the rotating black-hole interior (Brandon Carter), 2007. 685 pp. $75 among physicists. a Roman ring of wormholes (Matt Visser), the We’re aware that Toomey captures well the personalities Everett–Alcubierre warp drive, my and Li–Xin Li’s the ancient cultures of the ‘new time travelers’ — those physicists self-creating universe; Amos Ori’s torus; and were mathematically interested in whether time travel to the past is others. The book discusses all of these. advanced. Now possible — from Stephen Hawking’s sense of But can a time machine really be constructed? translations of early texts humour to Kip Thorne’s penchant for placing Hawking, like one of the time traveller’s sceptical from five key regions are scientific bets.
    [Show full text]
  • ACCRETION INTO and EMISSION from BLACK HOLES Thesis By
    ACCRETION INTO AND EMISSION FROM BLACK HOLES Thesis by Don Nelson Page In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy California Institute of Technology Pasadena, California 1976 (Submitted May 20, 1976) -ii- ACKNOHLEDG:-IENTS For everything involved during my pursuit of a Ph. D. , I praise and thank my Lord Jesus Christ, in whom "all things were created, both in the heavens and on earth, visible and invisible, whether thrones or dominions or rulers or authorities--all things have been created through Him and for Him. And He is before all things, and in Him all things hold together" (Colossians 1: 16-17) . But He is not only the Creator and Sustainer of the universe, including the physi­ cal laws which rule and their dominion the spacetime manifold and its matter fields ; He is also my personal Savior, who was "wounded for our transgressions , ... bruised for our iniquities, .. and the Lord has lald on Him the iniquity of us all" (Isaiah 53:5-6). As the Apostle Paul expressed it shortly after Isaiah ' s prophecy had come true at least five hundred years after being written, "God demonstrates His own love tmvard us , in that while we were yet sinners, Christ died for us" (Romans 5 : 8) . Christ Himself said, " I have come that they may have life, and have it to the full" (John 10:10) . Indeed Christ has given me life to the full while I have been at Caltech, and I wish to acknowledge some of the main blessings He has granted: First I thank my advisors , KipS.
    [Show full text]
  • What's Inside
    Newsletter A publication of the Controlled Release Society Volume 33 • Number 1 • 2016 What’s Inside Modern Drug–Medical Device Combination Products Controlled Release of Levofloxacin from Vitamin E Loaded Silicone- Hydrogel Contact Lenses Encapsulation of Gold Nanoparticles to Visualize Intracellular Localization of Lipid and Polymer-Based Nanocarriers The One Health Initiative and Its Impact on Drug Development DDTR Update Chapter News Controlled Release Society Annual Meeting & Exposition July 17–20, 2016 Seattle, Washington, U.S.A. COLLABORATE CONNECT INNOVATE Registration Opens in March! Visit controlledreleasesociety.org for the latest details. Don’t miss out on the must-attend event in delivery science and technology! This is your opportunity to: • Learn about cutting-edge research and innovation • Meet esteemed industry experts, researchers, and young scientists • Build your network and collaborate controlledreleasesociety.org Newsletter Charles Frey Vol. 33 • No. 1 • 2016 Editor > TABLE OF CONTENTS 4 From the Editor 5 Preclinical Sciences & Animal Health The One Health Initiative and Its Impact on Drug Development Steven Giannos Editor 8 Special Feature Modern Drug-Medical Device Combination Products 10 Scientifically Speaking Controlled Release of Levofloxacin from Vitamin E Loaded Silicone-Hydrogel Contact Lenses 12 Scientifically Speaking Encapsulation of Gold Nanoparticles to Visualize Intracellular Arlene McDowell Localization of Lipid and Polymer-Based Nanocarriers Editor 15 CRS Foundation 2016 Allan Hoffman Student Travel Grant Program 16 Chapter News Drug Delivery Australia 18 Chapter News Rheology: How to Get into the Flow Bozena Michniak-Kohn 20 Chapter News Editor Micro- and Nanotechnologies to Overcome Biological Barriers: Eighth Annual CRS Italy Local Chapter Workshop 22 DDTR Update Drug Delivery and Translational Research Update 24 People in the News 25 Companies in the News Yvonne Perrie Editor Cover image: ©krugloff / Shutterstock.com Rod Walker Editor 3 > FROM THE EDITOR Editors Charles Frey Steven Giannos Roderick B.
    [Show full text]
  • Bringing the Heavens Down to Earth
    International Journal of High-Energy Physics CERN I COURIER Volume 44 Number 3 April 2004 Bringing the heavens down to Earth ACCELERATORS NUCLEAR PHYSICS Ministers endorse NuPECC looks to linear collider p6 the future p22 POWER CONVERTERS Principles : Technologies : • Linear, Switch Node primary or secondary, Current or voltage stabilized • Hani, or résonant» Buck, from % to the sub ppm level • Boost, 4-quadrant operation Limits : Control : * 1A up to 25kA • Local manual and/or computer control * 3V to 50kV • Interfaces: RS232, RS422, RS485, IEEE488/GPIB, •O.lkVAto 3MVA • CANbus, Profibus DP, Interbus S, Ethernet • Adaptation to EPICS • DAC and ADC 16 to 20 bit resolution and linearity Applications : Electromagnets and coils Superconducting magnets or short samples Resistive or capacitive loads Klystrons, lOTs, RF transmitters 60V/350OM!OkW Thyristor controlled (S£M®) I0"4, Profibus 80V/600A,50kW 5Y/30Ô* for supraconducting magnets linear technology < Sppm stability with 10 extra shims mm BROKER BIOSPIN SA • France •m %M W\. WSÊ ¥%, 34 rue de l'industrie * F-67166 Wissembourg Cedex Tél. +33 (0)3 88 73 68 00 • Fax. +33 (0)3 88 73 68 79 lOSPIN power@brukerir CONTENTS Covering current developments in high- energy physics and related fields worldwide CERN Courier is distributed to member-state governments, institutes and laboratories affiliated with CERN, and to their personnel. It is published monthly, except for January and August, in English and French editions. The views expressed are not CERN necessarily those of the CERN management.
    [Show full text]
  • Arxiv:1904.02396V3 [Astro-Ph.CO] 13 Aug 2020 Hog B Oes H Omto N Egrof Merger There and Environments
    Distinguishing Primordial Black Holes from Astrophysical Black Holes by Einstein Telescope and Cosmic Explorer Zu-Cheng Chen1,2, ∗ and Qing-Guo Huang1, 2, 3, 4, † 1CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China 2School of Physical Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China 3Center for Gravitation and cosmology, College of Physical Science and Technology, Yangzhou University, 88 South University Ave., 225009, Yangzhou, China 4Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, 36 Lushan Lu, 410081, Changsha, China We investigate how the next generation gravitational-wave (GW) detectors, such as Einstein Telescope (ET) and Cosmic Explorer (CE), can be used to distinguish primordial black holes (PBHs) from astrophysical black holes (ABHs). Since a direct detection of sub-solar mass black holes can be taken as the smoking gun for PBHs, we estimate the detectable limits of the abundance of sub-solar mass PBHs in cold dark matter by the targeted search for sub-solar mass PBH binaries and binaries containing a sub-solar mass PBH and a super-solar mass PBH, respectively. On the other hand, according to the different redshift evolutions of the merger rate for PBH binaries and ABH binaries, we forecast the detectable event rate distributions for the PBH binaries and ABH binaries by ET and CE respectively, which can serve as a method to distinguish super-solar mass PBHs from ABHs. I. INTRODUCTION exist three main channels in the literature. The first one is the dynamical formation channel, in which BHs are Ten binary black hole (BBH) mergers were detected formed through the evolution of massive stars and segre- during LIGO/Virgo O1 and O2 observing runs [1–7].
    [Show full text]
  • Particle Physics and the Early Universe
    Physics monitor Stephen Hawking with schoolchildren during the COSMO-97 international workshop on particle physics in Ambleside in the English Lake District. His public lecture 'The Theory of Everything' attracted a large audience. Particle physics and the early Universe he spectacular progress of Tcosmology in recent years means that scientists have to face a dilemma. The comfort of an in­ creased understanding of the forma­ tion of a complex Universe in the Big Bang has to be reconciled with an uncomfortable awareness that the Universe we actually see is only a small fraction of all there is. The search for this missing 'dark matter' is the major goals of contemporary physics. will change in the years to come with model dependent and often difficult Theoretical and experimental experimentalists now seriously to analyse. Comprehensive reviews aspects of dark matter searches and involved in mapping the sky up to the by A. Linde (Stanford) and L. Kofman particle cosmology were the main largest distances. (Hawaii) summarized the present focus of the COSMO-97 international Much progress is expected in status. workshop on particle physics and the sharpening fine details of Some theorists boldly try to imagine early Universe. Held from 15-19 irregularities in the cosmic microwave what happened in the very first September 1997 in Ambleside in the background radiation and in deep sky moments of the Universe's history at beautiful English Lake District, the galaxy surveys. The emerging picture the 'Planck scale' where the known meeting (organized by Lancaster of mass distribution around the laws of physics crumble. University) gathered some 110 Universe will have direct implications Stephen Hawking (with his participants from around the world.
    [Show full text]
  • Memories of a Theoretical Physicist
    Memories of a Theoretical Physicist Joseph Polchinski Kavli Institute for Theoretical Physics University of California Santa Barbara, CA 93106-4030 USA Foreword: While I was dealing with a brain injury and finding it difficult to work, two friends (Derek Westen, a friend of the KITP, and Steve Shenker, with whom I was recently collaborating), suggested that a new direction might be good. Steve in particular regarded me as a good writer and suggested that I try that. I quickly took to Steve's suggestion. Having only two bodies of knowledge, myself and physics, I decided to write an autobiography about my development as a theoretical physicist. This is not written for any particular audience, but just to give myself a goal. It will probably have too much physics for a nontechnical reader, and too little for a physicist, but perhaps there with be different things for each. Parts may be tedious. But it is somewhat unique, I think, a blow-by-blow history of where I started and where I got to. Probably the target audience is theoretical physicists, especially young ones, who may enjoy comparing my struggles with their own.1 Some dis- claimers: This is based on my own memories, jogged by the arXiv and IN- SPIRE. There will surely be errors and omissions. And note the title: this is about my memories, which will be different for other people. Also, it would not be possible for me to mention all the authors whose work might intersect mine, so this should not be treated as a reference work.
    [Show full text]
  • Inflation and Cosmological Perturbations
    MIT-CTP-3340 Inflation and cosmological perturbations∗ Alan H. Guth† Center for Theoretical Physics, Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (Dated: August 5, 2002) This talk, which was presented at Stephen Hawking’s 60th birthday conference, begins with a discussion of the early development of the theory of inflationary density perturbations. Stephen played a crucial role in this work, at every level. Much of the foundation for this work was laid by Stephen’s 1966 paper on cosmological density perturbations, and by his 1977 paper with Gary Gibbons on quantum field theory in de Sitter space. Stephen was a major participant in the new work, and he was also a co-organizer of the 1982 Nuffield Workshop, where divergent ideas about inflationary density perturbations were thrashed about until a consensus emerged. In the second part of the talk I summarize the recent observational successes of these predictions, I present a graph of the probability distribution for the time of last scattering for CMB photons, and I summarize a recent theorem by Borde, Vilenkin, and me which shows that although inflation is generically eternal to the future, an inflationary region of spacetime must be incomplete in null and timelike past directions. Contents I. The origin of inflationary fluctuations 1 II. The 1982 Nuffield workshop 4 III. Observational evidence for inflation 9 IV. Eternal inflation 13 V. A new singularity theorem 16 arXiv:astro-ph/0306275v1 13 Jun 2003 VI. The origin of the universe 20 Acknowledgments 21 References 21 I. THE ORIGIN OF INFLATIONARY FLUCTUATIONS Since the topic of inflation and density perturbations pretty much came to fruition at the Nuffield Workshop [15] almost 20 years ago, and since I was one of the attendees, I thought I would spend about half my talk reminiscing about the history of those events.
    [Show full text]
  • Stephen Hawking
    Stephen Hawking FACT FILE Name: Stephen Hawking Dates: 1942– Nationality: British Job: theoretical physicist and cosmologist Known for: research into relativity and black holes 1 Listen and read Background and the text: Stephen Hawking: A Brief History. Choose the correct alternative. A black hole Stephen Hawking Venture Level 1 . Venture into Culture, p.288 © Oxford University Press PHOTOCOPIABLE Background Einstein’s general theory of relativity showed that space and time are relative – space can become bigger or smaller, and time can go faster or slower. It also gave us a new way to understand Newton’s theory of gravity. 1 Einstein/Newton discovered gravity. In 1916, another astrophysicist, Karl Schwarzschild, showed that gravity can become strong enough to stop anything escaping, even light. 2 Einstein/Schwarzschild showed that gravity can stop light escaping. The astrophysicist John Wheeler later called examples of this ‘black holes’. Many scientists believed they were impossible because they didn’t obey the rules of Physics. Before Stephen Hawking, no one really understood how black holes could exist. 3 Hawking/Some scientists didn’t think that black holes were possible. Stephen Hawking A Brief History Stephen Hawking is the world’s most famous scientist. At school his nickname was Einstein, but he was lazy and his marks weren’t very good. He later got a scholarship to Oxford University, scoring 100% in his Physics exam. 4 Hawking was/wasn’t always diligent at school. Venture Level 1 . Venture into Culture, p.288 © Oxford University Press PHOTOCOPIABLE He said he only worked an hour a day at university, and spent more time in the rowing team.
    [Show full text]
  • La Constant Cosmològica I L'energia Fosca: Del Big Bang Al Futur De L
    Institute of Space Sciences Historia de la expansión del Universo y el concepto de Big Bang Emilio Elizalde Seminario Universidad de Zaragoza www.ice.csic.es/personal/elizalde/eli/eli.htm 21 Marzo, 2019 Name or Title or Xtra Some facts (a few rather surprising...) • Adam Riess, NP 2011, at Starmus (Tenerife), about Hubble: • “Hubble obtained the distances and redshifts of distant nebulae…” • “ Hubble discovered that the Universe was expanding …” • No mention to Vesto Slipher, Henrietta Leavitt, … • Brian Schmidt, NP 2011, at Starmus (Tenerife) & Lisa Randall, Harvard U, in Barcelona, about Einstein: SHOES- • “Einstein was the first to think about the possibility of a ‘dark energy’…” Supernovae • No mention to Fritz Zwicky, another extraordinary astronomer • Fritz Zwicky discovered dark matter in the early 1930s while studying how galaxies move within the Coma Cluster • He was also the first to postulate and use nebulae as gravitational lenses (1937) • How easily* brilliant astronomers get dismissed • How easily* scientific myths arise *in few decades Institute of Space Sciences Name or Title or Xtra Institute of Space Sciences La expansión del Universo: Uno de los descubrimientos más importantes de toda la Historia de la Humanidad Name or Title or Xtra Institute of Space Sciences Univers d’Anaximandre 610–546 BC Univers de Ptolomeu, s.II Univers de Copèrnic, Thomas Digges 1576 Diversos models d’Univers Name or Title or Xtra Institute of Space Sciences 1917 Universe : eternal Universe = Milky Way Universe: static why? Einstein field
    [Show full text]