Clinically Relevant Cytotoxic Immune Cell Signatures and Clonal Expansion of T-Cell Receptors in High-Risk MYCN-Not-Amplified Human Neuroblastoma Jun S

Total Page:16

File Type:pdf, Size:1020Kb

Clinically Relevant Cytotoxic Immune Cell Signatures and Clonal Expansion of T-Cell Receptors in High-Risk MYCN-Not-Amplified Human Neuroblastoma Jun S Published OnlineFirst May 21, 2018; DOI: 10.1158/1078-0432.CCR-18-0599 Biology of Human Tumors Clinical Cancer Research Clinically Relevant Cytotoxic Immune Cell Signatures and Clonal Expansion of T-Cell Receptors in High-Risk MYCN-Not-Amplified Human Neuroblastoma Jun S. Wei1, Igor B. Kuznetsov2, Shile Zhang1, Young K. Song1, Shahab Asgharzadeh3, Sivasish Sindiri1, Xinyu Wen1,RajeshPatidar1, Sushma Najaraj1, Ashley Walton1, Jaime M. Guidry Auvil4, Daniela S. Gerhard4,AysenYuksel5, Daniel Catchpoole5, Stephen M. Hewitt6, Paul M. Sondel7, Robert Seeger3,JohnM.Maris8,andJavedKhan1 Abstract Purpose: High-risk neuroblastoma is an aggressive disease. compared with MYCN-amplified (MYCN-A) tumors. DNA sequencing studies have revealed a paucity of action- A reported MYCN activation signature was significantly able genomic alterations and a low mutation burden, posing associated with poor outcome for high-risk patients with challenges to develop effective novel therapies. We used RNA MYCN-NA tumors; however, a subgroup of these patients þ sequencing (RNA-seq) to investigate the biology of this disease, who had elevated activated natural killer (NK) cells, CD8 T including a focus on tumor-infiltrating lymphocytes (TIL). cells, and cytolytic signatures showed improved outcome Experimental Design: We performed deep RNA-seq on and expansion of infiltrating TCR clones. Furthermore, we pretreatment diagnostic tumors from 129 high-risk and 21 observed upregulation of immune exhaustion marker genes, low- or intermediate-risk patients with neuroblastomas. We indicating an immune-suppressive microenvironment in used single-sample gene set enrichment analysis to detect gene these neuroblastomas. expression signatures of TILs in tumors and examined their Conclusions: This study provides evidence that RNA sig- association with clinical and molecular parameters, including natures of cytotoxic TIL are associated with the presence of patient outcome. The expression profiles of 190 additional activated NK/T cells and improved outcomes in high-risk pretreatment diagnostic neuroblastomas, a neuroblastoma neuroblastoma patients harboring MYCN-NA tumors. Our tissue microarray, and T-cell receptor (TCR) sequencing were findings suggest that these high-risk patients with MYCN-NA used to validate our findings. neuroblastoma may benefit from additional immunothera- Results: We found that MYCN-not-amplified (MYCN-NA) pies incorporated into the current therapeutic strategies. Clin tumors had significantly higher cytotoxic TIL signatures Cancer Res; 1–12. Ó2018 AACR. Introduction 1Oncogenomics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland. 2Cancer Neuroblastomas are pediatric solid tumors originating from Research Center and Department of Epidemiology and Biostatistics, School of neurons of the sympathetic nervous system. The disease course 3 Public Health, University at Albany, Rensselaer, New York. Division of Hema- can vary drastically, ranging from relentless progression of high- tology/Oncology, the Children's Hospital Los Angeles, Los Angeles, California. 4Office of Cancer Genomics, National Cancer Institute, Bethesda, Maryland. 5The risk tumors despite aggressive treatment to spontaneous regres- Tumour Bank, Children's Cancer Research Unit, Kids Research Institute, the sion of low-risk stage 4S tumors in infants with no cytotoxic Children's Hospital at Westmead, Westmead, New South Wales, Australia. therapy interventions (1, 2). Despite recent FDA approval of anti– 6Experimental Pathology Laboratory, Laboratory of Pathology, Center for GD2 antibody-based immunotherapy for high-risk neuroblasto- Cancer Research, National Cancer Institute, National Institutes of Health, ma patients in first remission, the cure rates remain less than 50% 7 Bethesda, Maryland. Departments of Pediatrics, Human Oncology and Genet- accompanied by significant morbidity in survivors (3). Previous ics, the University of Wisconsin, Madison, Wisconsin. 8Department of Pediatrics, University of Pennsylvania and Center for Childhood Cancer Research, the large-scale sequencing by us and others has revealed a low somatic Children's Hospital of Philadelphia, Philadelphia, Pennsylvania. mutation burden in this disease with only a few recurrently mutated genes (4–6), imposing a substantial challenge for devel- Note: Supplementary data for this article are available at Clinical Cancer Research Online (http://clincancerres.aacrjournals.org/). oping new targeted therapies for a large proportion of patients with high-risk neuroblastoma. Therefore, there remains a critical J.S. Wei, I.B. Kuznetsov, and S. Zhang contributed equally to this article. need to identify effective novel therapies for these aggressive Corresponding Author: Javed Khan, National Institutes of Health, Room 2016B enigmatic tumors. Building 37, 37 Convent Drive, Bethesda, MD 20892. Phone: 240-760-6135; Fax: Immune checkpoint inhibitor therapies have recently shown 301-480-0314; E-mail:[email protected] significant antitumor activity in several adult human cancers doi: 10.1158/1078-0432.CCR-18-0599 (7–9). Their activity is thought to be correlated with higher tumor Ó2018 American Association for Cancer Research. mutation burden presumably because of the greater probability of www.aacrjournals.org OF1 Downloaded from clincancerres.aacrjournals.org on September 26, 2021. © 2018 American Association for Cancer Research. Published OnlineFirst May 21, 2018; DOI: 10.1158/1078-0432.CCR-18-0599 Wei et al. integral part of the Therapeutically Applicable Research to Gen- Translational Relevance erate Effective Treatment (TARGET) initiative to genomically We used RNA sequencing (RNA-seq) and single-sample profile high-risk neuroblastoma (5, 17), we sequenced the mRNA gene set enrichment analysis to characterize tumor-infiltrating of 150 primary neuroblastoma tumors obtained prior to any lymphocyte (TIL) signatures in pretreatment diagnostic neu- therapy (Table 1 and Supplementary Table S1). Of these, 139 roblastomas. We showed, for the first time, that the presence of tumors have matched DNA sequencing data from whole-exome cytolytic TIL signatures in a subgroup of high-risk MYCN-not- and/or whole-genome sequencing (Supplementary Fig. S1). In amplified (MYCN-NA) neuroblastoma patients with addition, we used previously published RNA-seq data for 190 improved survival was not associated with high mutation patients with neuroblastoma (obtained prior to therapy) as an burden. Instead, they were significantly correlated with natural independent cohort to validate our findings (ref.16; validation killer– and T-cell infiltration accompanied by T-cell receptor cohort; Table 1 and Supplementary Table S1). (TCR) clonal expansion. In addition, upregulation of the expression of immune exhaustion marker genes suggested an RNA-seq immune-suppressive microenvironment in these tumors. Fur- Only RNAs with RNA Integrity Number greater than 6.0 were thermore, these cytotoxic TIL signatures were independently used in this study. RNA-seq libraries were prepared using Illumina validated using the data from a previously published neuro- TruSeqRNA Sample Preparation V2 kits according to the manu- blastoma RNA-seq study. Therefore, our study suggests the facturer's protocol (Illumina), and 100 bp paired-end sequencing – potential of immune checkpoint inhibitor based immu- was performed using Illumina HiSeq 2000 sequencers. Each notherapies for treating high-risk neuroblastoma patients with sample was processed through a RNA-seq data analysis pipeline MYCN -NA tumors or TCR-based adoptive cell therapy for where reads were mapped to the ENSEMBL human genome MYCN fi those with -A tumors. Our ndings may also have GRCh37 build 71 using TopHat2 (18). Cufflinks was then used implications for other pediatric cancers with low mutation to quantify gene expression as Fragments Per Kilobase of tran- burden. script per Million mapped reads (FPKM; ref. 19). The final measure of gene expression level is log2(FPKMþ1). FASTQ files for RNA-seq data are available at the NCI's Genomic Data Com- mons (https://portal.gdc.cancer.gov) and the high-level data at infiltrating tumor-reactive T cells recognizing neoantigens pre- https://ocg.cancer.gov/programs/target/data-matrix. sented in these tumors (8). Because neuroblastomas typically The independent validation RNA-seq data used in this study have a low somatic mutation burden at the time of diagnosis, it is were derived from a published RNA-seq dataset generated using postulated that there will be fewer T cells in the tumor microen- the Illumina HiSeq 2000 platform (16). Gene expression levels in vironment (6). However, recent studies by us and other groups log2(FPKMþ1) and the associated clinical information for these reported that intensive chemotherapy and radiotherapy dramat- 190 patients (Table 1) were downloaded from the Gene Expres- ically increase mutation burden in the relapsed setting (10, 11). sion Omnibus database entry GSE49711. Furthermore, DNA-damaging agents in conjunction of dinutux- imab have been reported to show a survival advantage for patients Consensus clustering with relapsed/refractory neuroblastoma, suggesting that immu- We used consensus clustering for genes with nonzero expres- notherapy may be further exploited for future therapies (12). sion variability in the dataset using the R package Consensu- – Remarkably, in synovial sarcoma, a fusion gene driven cancer sClusterPlus for class discovery based on the comparison of gene fi with a low
Recommended publications
  • Primary Sjogren Syndrome: Focus on Innate Immune Cells and Inflammation
    Review Primary Sjogren Syndrome: Focus on Innate Immune Cells and Inflammation Chiara Rizzo 1, Giulia Grasso 1, Giulia Maria Destro Castaniti 1, Francesco Ciccia 2 and Giuliana Guggino 1,* 1 Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Rheumatology Section, University of Palermo, Piazza delle Cliniche 2, 90110 Palermo, Italy; [email protected] (C.R.); [email protected] (G.G.); [email protected] (G.M.D.C.) 2 Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-091-6552260 Received: 30 April 2020; Accepted: 29 May 2020; Published: 3 June 2020 Abstract: Primary Sjogren Syndrome (pSS) is a complex, multifactorial rheumatic disease that mainly targets salivary and lacrimal glands, inducing epithelitis. The cause behind the autoimmunity outbreak in pSS is still elusive; however, it seems related to an aberrant reaction to exogenous triggers such as viruses, combined with individual genetic pre-disposition. For a long time, autoantibodies were considered as the hallmarks of this disease; however, more recently the complex interplay between innate and adaptive immunity as well as the consequent inflammatory process have emerged as the main mechanisms of pSS pathogenesis. The present review will focus on innate cells and on the principal mechanisms of inflammation connected. In the first part, an overview of innate cells involved in pSS pathogenesis is provided, stressing in particular the role of Innate Lymphoid Cells (ILCs). Subsequently we have highlighted the main inflammatory pathways, including intra- and extra-cellular players.
    [Show full text]
  • Recombinant Human NCR3/Nkp300 Protein
    Leader in Biomolecular Solutions for Life Science Recombinant Human NCR3/NKp300 Protein Catalog No.: RP00179 Recombinant Sequence Information Background Species Gene ID Swiss Prot Natural Cytotoxicity Triggering Receptor 3, NCR3, also known as NKp30, or CD337, Human 259197 O14931 is a natural cytotoxicity receptor. NKp30 is expressed on both resting and activated NK cells of the CD56dim, CD16+ subset that account for more that 85% of NK cells Tags found in peripheral blood and spleen. NKp30 is absent from the CD56bright, CD16- C-Fc & 6×His subset that constitutes the majority of NK cells in lymph node and tonsil, however, its expression is up-regulated in these cells upon IL-2 activation .NKp30 is a Synonyms member of the immunoglobulin superfamily and one of three existing natural 1C7;CD337;DAAP-90L16.3;LY117;MALS cytotoxicity-triggering receptors. NKp30 is a glycosylated protein and is thought to ;NCR3;NKp30 be selectively expressed in resting and activated natural killer cells. NKp30 is a stimulatory receptor on human NK cells implicated in tumor immunity, and is capable of promoting or terminating dendritic cell maturation. NCR3 may play a role in inflammatory and infectious diseases. Product Information Source Purification Basic Information HEK293 cells > 95% by SDS- PAGE. Description Recombinant Human NCR3/NKp300 Protein is produced by HEK293 cells Endotoxin expression system. The target protein is expressed with sequence (Leu19-Thr138) < 0.1 EU/μg of the protein by LAL of human NCR3/NKp300 (Accession #NP_001138938.1) fused with an Fc, 6×His tag method. at the C-terminus. Formulation Bio-Activity Lyophilized from a 0.22 μm filtered Measured by its binding ability in a functional ELISA.
    [Show full text]
  • Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse
    Welcome to More Choice CD Marker Handbook For more information, please visit: Human bdbiosciences.com/eu/go/humancdmarkers Mouse bdbiosciences.com/eu/go/mousecdmarkers Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse CD3 CD3 CD (cluster of differentiation) molecules are cell surface markers T Cell CD4 CD4 useful for the identification and characterization of leukocytes. The CD CD8 CD8 nomenclature was developed and is maintained through the HLDA (Human Leukocyte Differentiation Antigens) workshop started in 1982. CD45R/B220 CD19 CD19 The goal is to provide standardization of monoclonal antibodies to B Cell CD20 CD22 (B cell activation marker) human antigens across laboratories. To characterize or “workshop” the antibodies, multiple laboratories carry out blind analyses of antibodies. These results independently validate antibody specificity. CD11c CD11c Dendritic Cell CD123 CD123 While the CD nomenclature has been developed for use with human antigens, it is applied to corresponding mouse antigens as well as antigens from other species. However, the mouse and other species NK Cell CD56 CD335 (NKp46) antibodies are not tested by HLDA. Human CD markers were reviewed by the HLDA. New CD markers Stem Cell/ CD34 CD34 were established at the HLDA9 meeting held in Barcelona in 2010. For Precursor hematopoetic stem cell only hematopoetic stem cell only additional information and CD markers please visit www.hcdm.org. Macrophage/ CD14 CD11b/ Mac-1 Monocyte CD33 Ly-71 (F4/80) CD66b Granulocyte CD66b Gr-1/Ly6G Ly6C CD41 CD41 CD61 (Integrin b3) CD61 Platelet CD9 CD62 CD62P (activated platelets) CD235a CD235a Erythrocyte Ter-119 CD146 MECA-32 CD106 CD146 Endothelial Cell CD31 CD62E (activated endothelial cells) Epithelial Cell CD236 CD326 (EPCAM1) For Research Use Only.
    [Show full text]
  • Associated B Cell Lymphoma and Nasopharyngeal Carcinoma
    Contribution of tumour cell signalling and the microenvironment to the pathogenesis of EBV- associated B cell lymphoma and nasopharyngeal carcinoma BY MAHA IBRAHIM A thesis submitted to The University of Birmingham For the degree of DOCTOR OF PHILOSOPHY Institute of Cancer and Genomic Sciences College of Medical and Dental Sciences University of Birmingham May 2018 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. Abstract In this thesis I have explored different components of the pathogenesis of several related EBV associated cancers. In the first part of the thesis I focus on the microenvironment of two of these cancers, nasopharyngeal carcinoma (NPC) and diffuse large B cell lymphoma (DLBCL). Our group has developed a therapeutic vaccine against EBV which has already been shown to be safe in patients with NPC. Therefore, in the first results chapter (chapter 3), I present a description of the phenotyping of expression of the immune microenvironment including immune checkpoint (ICP) genes and MHC class I and class II genes in NPC tissues. I showed for the first time in NPC tissue samples, two types of PD-L1 expressing tumours: diffuse and marginal.
    [Show full text]
  • Single-Cell RNA Sequencing Demonstrates the Molecular and Cellular Reprogramming of Metastatic Lung Adenocarcinoma
    ARTICLE https://doi.org/10.1038/s41467-020-16164-1 OPEN Single-cell RNA sequencing demonstrates the molecular and cellular reprogramming of metastatic lung adenocarcinoma Nayoung Kim 1,2,3,13, Hong Kwan Kim4,13, Kyungjong Lee 5,13, Yourae Hong 1,6, Jong Ho Cho4, Jung Won Choi7, Jung-Il Lee7, Yeon-Lim Suh8,BoMiKu9, Hye Hyeon Eum 1,2,3, Soyean Choi 1, Yoon-La Choi6,10,11, Je-Gun Joung1, Woong-Yang Park 1,2,6, Hyun Ae Jung12, Jong-Mu Sun12, Se-Hoon Lee12, ✉ ✉ Jin Seok Ahn12, Keunchil Park12, Myung-Ju Ahn 12 & Hae-Ock Lee 1,2,3,6 1234567890():,; Advanced metastatic cancer poses utmost clinical challenges and may present molecular and cellular features distinct from an early-stage cancer. Herein, we present single-cell tran- scriptome profiling of metastatic lung adenocarcinoma, the most prevalent histological lung cancer type diagnosed at stage IV in over 40% of all cases. From 208,506 cells populating the normal tissues or early to metastatic stage cancer in 44 patients, we identify a cancer cell subtype deviating from the normal differentiation trajectory and dominating the metastatic stage. In all stages, the stromal and immune cell dynamics reveal ontological and functional changes that create a pro-tumoral and immunosuppressive microenvironment. Normal resident myeloid cell populations are gradually replaced with monocyte-derived macrophages and dendritic cells, along with T-cell exhaustion. This extensive single-cell analysis enhances our understanding of molecular and cellular dynamics in metastatic lung cancer and reveals potential diagnostic and therapeutic targets in cancer-microenvironment interactions. 1 Samsung Genome Institute, Samsung Medical Center, Seoul 06351, Korea.
    [Show full text]
  • SARS-Cov-2 Entry Protein TMPRSS2 and Its Homologue, TMPRSS4
    bioRxiv preprint doi: https://doi.org/10.1101/2021.04.26.441280; this version posted April 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 SARS-CoV-2 Entry Protein TMPRSS2 and Its 2 Homologue, TMPRSS4 Adopts Structural Fold Similar 3 to Blood Coagulation and Complement Pathway 4 Related Proteins ∗,a ∗∗,b b 5 Vijaykumar Yogesh Muley , Amit Singh , Karl Gruber , Alfredo ∗,a 6 Varela-Echavarría a 7 Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México b 8 Institute of Molecular Biosciences, University of Graz, Graz, Austria 9 Abstract The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) utilizes TMPRSS2 receptor to enter target human cells and subsequently causes coron- avirus disease 19 (COVID-19). TMPRSS2 belongs to the type II serine proteases of subfamily TMPRSS, which is characterized by the presence of the serine- protease domain. TMPRSS4 is another TMPRSS member, which has a domain architecture similar to TMPRSS2. TMPRSS2 and TMPRSS4 have been shown to be involved in SARS-CoV-2 infection. However, their normal physiological roles have not been explored in detail. In this study, we analyzed the amino acid sequences and predicted 3D structures of TMPRSS2 and TMPRSS4 to under- stand their functional aspects at the protein domain level. Our results suggest that these proteins are likely to have common functions based on their conserved domain organization.
    [Show full text]
  • Supplementary Table S5. Differentially Expressed Gene Lists of PD-1High CD39+ CD8 Tils According to 4-1BB Expression Compared to PD-1+ CD39- CD8 Tils
    BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance Supplemental material placed on this supplemental material which has been supplied by the author(s) J Immunother Cancer Supplementary Table S5. Differentially expressed gene lists of PD-1high CD39+ CD8 TILs according to 4-1BB expression compared to PD-1+ CD39- CD8 TILs Up- or down- regulated genes in Up- or down- regulated genes Up- or down- regulated genes only PD-1high CD39+ CD8 TILs only in 4-1BBneg PD-1high CD39+ in 4-1BBpos PD-1high CD39+ CD8 compared to PD-1+ CD39- CD8 CD8 TILs compared to PD-1+ TILs compared to PD-1+ CD39- TILs CD39- CD8 TILs CD8 TILs IL7R KLRG1 TNFSF4 ENTPD1 DHRS3 LEF1 ITGA5 MKI67 PZP KLF3 RYR2 SIK1B ANK3 LYST PPP1R3B ETV1 ADAM28 H2AC13 CCR7 GFOD1 RASGRP2 ITGAX MAST4 RAD51AP1 MYO1E CLCF1 NEBL S1PR5 VCL MPP7 MS4A6A PHLDB1 GFPT2 TNF RPL3 SPRY4 VCAM1 B4GALT5 TIPARP TNS3 PDCD1 POLQ AKAP5 IL6ST LY9 PLXND1 PLEKHA1 NEU1 DGKH SPRY2 PLEKHG3 IKZF4 MTX3 PARK7 ATP8B4 SYT11 PTGER4 SORL1 RAB11FIP5 BRCA1 MAP4K3 NCR1 CCR4 S1PR1 PDE8A IFIT2 EPHA4 ARHGEF12 PAICS PELI2 LAT2 GPRASP1 TTN RPLP0 IL4I1 AUTS2 RPS3 CDCA3 NHS LONRF2 CDC42EP3 SLCO3A1 RRM2 ADAMTSL4 INPP5F ARHGAP31 ESCO2 ADRB2 CSF1 WDHD1 GOLIM4 CDK5RAP1 CD69 GLUL HJURP SHC4 GNLY TTC9 HELLS DPP4 IL23A PITPNC1 TOX ARHGEF9 EXO1 SLC4A4 CKAP4 CARMIL3 NHSL2 DZIP3 GINS1 FUT8 UBASH3B CDCA5 PDE7B SOGA1 CDC45 NR3C2 TRIB1 KIF14 TRAF5 LIMS1 PPP1R2C TNFRSF9 KLRC2 POLA1 CD80 ATP10D CDCA8 SETD7 IER2 PATL2 CCDC141 CD84 HSPA6 CYB561 MPHOSPH9 CLSPN KLRC1 PTMS SCML4 ZBTB10 CCL3 CA5B PIP5K1B WNT9A CCNH GEM IL18RAP GGH SARDH B3GNT7 C13orf46 SBF2 IKZF3 ZMAT1 TCF7 NECTIN1 H3C7 FOS PAG1 HECA SLC4A10 SLC35G2 PER1 P2RY1 NFKBIA WDR76 PLAUR KDM1A H1-5 TSHZ2 FAM102B HMMR GPR132 CCRL2 PARP8 A2M ST8SIA1 NUF2 IL5RA RBPMS UBE2T USP53 EEF1A1 PLAC8 LGR6 TMEM123 NEK2 SNAP47 PTGIS SH2B3 P2RY8 S100PBP PLEKHA7 CLNK CRIM1 MGAT5 YBX3 TP53INP1 DTL CFH FEZ1 MYB FRMD4B TSPAN5 STIL ITGA2 GOLGA6L10 MYBL2 AHI1 CAND2 GZMB RBPJ PELI1 HSPA1B KCNK5 GOLGA6L9 TICRR TPRG1 UBE2C AURKA Leem G, et al.
    [Show full text]
  • Cellular and Molecular Signatures in the Disease Tissue of Early
    Cellular and Molecular Signatures in the Disease Tissue of Early Rheumatoid Arthritis Stratify Clinical Response to csDMARD-Therapy and Predict Radiographic Progression Frances Humby1,* Myles Lewis1,* Nandhini Ramamoorthi2, Jason Hackney3, Michael Barnes1, Michele Bombardieri1, Francesca Setiadi2, Stephen Kelly1, Fabiola Bene1, Maria di Cicco1, Sudeh Riahi1, Vidalba Rocher-Ros1, Nora Ng1, Ilias Lazorou1, Rebecca E. Hands1, Desiree van der Heijde4, Robert Landewé5, Annette van der Helm-van Mil4, Alberto Cauli6, Iain B. McInnes7, Christopher D. Buckley8, Ernest Choy9, Peter Taylor10, Michael J. Townsend2 & Costantino Pitzalis1 1Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK. Departments of 2Biomarker Discovery OMNI, 3Bioinformatics and Computational Biology, Genentech Research and Early Development, South San Francisco, California 94080 USA 4Department of Rheumatology, Leiden University Medical Center, The Netherlands 5Department of Clinical Immunology & Rheumatology, Amsterdam Rheumatology & Immunology Center, Amsterdam, The Netherlands 6Rheumatology Unit, Department of Medical Sciences, Policlinico of the University of Cagliari, Cagliari, Italy 7Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK 8Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), University of Birmingham, Birmingham B15 2WB, UK 9Institute of
    [Show full text]
  • Anti-SIRPG Monoclonal Antibody, Clone OX119 (CABT-53873MH) This Product Is for Research Use Only and Is Not Intended for Diagnostic Use
    Anti-SIRPG monoclonal antibody, clone OX119 (CABT-53873MH) This product is for research use only and is not intended for diagnostic use. PRODUCT INFORMATION Product Overview Mouse anti Human CD172g antibody, clone OX119 recognizes human SIRP gamma, a 55kD signal regulatory protein which is a member of the immunoglobulin gene superfamily. SIRP gamma, also known as CD172g, is expressed on most T lymphocytes and a subset of B-cells but is absent on myeloid cells. CD172g has a truncated cytoplasmic tail, which is similar to SIRP beta, but unlike SIRP beta CD172g does not require DAP12 for expression at the cell surface. CD172g, like SIRP alpha, binds to CD47 inducing apoptosis. It is also involved in the negative regulation of receptor tyrosine kinase-coupled signalling. Flow Cytometry Use 10ul of the suggested working dilution to label 1x106 cells in 100ul. Specificity SIRPG Immunogen Purified recombinant SIRPgamma.CD4. Isotype IgG1 Source/Host Mouse Species Reactivity Human Clone OX119 Conjugate Unconjugated Applications FC; IP Format Purified IgG - liquid Size 200 μg Preservative 0.09% Sodium Azide Storage in frost-free freezers is not recommended. This product should be stored undiluted. Avoid repeated freezing and thawing as this may denature the antibody. Should this product contain a precipitate we recommend microcentrifugation before use. Warnings For research purposes only 45-1 Ramsey Road, Shirley, NY 11967, USA Email: [email protected] Tel: 1-631-624-4882 Fax: 1-631-938-8221 1 © Creative Diagnostics All Rights Reserved
    [Show full text]
  • Análise Integrativa De Perfis Transcricionais De Pacientes Com
    UNIVERSIDADE DE SÃO PAULO FACULDADE DE MEDICINA DE RIBEIRÃO PRETO PROGRAMA DE PÓS-GRADUAÇÃO EM GENÉTICA ADRIANE FEIJÓ EVANGELISTA Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas Ribeirão Preto – 2012 ADRIANE FEIJÓ EVANGELISTA Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas Tese apresentada à Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo para obtenção do título de Doutor em Ciências. Área de Concentração: Genética Orientador: Prof. Dr. Eduardo Antonio Donadi Co-orientador: Prof. Dr. Geraldo A. S. Passos Ribeirão Preto – 2012 AUTORIZO A REPRODUÇÃO E DIVULGAÇÃO TOTAL OU PARCIAL DESTE TRABALHO, POR QUALQUER MEIO CONVENCIONAL OU ELETRÔNICO, PARA FINS DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE. FICHA CATALOGRÁFICA Evangelista, Adriane Feijó Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas. Ribeirão Preto, 2012 192p. Tese de Doutorado apresentada à Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo. Área de Concentração: Genética. Orientador: Donadi, Eduardo Antonio Co-orientador: Passos, Geraldo A. 1. Expressão gênica – microarrays 2. Análise bioinformática por module maps 3. Diabetes mellitus tipo 1 4. Diabetes mellitus tipo 2 5. Diabetes mellitus gestacional FOLHA DE APROVAÇÃO ADRIANE FEIJÓ EVANGELISTA Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Yang2012.Pdf
    This thesis has been submitted in fulfilment of the requirements for a postgraduate degree (e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following terms and conditions of use: • This work is protected by copyright and other intellectual property rights, which are retained by the thesis author, unless otherwise stated. • A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. • This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author. • The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author. • When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given. Characterization of bovine granzymes and studies of the role of granzyme B in killing of Theileria -infected cells by CD8+ T cells Jie Yang PhD by Research The University of Edinburgh 2012 Declaration I declare that the work presented in this thesis is my own original work, except where specified, and it does not include work forming part of a thesis presented successfully for a degree in this or another university Jie Yang Edinburgh, 2012 i Abstract Previous studies have shown that cytotoxic CD8+ T cells are important mediators of immunity against the bovine intracellular protozoan parasite T. parva . The present study set out to determine the role of granule enzymes in mediating killing of parasitized cells, first by characterising the granzymes expressed by bovine lymphocytes and, second, by investigating their involvement in killing of target cells.
    [Show full text]