The Astrophysical Distance Scale III: Distance to the Local Group Galaxy

Total Page:16

File Type:pdf, Size:1020Kb

The Astrophysical Distance Scale III: Distance to the Local Group Galaxy Draft version December 9, 2020 Typeset using LATEX twocolumn style in AASTeX63 The Astrophysical Distance Scale III: Distance to the Local Group Galaxy WLM using Multi-Wavelength Observations of the Tip of the Red Giant Branch, Cepheids, and JAGB Stars Abigail J. Lee,1 Wendy L. Freedman,1 Barry F. Madore,1, 2 Kayla A. Owens,1 Andrew J. Monson,3 and Taylor J. Hoyt1 1Department of Astronomy & Astrophysics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 2Observatories of the Carnegie Institution for Science 813 Santa Barbara St., Pasadena, CA 91101 3Department of Astronomy & Astrophysics, Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 ABSTRACT The local determination of the Hubble Constant sits at a crossroad. Current estimates of the local expansion rate of the Universe differ by about 1.7-σ, derived from the Cepheid and TRGB based calibrations, applied to type Ia supernovae. To help elucidate possible sources of systematic error causing the tension, we show in this study the recently developed distance indicator, the J-region Asymptotic Giant Branch (JAGB) method (Madore & Freedman 2020), can serve as an independent cross-check and comparison with other local distance indicators. Furthermore, we make the case that the JAGB method has substantial potential as an independent, precise and accurate calibrator of type Ia supernovae for the determination of H0. Using the Local Group galaxy, WLM we present distance comparisons between the JAGB method, a TRGB measurement at near-infrared (JHK) wavelengths, a TRGB measurement in the optical I band, and a multi-wavelength Cepheid period-luminosity relation determination. We find: µ0 (JAGB) = 24:97 0:02 (stat) 0:04 (sys) mag ± ± µ0 (T RGBNIR) = 24:98 0:04 (stat) 0:07 (sys) mag ± ± µ0 (T RGBF 814W ) = 24:93 0:02 (stat) 0:06 (sys) mag ± ± µ0 (Cepheids) = 24:98 0:03 (stat) 0:04 (sys) mag ± ± All four methods are in good agreement, confirming the local self-consistency of the four distance scales at the 3% level, and adding confidence that the JAGB method is as accurate and as precise a distance indicator as either of the other three astrophysically-based methods. Keywords: distance scale { stars: Population II { galaxies: individual (WLM) { galaxies: stellar content { stars: AGB and post-AGB { stars: carbon { stars: variables: Cepheids { cosmology: observations arXiv:2012.04536v1 [astro-ph.CO] 8 Dec 2020 1. INTRODUCTION type Ia supernovae, would provide a more secure de- Measuring both precise and accurate distances to termination of H0 in the nearby universe, and a better galaxies persists as a challenging problem in astronomy. understanding of the magnitude and significance of the Attempts to discover, develop and refine new distance current tension between local (late-time) values of H0 indicator techniques in the past two decades have only and those derived from (early-time) cosmological mod- increased as the need for greater accuracy has grown. eling of cosmic microwave background (CMB) observa- One goal of these endeavors, a robust calibration of tions. Resolving the Hubble tension will require hav- ing systematic effects constrained at the 1-2% percent- level (or better) in their individual accuracies. The two [email protected] current front-runners for high-precision measurements of local distances are the Tip of the Red Giant Branch 2 Lee et al. (TRGB) method used by the Carnegie-Chicago Hub- its on their absolute magnitudes and color, making them ble Program (CCHP) (Freedman et al. 2019, 2020), and distinct and easily identified in color-magnitude space. Cepheid Period-Luminosity based method (the Leavitt For a more comprehensive review of the dredge-up the- Law) used by the Hubble Space Telescope Key Project for ory for carbon stars, see Habing & Olofsson(2003). the past 30 years (Freedman et al. 2001, 2012) and more A review of carbon stars by Battinelli & Demers recently by the SHoES group (Riess et al. 2016; Riess (2005) demonstrated that the mean luminosity of the et al. 2019). Currently however, these two local (TRGB distribution of JAGB stars is relatively constant from vs Cepheid) measurements of H0 differ by almost 1.7-σ, galaxy to galaxy, and preliminary tests carried out by and this tension continues. Is there an independent dis- Freedman & Madore(2020) have also demonstrated the tance indicator, equal in precision and accuracy to the JAGB absolute magnitude has little, if any, dependence Cepheids and TRGB methods, that can serve as a cross- on metallicity or age. Empirically, the mean of the check to shed light on differences in systematics between JAGB luminosity distribution has all of the necessary the two more classical methods? We are now exploring attributes of an excellent distance indicator. that possibility. Both the TRGB and JAGB methods provide a stan- The aim of this paper is to further develop an inde- dard candle. To compare the two methods, Freedman & pendent distance calibrator, the near-infrared J-region Madore(2020) measured and compiled distances to 14 Asymptotic Giant Branch (JAGB) method, recently galaxies, and found the TRGB and JAGB distances to (re)introduced into the distance scale arena (Madore & be in good agreement. However, this study was based Freedman 2020; Freedman & Madore 2020; Ripoche et on previously-published data, not optimized for the de- al. 2020). JAGB stars are Thermally-Pulsating Asymp- tection of JAGB stars. No studies to date have com- totic Giant Branch (TP-AGB) stars with considerable pared distance moduli using both the optical and near- amounts of carbon in their atmospheres (i.e., carbon- infrared TRGB and the JAGB method derived from the to-oxygen ratios of C/O> 1) (Habing & Olofsson 2003). same dataset, using self-consistent processing, calibra- JAGB stars also undergo `dredge-up' events, where with tion and analysis procedures. Accordingly, in this study each thermal pulse the convective envelope penetrates we undertake just such an in-depth study of the galaxy into deeper and deeper layers of the star's interior. Dur- Wolf-Lundmark-Melotte (WLM). ing the third dredge-up phase (and beyond), the con- WLM is a dwarf irregular galaxy located in the outer vective envelope of the star penetrates deep enough edges of the Local Group (Wolf 1909; Melotte 1926). We that it encounters carbon, produced by the He-burning have measured its distance modulus using the TRGB shell, and brings that enriched material to the surface in both the near-infrared JHK bands and optical I (see Habing & Olofsson(2003) for a general review and band, a multi-wavelength Cepheid period-luminosity re- Marigo & Girardi(2007); Marigo et al.(2017) for de- lation determination, and the JAGB method in the J tailed descriptions of TP-AGB evolution). band. We have obtained high-precision ground-based For the younger, more massive AGB stars (1:6 108 data, which we have calibrated using archival HST ob- × years), the temperature at the bottom of the convective servations for the optical and Two-Micron All-Sky Sur- envelope becomes so hot that during the third dredge-up vey (2MASS) data (Skrutskie et al. 2006) for the near phase, the recently-formed carbon is quickly converted infrared. into nitrogen before it can be convected to the surface. The first goal of this paper is to test the degree to This places an upper limit on the luminosity of a JAGB which the JAGB method can be used as a cross check star (Iben 1973; Sackmann et al. 1974). For older, less and comparison with other local distance indicators, massive AGB stars, the third dredge-up phase (and be- such as Cepheids and the TRGB, in order to reveal po- yond) becomes ineffective in transporting carbon to the tentially obfuscated systematics. The second goal of this surface. This imposes a lower limit on the luminosities of paper is to demonstrate that with future development stars entering the JAGB region (Iben & Renzini 1983). and testing, using both ground-based and space-based These theoretical limits are reflected in the observed data, the JAGB method is a distance indicator that is properties JAGB stars, which are well-defined in their comparable to the TRGB and Cepheids in accuracy and near-infrared (NIR) colors and luminosities. JAGB stars precision, and can eventually become the basis for an in- are redder and quite distinct from the bluer oxygen-rich dependent determination of the Hubble Constant. AGB stars, especially at near and mid-infrared wave- Our paper outline is as follows. In Section2, we lengths: a direct result of the large amounts of carbon describe the imaging datasets and the data-reduction in their atmospheres (Marigo & Girardi 2007). Thus, methods used in this study. In Section3, we give a JAGB stars have been observed to have well-defined lim- brief overview of the multi-wavelength application of the Distances to WLM 3 TRGB method, and then present our measurements of The location of this pointing relative to the 8 IMACS the distance modulus to WLM in the near-infrared and chips is shown in Figure1. The STScI processed and independently in the optical. In Section4, we explain charge-transfer-efficiency-corrected and flat-fielded indi- the newly developed JAGB method, and then give our vidual frames (the .flc data type) were pulled from the measured distance modulus. In Section5, we calculate Mikulski Archive for Space Telescopes (MAST). We cor- a Cepheid-based distance modulus, as well as compare rected for pixel-to-pixel geometric distortions caused by our TRGB distance moduli and JAGB distance modulus the optical design of the ACS camera by multiplying values with previous measurements for WLM. Finally, each image by its respective Pixel Area Map, which was we state our conclusions and look to the future with the pulled from the stsci.skypac module.1 JAGB method in Section6.
Recommended publications
  • THE AGB NEWSLETTER an Electronic Publication Dedicated to Asymptotic Giant Branch Stars and Related Phenomena
    THE AGB NEWSLETTER An electronic publication dedicated to Asymptotic Giant Branch stars and related phenomena No. 117 | 1 February 2007 http://www.astro.keele.ac.uk/AGBnews Editors: Jacco van Loon and Albert Zijlstra Editorial Dear Colleagues, It is our pleasure to present you the 117th issue of the AGB Newsletter. Of the 21 refereed journal publications, eight deal directly with Planetary Nebulae | which may have something to do with planets after all, and perhaps with dark energy as well (see the contribution by Gibson & Schild). Don't miss the many job advertisements, both for PhD studentships (Denver, Vienna, Portsmouth) and postdoctoral fellowships (Vienna, Keele). The Food for Thought statement published last month generated some reaction. One of you considered the relation between rotation rate and magnetic activity to be the principal question in relation to AGB stars that needs to be answered. Hence, we make it this month's Food for Thought statement. Reactions to this, or suggestions for other pertinent questions, are very welcome and will be discussed in future issues of the newsletter. The next issue will be distributed on the 1st of March; the deadline for contributions is the 28th of February. Editorially Yours, Jacco van Loon and Albert Zijlstra Food for Thought This month's thought-provoking statement is: The relation between rotation rate and magnetic activity is the principal question in relation to AGB stars that needs to be answered Reactions to this statement or suggestions for next month's statement can be e-mailed to [email protected] (please state whether you wish to remain anonymous) 1 Refereed Journal Papers Magnetic ¯elds in planetary nebulae and post-AGB nebulae.
    [Show full text]
  • 1903Apj 18. .3415 the SPECTRUM of O CETL' by Joel Stebbins. On
    .3415 18. 1903ApJ THE SPECTRUM OF o CETL' By Joel Stebbins. On account of the great instrumental power required for the observation of the spectra of faint objects, changes in the spectra of long-period variable stars have not been well studied. In fact, there is no star which undergoes a large variation in bright- ness whose spectrum has been systematically followed from maxi- mum to minimum, or vice versa. It is proposed to give here the results of a study of the spectrum of o Ceti> or Mira, made, at the suggestion of Director Campbell, with the thirty-six-inch refractor of the Lick Observatory, from June 1902 to January 1903. During this period the star faded in brightness from 3.8 to 9.0 magnitude. The first photograph of the spectrum was obtained about three weeks after the predicted time of maximum, and a series of plates was secured covering the interval to mini- mum. No negatives were obtained after the star had again begun to increase in brightness. The most important articles concerning the spectrum of Mira are those of Vogel,2 Sidgreaves,3 and Campbell.4 Neither Vogel nor Sidgreaves followed the star long enough to find much change in its spectrum, and Campbell’s work was mainly in con- nection with observations of the star for radial velocity, with the Mills spectrograph. INSTRUMENTS AND METHODS. The spectrograph used in my observations was the one employed rby Messrs. Campbell and Wright in their work on 1 “ Dissertation in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in the University of California,” Lick Observatory Bulletin No.
    [Show full text]
  • School of Physics Publications 2007
    School of Physics Publications 2007 Books Karnutsch, C 2007, Low threshold organic thin-film laser devices, Göttingen, 1 Ostrikov, K, Xu, S 2007, Plasma-Aided Nanofabrication: From Plasma Sources to Nanoassembly, Weinheim, Germany Book Chapters Beck, R, Gaensler, B M, Feretti, L 2007, SKA and the Magnetic Universe, Exploring the Cosmic Frontier: Astrophysical Instruments for the 21st Century, Springer-Verlag Berlin Heidelberg, Berlin Heidelberg, 103-108 Bilek, M, Powles, R C, McKenzie, D R 2007, Treatment of polymeric biomaterials by ion implantation, Biomaterials and Surface Modification, Research Signpost, India, 205-248 Britton, S C, New, P B, Roberts, A L, Sharma, M D 2007, Investigating students' ability totransfer mathematics, Transforming a university: the scholarship of teaching and learning in practice, University of Sydney Press, NSW, Australia, 127-140 Dey, C J, Berger, C, Foran, B, Foran, M, Joske, R, Lenzen, M, Wood, R J 2007, Household environmental pressure from consumption: an Australian environmental atlas, Water Wind Art and Debate -How environmental concerns impacton disciplinary research, Sydney University Press, Sydney, 1, 280-314 Eggleton, B J, Slusher, R 2007, Nonlinear pulse propagation in one-dimensional photonic bandgap structures, Nonlinear photonic bandgap materials, Springer Khoukhi, M, Maruyama, S, Bosi, S G, Komiya, A 2007, A Simple Approach for Calculating the Optical Constants of a Clear Glass Window from 0.19 to 5 um, Recent Developments in Solar Energy, Nova Science Publishers, Inc, New York, 289-297
    [Show full text]
  • Astrophysical Distance Scale II. Application of the JAGB Method: a Nearby Galaxy Sample Wendy L
    Draft version May 22, 2020 Typeset using LATEX preprint style in AASTeX62 Astrophysical Distance Scale II. Application of the JAGB Method: A Nearby Galaxy Sample Wendy L. Freedman1 and Barry F. Madore1, 2 1Dept. of Astronomy & Astrophysics University of Chicago 5640 S. Ellis Ave., Chicago, IL, 60637 2The Observatories Carnegie Institution for Science 813 Santa Barbara St., Pasadena, CA 91101 ABSTRACT We apply the near-infrared J-region Asymptotic Giant Branch (JAGB) method, re- cently introduced by Madore & Freedman (2020), to measure the distances to 14 nearby galaxies out to 4 Mpc. We use the geometric detached eclipsing binary (DEB) distances to the LMC and SMC as independent zero-point calibrators. We find excellent agree- ment with previously published distances based on the Tip of the Red Giant Branch (TRGB): the JAGB distance determinations (including the LMC and SMC) agree in the mean to within ∆(JAGB T RGB) =+0.025 0.013 mag, just over 1%, where the − ± TRGB I-band zero point is MI = -4.05 mag. With further development and testing, the JAGB method has the potential to provide an independent calibration of Type Ia supernovae (SNe Ia), especially with JW ST . The JAGB stars (with M = 6:20 mag) J − can be detected farther than the fainter TRGB stars, allowing greater numbers of cal- ibrating galaxies for the determination of H0. Along with the TRGB and Cepheids, arXiv:2005.10793v1 [astro-ph.GA] 21 May 2020 JAGB stars are amenable to theoretical understanding and further refined empirical calibration. A preliminary test shows little dependence, if any, of the JAGB magnitude with metallicity of the parent galaxy.
    [Show full text]
  • GTO Keypad Manual, V5.001
    ASTRO-PHYSICS GTO KEYPAD Version v5.xxx Please read the manual even if you are familiar with previous keypad versions Flash RAM Updates Keypad Java updates can be accomplished through the Internet. Check our web site www.astro-physics.com/software-updates/ November 11, 2020 ASTRO-PHYSICS KEYPAD MANUAL FOR MACH2GTO Version 5.xxx November 11, 2020 ABOUT THIS MANUAL 4 REQUIREMENTS 5 What Mount Control Box Do I Need? 5 Can I Upgrade My Present Keypad? 5 GTO KEYPAD 6 Layout and Buttons of the Keypad 6 Vacuum Fluorescent Display 6 N-S-E-W Directional Buttons 6 STOP Button 6 <PREV and NEXT> Buttons 7 Number Buttons 7 GOTO Button 7 ± Button 7 MENU / ESC Button 7 RECAL and NEXT> Buttons Pressed Simultaneously 7 ENT Button 7 Retractable Hanger 7 Keypad Protector 8 Keypad Care and Warranty 8 Warranty 8 Keypad Battery for 512K Memory Boards 8 Cleaning Red Keypad Display 8 Temperature Ratings 8 Environmental Recommendation 8 GETTING STARTED – DO THIS AT HOME, IF POSSIBLE 9 Set Up your Mount and Cable Connections 9 Gather Basic Information 9 Enter Your Location, Time and Date 9 Set Up Your Mount in the Field 10 Polar Alignment 10 Mach2GTO Daytime Alignment Routine 10 KEYPAD START UP SEQUENCE FOR NEW SETUPS OR SETUP IN NEW LOCATION 11 Assemble Your Mount 11 Startup Sequence 11 Location 11 Select Existing Location 11 Set Up New Location 11 Date and Time 12 Additional Information 12 KEYPAD START UP SEQUENCE FOR MOUNTS USED AT THE SAME LOCATION WITHOUT A COMPUTER 13 KEYPAD START UP SEQUENCE FOR COMPUTER CONTROLLED MOUNTS 14 1 OBJECTS MENU – HAVE SOME FUN!
    [Show full text]
  • Born-Again Protoplanetary Disk Around Mira B M
    The Astrophysical Journal, 662:651Y657, 2007 June 10 # 2007. The American Astronomical Society. All rights reserved. Printed in U.S.A. BORN-AGAIN PROTOPLANETARY DISK AROUND MIRA B M. J. Ireland Planetary Science, California Institute of Technology, Pasadena, CA 91125; [email protected] J. D. Monnier University of Michigan, Ann Arbor, MI 48109; [email protected] P. G. Tuthill School of Physics, University of Sydney, NSW 2006, Australia; [email protected] R. W. Cohen W. M. Keck Observatory, Kamuela, HI 96743 J. M. De Buizer Gemini Observatory, Casilla 603, La Serena, Chile C. Packham University of Florida, Gainsville, FL 32611 D. Ciardi Michelson Science Center, Caltech, Pasadena CA 91125 T. Hayward Gemini Observatory, Casilla 603, La Serena, Chile and J. P. Lloyd Cornell University, Ithaca, NY 14853 Received 2007 February 16; accepted 2007 March 10 ABSTRACT The Mira AB system is a nearby (107 pc) example of a wind accreting binary star system. In this class of system, the wind from a mass-losing red giant star (Mira A) is accreted onto a companion (Mira B), as indicated by an accretion shock signature in spectra at ultraviolet and X-ray wavelengths. Using novel imaging techniques, we report the detection of emission at mid-infrared wavelengths between 9.7 and 18.3 m from the vicinity of Mira B but with a peak at a radial position about 10 AU closer to the primary Mira A. We interpret the mid-infrared emission as the edge of an optically-thick accretion disk heated by Mira A. The discovery of this new class of accretion disk fed by M-giant mass loss implies a potential population of young planetary systems in white dwarf binaries, which has been little explored despite being relatively common in the solar neighborhood.
    [Show full text]
  • Constelações – Volume 3
    i Coleção Os Mensageiros das Estrelas: Constelações – volume 3 Constelações de Dezembro Organizador Paulo Henrique Colonese Autores Leonardo Pereira de Castro Rafaela Ribeiro da Silva Ilustrador Caio Lopes do Nascimento Baldi Fiocruz-COC 2020 ii FUNDAÇÃO OSWALDO CRUZ Presidente Nísia Trindade Lima Diretor da Casa de Oswaldo Cruz Paulo Roberto Elian dos Santos Chefe do Museu da Vida Alessandro Machado Franco Batista TECNOLOGIAS SERVIÇO DE ITINERÂNCIA Stellarium, OBS Studio, VideoScribe, Canva CIÊNCIA MÓVEL Paulo Henrique Colonese (Coordenação) Ana Carolina de Souza Gonzalez Fernanda Marcelly de Gondra França REVISÃO CADERNO DE CONTEÚDOS Flávia Souza Lima Paulo Henrique Colonese Lais Lacerda Viana Marta Fabíola do Valle G. Mayrink REVISÃO/CATALOGAÇÃO BIBLIOGRÁFICA (Coordenação) Biblioteca de Educação e Divulgação Paulo Henrique Colonese Científica Iloni Seibel Rodolfo de Oliveira Zimmer Beatriz Schwenck (Coordenação) CONCEPÇÃO E DESENVOLVIMENTO APOIO ADMINISTRATIVO Jackson Almeida de Farias Fábio Pimentel Leonardo Pereira de Castro Luiz Gustavo Barcellos Inácio (in memoriam) MÍDIAS E DIVULGAÇÃO Paulo Henrique Colonese (Coordenação) Julianne Gouveia Rafaela Ribeiro da Silva Melissa Raquel Faria Silva Willian Alves Pereira Renata Bohrer Willian Vieira de Abreu Renata Maria B. Fontanetto (Coordenação) DESIGN GRÁFICO E ILUSTRAÇÃO CAPTAÇÃO DE RECURSOS Caio Lopes do Nascimento Baldi Escritório de Captação da Fiocruz GESTÃO CULTURAL Sociedade de Promoção da Casa de Oswaldo Cruz Catalogação na fonte: Biblioteca de Educação e Divulgação Científica Iloni Seibel C756 Constelações de dezembro [recurso eletrônico]/Organizador: Paulo Henrique Colonese. v. 3 Ilustrações: Caio Lopes do Nascimento Baldi. – Rio de Janeiro: Fiocruz – COC, 2021. (Coleção Os Mensageiros das estrelas: constelações; v. 3). 1 e-book: il. color. Modo de acesso: <http://www.museudavida.fiocruz.br/images/Publicacoes_Educacao/PDFs/OMEConstela2020vol3.pdf>.
    [Show full text]
  • The Universe Contents 3 HD 149026 B
    History . 64 Antarctica . 136 Utopia Planitia . 209 Umbriel . 286 Comets . 338 In Popular Culture . 66 Great Barrier Reef . 138 Vastitas Borealis . 210 Oberon . 287 Borrelly . 340 The Amazon Rainforest . 140 Titania . 288 C/1861 G1 Thatcher . 341 Universe Mercury . 68 Ngorongoro Conservation Jupiter . 212 Shepherd Moons . 289 Churyamov- Orientation . 72 Area . 142 Orientation . 216 Gerasimenko . 342 Contents Magnetosphere . 73 Great Wall of China . 144 Atmosphere . .217 Neptune . 290 Hale-Bopp . 343 History . 74 History . 218 Orientation . 294 y Halle . 344 BepiColombo Mission . 76 The Moon . 146 Great Red Spot . 222 Magnetosphere . 295 Hartley 2 . 345 In Popular Culture . 77 Orientation . 150 Ring System . 224 History . 296 ONIS . 346 Caloris Planitia . 79 History . 152 Surface . 225 In Popular Culture . 299 ’Oumuamua . 347 In Popular Culture . 156 Shoemaker-Levy 9 . 348 Foreword . 6 Pantheon Fossae . 80 Clouds . 226 Surface/Atmosphere 301 Raditladi Basin . 81 Apollo 11 . 158 Oceans . 227 s Ring . 302 Swift-Tuttle . 349 Orbital Gateway . 160 Tempel 1 . 350 Introduction to the Rachmaninoff Crater . 82 Magnetosphere . 228 Proteus . 303 Universe . 8 Caloris Montes . 83 Lunar Eclipses . .161 Juno Mission . 230 Triton . 304 Tempel-Tuttle . 351 Scale of the Universe . 10 Sea of Tranquility . 163 Io . 232 Nereid . 306 Wild 2 . 352 Modern Observing Venus . 84 South Pole-Aitken Europa . 234 Other Moons . 308 Crater . 164 Methods . .12 Orientation . 88 Ganymede . 236 Oort Cloud . 353 Copernicus Crater . 165 Today’s Telescopes . 14. Atmosphere . 90 Callisto . 238 Non-Planetary Solar System Montes Apenninus . 166 How to Use This Book 16 History . 91 Objects . 310 Exoplanets . 354 Oceanus Procellarum .167 Naming Conventions . 18 In Popular Culture .
    [Show full text]
  • High Angular Resolution Observations of Late-Type Stars Jean-Louis Prieur, Eric Aristidi, Bruno Lopez, Marco Scardia, François Mignard, Marcel Carbillet
    High angular resolution observations of late-type stars Jean-Louis Prieur, Eric Aristidi, Bruno Lopez, Marco Scardia, François Mignard, Marcel Carbillet To cite this version: Jean-Louis Prieur, Eric Aristidi, Bruno Lopez, Marco Scardia, François Mignard, et al.. High angular resolution observations of late-type stars. Astrophysical Journal Supplement, American Astronomical Society, 2002, 139, pp.249-258. hal-02455248 HAL Id: hal-02455248 https://hal.archives-ouvertes.fr/hal-02455248 Submitted on 25 Jan 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Based on observations made with the T´elescope Bernard Lyot at Pic du Midi Observatory, France. High angular resolution observations of late-type stars Prieur, J.-L. UMR 5572 Astrophysique, Observatoire Midi-Pyr´en´ees – CNRS, 14, Avenue Edouard Belin, 31400 Toulouse, France and Aristidi, E. UMR 6525 Astrophysique, Universit´ede Nice Sophia - Antipolis – CNRS, Parc Valrose, 06108 Nice Cedex 2, France and Lopez, B. Observatoire de la Cˆote d’Azur, D´epartement Fresnel UMR 6528, BP 4229, 06034 Nice Cedex 4, France and Scardia, M. Osservatorio Astronomico di Brera, Via E. Bianchi 46, 23807 Merate, Italy and Mignard, F. Observatoire de la Cˆote d’Azur, CERGA, UMR 6527, Avenue Copernic, 06130 Grasse, France and Carbillet, M.
    [Show full text]
  • Level 2 Earth and Space Science (91192) 2015
    91192 911920 SUPERVISOR’S2 USE ONLY Level 2 Earth and Space Science, 2015 91192 Demonstrate understanding of stars and planetary systems 9.30 a.m. Tuesday 10 November 2015 Credits: Four Achievement Achievement with Merit Achievement with Excellence Demonstrate understanding of stars and Demonstrate in-depth understanding of Demonstrate comprehensive planetary systems. stars and planetary systems. understanding of stars and planetary systems. Check that the National Student Number (NSN) on your admission slip is the same as the number at the top of this page. You should attempt ALL the questions in this booklet. If you need more room for any answer, use the extra space provided at the back of this booklet and clearly number the question. Check that this booklet has pages 2 –11 in the correct order and that none of these pages is blank. YOU MUST HAND THIS BOOKLET TO THE SUPERVISOR AT THE END OF THE EXAMINATION. TOTAL ASSESSOR’S USE ONLY © New Zealand Qualifications Authority, 2015. All rights reserved. No part of this publication may be reproduced by any means without the prior permission of the New Zealand QualificationsAuthority. 2 RESOURCE The Hertzsprung-Russell (HR) Diagram Blue or Blue-white White Yellow Red-orange Red 106 Rigel Supergiants Zeta Eridani Deneb Polaris Betelgeuse 4 10 Main Sequence Antares Spica Canopus Regulus Mizar 102 Vega Giants Aldebaran Brightness Altair Procyon A Pollux Mira 1 Sun Alpha Centauri A Tau Ceti 10–2 Alpha Centauri B Sirius B 10–4 White Dwarfs Procyon B Barnard’s Star 50 000 20 000 10 000 6000 5000 3000 Increasing Surface Temperature (K) Source (adapted): http://www.slideshare.net/shayna_rose/hr-diagrams Earth and Space Science 91192, 2015 3 This page has been deliberately left blank.
    [Show full text]
  • Mira: a Distance Indicator
    Outlines Outlines Goal Goal Mira: A distance indicator Kamal Jnawali Rochester Institute of technology Astronomical observation technique and instrumentation 12/10/2013 Kamal Jnawali Mira: A distance indicator § Classification § Physics of pulsation § Why should we care to variable stars § Goal- Distance to Mira star § Data § Calculation § Results § Future work Outlines Outlines outlines Goal Goal § Introduction Kamal Jnawali Mira: A distance indicator § Physics of pulsation § Why should we care to variable stars § Goal- Distance to Mira star § Data § Calculation § Results § Future work Outlines Outlines outlines Goal Goal § Introduction § Classification Kamal Jnawali Mira: A distance indicator § Why should we care to variable stars § Goal- Distance to Mira star § Data § Calculation § Results § Future work Outlines Outlines outlines Goal Goal § Introduction § Classification § Physics of pulsation Kamal Jnawali Mira: A distance indicator § Goal- Distance to Mira star § Data § Calculation § Results § Future work Outlines Outlines outlines Goal Goal § Introduction § Classification § Physics of pulsation § Why should we care to variable stars Kamal Jnawali Mira: A distance indicator § Data § Calculation § Results § Future work Outlines Outlines outlines Goal Goal § Introduction § Classification § Physics of pulsation § Why should we care to variable stars § Goal- Distance to Mira star Kamal Jnawali Mira: A distance indicator § Calculation § Results § Future work Outlines Outlines outlines Goal Goal § Introduction § Classification § Physics of pulsation
    [Show full text]
  • Spectroscopic and Photometric Study of the Mira Stars SU Camelopardalis and RY Cephei
    Spectroscopic and photometric study of the Mira stars SU Camelopardalis and RY Cephei David Boyd BAA Variable Star Section, West Challow Observatory, OX12 9TX, UK Email: [email protected] Abstract Miras are fascinating stars. A kappa-mechanism in their atmosphere drives pulsations which produce changes in their photometric brightness, apparent spectral type and effective temperature. These pulsations also drive the formation of Balmer emission lines in the spectrum. This behaviour can be observed and investigated with small telescopes. We report on a three- year project combining spectroscopy and photometry to analyse the behaviour of Mira stars SU Cam and RY Cep, and describe how their brightness, colour, spectral type, effective temperature and Balmer emission vary over four pulsation cycles. Keywords: Mira variable stars; spectroscopy; photometry; stars: individual (RY Cep, SU Cam) 1. Mira stars Oxygen-rich Miras are pulsating red giant stars with spectral type late K or M and luminosity class III. Mira variables are evolved stars. They begin their thermonuclear lives burning hydrogen in their core on the main sequence of the Hertzsprung-Russell (HR) Diagram. This hydrogen burning produces helium ash which accumulates in the core. Once the hydrogen in the core runs out, the helium-rich core begins to collapse, which heats the hydrogen-rich shell on top of it until the hydrogen ignites in that shell. While hydrogen is burning in this shell, energy is dumped into the outer envelope of the star causing the outer layers to expand and cool, resulting in the star rising to the upper-right on the HR Diagram, the so-called Red Giant Branch.
    [Show full text]