Observations Et Mémoires Sur La Physique, Sur L'histoire Naturelle Et Sur Les Arts Et Métiers

Total Page:16

File Type:pdf, Size:1020Kb

Observations Et Mémoires Sur La Physique, Sur L'histoire Naturelle Et Sur Les Arts Et Métiers OBSERVATIONS SUR LA PHYSIQUE, SUR L'HISTOIRE NATURELLE ET SUR LES ARTS, AVEC DES PLANCHES EN T A I L L E - D O U C E; DÉDIÉES A M^ LE COMTE D'ARTOIS; F j4 R AI. rAhbé Ro zi E R 3 de plufieurs Académies ; par M. J. A. Mon CEI U jeune , Chanoine Régulier de Sainte Geneviève j des Académies Royales des Sciences de Rouen ^ de Dijon ^ de Lyon , £*«;. (S'c. & par M. de la Met u er i e ^ Docleur en Médecine j de l'Académie de Dijon. II II ^Illl m IIPMIIWIllll IBIIII IIIMWIWIIII I I J u I L L E T 17S5. TOME XXIX. A P A R I S, AU BUREAU du Journal dePhyfique, rue & hôtel Serpente, M. D c c. L X X X V I. AVEC P Rlf^ILÈ GE DU ROI. $.qqù- ' *^A •*:•,. -y 'hk\. ^•:>^ OBSERVATIONS MÉMOIRESE T SUR LA PHYSIQUE, SUR L'HISTOIRE NATURELLE, ET SUR LES ARTS ET MÉTIERS. MEMOIRE Sur les causes de la fermentation vineuse; £x sur les moyens de perfectionner la qualité des vins v Par M. le Marquis DE BuLLiON. JlLN faifant évaporer du moût de raifin , on obtient un fel qui a toutes \<:s apparences du tartre ; fi on le combine avec l'alkali de la foude , il forme le fel de Seignette. Outre ce premier fel , on obtient encore par i'évaporation du jus des raifins , une grande quantité de fucre. Pour le purifier , il faut d'abord extraire le tartre & faire enfuite évaporer le n)ont jufqu'à confiftance de Tome ^XIX, Part. II, 1786. JUILLET, A 2 '\ 4 OBSERVATIONS SUR LA PHYSIQUE, firop épais. On lailTe pendant (ix mois le firop à la cave; au bout Je ce rems, on trouve le fucre criftaJliié confufément. En lavant ce fucre avec (!e refpric-de-vin , la patrie colorante fe fépare , & il devient trts-blanc. Les raifins rendent plus ou moins de fucre , félon leurs qualités 6c fuivant que les années ont été plus ou moins chaudes. Voulant connoître (i le verjus donnoir le même fel le raifîn j'ai que , pris du verjus dont j'ai lait évaporer le fuc j & j'ai obtenu du tartre en cnllaux beaucoup plus gros & en plus grande quantité que je n'en avois letiré du vin. Le tartre conibiné avec l'alkali de la foude , a formé du fel de Seignette; la liqueur qui reftoit avoit une faveur acide. Il paroît que le tartre entre pour beaucoup dans la formation du raifin ; car lorfque le fruit ell niijr , on obtient moitié moins de tartre, & plus il fournit de fiicte , plus le tartre diminue. L'eïiftence de ce dernier fel dans le moût me paroît abfolument nécelLiire pour déterminer la fermentation vineufe : l'expéiience f.ùvante me paroît propre à le démontrer. Apres avoir fait évaporer du moût pour en féparer le tartre, j'ai ajouté l'eau que je lui avois enlevée par l'évaporation ; je l'ai abandonné à lui- jrème pendant trois mois, à une chaleur de i 5 à 1(5 degrés du Thermo- nic:rc de Réaumur. Il n'y a point eu d'apparence de teimentarion ; mais une pareille quantité de moût que j'ai traitée de même , & à qui j'ai rendu l'eau (i) & le tartre que je lui avois enlevés, a fermenté dès Is lendemain avec au'ant de force que le moût ordinaire. La fermentation achevée, j'ai diflillé le vin & j'en ai retiré une affez gtande quantité d'eau-de-vie. Voulant favoir fi les acides végétaux produifoienr la fermentation , j'ai ajouté à du moût que j'avois d'abord privé de fon tartre, une quan- tité égale de fel d'ofeille ; il ne s'eft point fait de fermentation. J'ai ajouté à ce mélange le tattre que j'avois enlevé , la fermentation s'el établie en vingt quatre heures , & par la diftillation j'ai obtenu beaucoup d'eau-de-vie. Dans une quantité donnée de moûr', j'ai doublé la dofe du tartre ; la fermentation s'eft établie comme à l'ordinaire , ^ la diftillation m'a fourni moitié plus d'eau-de-vie que dans la précédente expérience. Pour m'alTurer fi le tartre ordinaire produiroit le même effet fur du j'ai moût, que celui qu'on f étire par l'évaporation du jus de raifin , ajouté à du moû: que j'avois privé de fon tartre , une égale quantité decrcmede tartre du commerce ; la fermentation s'eft établie allez promptement, & par la diftillation j'ai obtenu les mêmes réfultats: en doublant ainfila dofe de crème de tartre, j'ai obtenu moitié plus d'eau-de-vie. (t) Il faut faire diiToudre le tartre dans une quantité fuffifante de moût qu'on fïù oaulllit dans un chaudiona SUR VEUT, NATURELLE ET LES ARTS. f Lorfcjue j'ai ajouré du fucte & de la crème de rarrre à da nioûc , j'ai obtenu après la fermentation les trois quarts en fus de la quantité d'eP- prie ardent qu'on retire lorfqu'on diftille du vin auquel on n'a ajouté ni fucre ni tartre. J'ai ajouté du fucre à du moût dont j'avois ôté le tartre , il n'a pas fermenté. Le jus de railîti que j'ai analyfé a produit, par pinte , environ quatre gros de fucre & un demi-gros de tartre. J'ai fait fubir la fermentation vineulè à du jus de cerifès, & après l'avoir diltillé ajoutant à , je n'ai obtenu qu'un douzième d'eau-de-vie. En ce jus du fucre & du tartre dans les proportions de deux gros de fucre Se d'un gros de tartre par pinte de jus , j'ai obtenu un quart en fus d'eau-de-vie. J'ai mis à fermenter pendant le mois, d'Août aernier 120 pintes d'eau, 120 onces de fucte Si. une livre & demie de crème de tartre; le mélange a refté trois mois fans apparence de fermentation. J'ai jugé, d'après cette expérience, qu'il falloir autre chofe que de l'eau, du fucre & du tartre pour obtenir la fermentation vineufe , & que la matière extradive réfineufe éroit abfolument néceffaire. J'ai donc ajouté à un mélange femblable au précédent feize livres de feuilles de viçne pilées , le mélange a fermenté avec force pendant quinze jours ; je l'ai enfuire diftillé & j'ai obtenu quatre pintes d'eau-de-vie. J'ai mis à fer- menter la même quantité d'eau & de feuilles de vigne , fans fucre Sz fans tartre , le mélange a fermenté doucement, & je n ai obtenu à la diftilla- tion que de l'eau acidulée. J'ai répété ces expériences en grand , en ajoutant dans la cuve , fur j'OO pintes du moût , dix livres de belle cafTonnade, & quatre livres de crème de tartre ; la fermentation s'eft bien établie , mais elle a été moins lumultueufe & elle a duré quarante-huit heures de plus que dans les cu- vées qui ne contenoient que le moût fimple. J'ai remarqué plufieurs fois que lorfque le moût ne contient pas allez parties la de fucrées , fermentation eft extrêmement tumultueufe & rapide ; le vin qui en provient efl plat, & ne donne prefque pas d'efprit inflam- mable ; au lieu que lorfque le moût eft gras & ondueux , la fermentation n'eft pas fi tumultueufe & dure plus long-tems : alors le vin eft plus vigoureux , Se rend à la diftillation beaucoup plus d'efprit ardent que lorfqu'il contient moins de parties fucrées. Le moût que j'ai mis à fermenter avec la caiïbnnade Si la crème de tartre, m'a donné un vin de bonne qualité. Si il m'a rendu par ladilHl- lation , fur fept pièces , une pièce & demie d'efprit ardent à 20 degrés à l'aréomètre de M. Baume ; au lieu que le vin fait fans fucre Si fans crème de tartre , ne m'a produit qu'un douzième d'eau-de-vie , marquant de même à l'aréomètre. Je ne fuis pas de l'avis des perfonnes qui penfent qu'il faut attendre 6 OBSERFATIONS SUR LA PHYSIQUE, lix ou huit mois , & même plus , pour diftiller les vins que l'on veut convertir en eau-de-vie : les expériences que j'ai faites & que je vais rapporter, m'ont prouvé combien cette pratique étoit fufceptible d'in- convéïiiens. J'ai diftiilé de mois en mois les mêmes vins , & plus j'ai retardé l'opé- ration , moins j'ai obtenu d'elprit ardenr. L'époque où il convient de diftiller les vins, n'eft pas lorfque la fer- mentation eft tumultueufe , car le vm n'ell pas encore achevé ; mais lorlque la fermentation devient tranquille & que la liqueur s'éclaircit, le vin efl: fait alors , lîi il contient autant d'elprit ardent qu'il en peut contenir. 11 efl: certain que tous les mois on trouve du vide dans les tonneaux ; ee vide me paroït ne devoir être attribué qu'à l'évaporation de l'efpnc ardent qui , étant plus fufceptible de fe raréfier que les autres parties conllituantes du vin , doit néceffairement s'évaporer le premier. Pour éviter les pertes qui réfuitent de cette évaporation , il efl aifé de voir > été dit qu'il diftiller les dès l'inftant oij ils d'après ce qui a , faut vins commencent à s'éclaircir ; c'eft le moment le plus favorable , puifque Il l'on attend plus long-tems , on obtient moins d'efprit ardent. La diflblution du tartre dans le moût eft fur-tout très-nécefTaire dans les raifins qui contiennent beaucoup de fucre ; le tartre fe décompofe ÔC fe change , au moyen de la fermentation , en efprit ardent.
Recommended publications
  • EPSC2017-260, 2017 European Planetary Science Congress 2017 Eeuropeapn Planetarsy Science Ccongress C Author(S) 2017
    EPSC Abstracts Vol. 11, EPSC2017-260, 2017 European Planetary Science Congress 2017 EEuropeaPn PlanetarSy Science CCongress c Author(s) 2017 Formation of recurring slope lineae on Mars by rarefied gas-triggered granular flows F. Schmidt (1), F. Andrieu (1), F. Costard (1), M. Kocifaj (2,3) and A. G. Meresescu (1) (1) GEOPS, Univ. Paris-Sud, CNRS, Université Paris-Saclay, Rue du Belvédère, Bât. 504-509, 91405 Orsay, France (2) ICA, Slovak Academy of Sciences, Dubravska Road 9, 845 03 Bratislava, Slovak Republic (3) Faculty of Mathematics, Physics, and Informatics, Comenius University, Mlynska dolina, 842 48 Bratislava, Slovak Republic (frederic.schmidt@@u-psud.fr) Abstract been excluded near the crater rim [3]. In addition, the actual amount of atmospheric water required to re- Recurring Slope Linae or RSL are seasonal dark charge the RSL's source each year seems not features appearing when the soil reaches its sufficient. The precise thermal calculations using maximum temperature. They appear on various THEMIS measurement instrument show no evidence slopes at the equator of Mars, in orientation of liquid water [6] and there is no direct evidence of depending on the season. Today, liquid water related liquid water from CRISM, but only indirect detection processes have been promoted, such as deliquescence [4]. of salts. Nevertheless external atmospheric source of water is inconsistent with the observations. Internal We propose here a re-interpretation of the RSL source is also very unlikely. We take into features and a new process to explain the RSL consideration here the force occurring when the sun activity without involving any volatiles.
    [Show full text]
  • Active Gullies and Mass Wasting on Equatorial Mars
    EPSC Abstracts Vol. 12, EPSC2018-457-1, 2018 European Planetary Science Congress 2018 EEuropeaPn PlanetarSy Science CCongress c Author(s) 2018 Active Gullies and Mass Wasting on Equatorial Mars Alfred S. McEwen (1), Melissa F. Thomas (1), Colin M. Dundas (2) (1) LPL, University of Arizona, Tucson, Arizona, USA, (2) USGS, Flagstaff, Arizona, USA Abstract Previously-reported equatorial topographic changes include slumps on the colluvial fans below active Mid- to high-latitude gully activity has been directly RSL sites in Garni Crater [5] and in Juventae Chasma observed at hundreds of locations on Mars [1]. Here [7]. These slumps all occurred near the coldest time we describe equatorial locations (25 latitude) with of year for these locations, Ls 0-120, which is gully-like or other topographic changes in before- opposite to the seasonality of RSL. and-after images from HiRISE. This activity is concentrated in sulfate-rich sedimentary units, which We are in the process of searching HiKER pairs over places constraints on the age and mechanical steep equatorial slopes, as well as acquiring new properties of these deposits. Hydrated sulfates may HiKER images. From the effort to date we have found that equatorial changes are most common in be the largest equatorial reservoir of H2O on Mars, and their friability makes them more attractive for in- sedimentary layers that may be rich is sulfates situ resource utilization (ISRU). according to mapping by orbital spectrometers [8], and have concentrated our search in these regions. 1. Introduction The most impressive changes we have found are on Mid- to high-latitude gully activity can be explained bright layered mounds in Ganges Chasma.
    [Show full text]
  • And Leanne Brown Eat Well on $4/Day
    EAT WELL ON $4/DAY GOOD AND CHEAP LEANNE BROWN Salad ...............................................42 Broiled Eggplant Salad ....................................43 Kale Salad ..................................................... 44 NEW Ever-Popular Potato Salad ........................46 Introduction ....................5 NEW Spicy Panzanella......................................49 Text, recipes, and most photographs and A Note on $4/Day ...........................................6 Cold (and Spicy?) Asian Noodles .....................50 design by Leanne Brown, in fulfillment My Philosophy ................................................7 Taco Salad ......................................................52 of a final project for a master’s degree in Tips for Eating and Shopping Well ...................8 Beet and Chickpea Salad ................................53 First, I’d like to thank my husband, Food Studies at New York University. Pantry Basics .................................................12 Broccoli Apple Salad .......................................54 Dan. Without him this book would not NEW Charred Summer Salad ............................55 exist. Thank you also to my wonderful This book is distributed under a family and friends, who believed in this Creative Commons Attribution- idea before anyone else. And thank you NonCommercial ShareAlike 4.0 license. Breakfast ..............................14 to everyone who has taken the time to For more information, visit Tomato Scrambled Eggs .................................15 Snacks,
    [Show full text]
  • Modeling Floods in Athabasca Valles, Mars, Using CTX Stereo Topography
    Recurring Slope Lineae (RSL) near candidate Mars 2020 landing sites Alfred McEwen, Colin Dundas, Matt Chojnacki, James Wray August 2015 NOTE ADDED BY JPL WEBMASTER: This content has not been approved or adopted by, NASA, JPL, or the California Institute of Technology. This document is being made available for information purposes only, and any views and opinions expressed herein do not necessarily state or reflect those of NASA, JPL, or the California Institute of Technology. • Dark flows on steep, low-albedo slopes, What are RSL? typically associated with bedrock and small gullies. – Few meters wide, hundreds of meters long. – Not found on most steep rocky slopes. • Recur annually at nearly the same location in multiple Mars years. • Grow incrementally over a period of several months, then fade. • Fans have unique spectral properties (Ojha et al. 2013) • RSL in the southern mid-latitudes generally grow from late spring RSL Seasonality through mid-summer. – Concentrated on equator-facing slopes. • RSL in Valles Marineris often follow the sun: growth occurs on south-facing slopes in southern summer and north-facing slopes in northern summer. • RSL in N hemisphere grow mainly in very early spring (Ls 0) • Associated with peak diurnal temperatures usually >250 K. • Strongly suggests that RSL are driven by a volatile. Leading explanation is flow of (salty) liquid water, but source is unknown, and no direct detection of water. Garni crater on floor of Melas Chasm Slumping associated with RSL seen in Garni crater and 2 sites in Juventae Chasm Very Rapid Initial Lengthening Max >20 m/sol Schaefer et al., 2015, LPSC Very early (Ls <194) start of RSL activity in Hale crater • Need to check temperatures, maybe <250 K Acidalia RSL exactly match from year-to-year.
    [Show full text]
  • Report 2017 Research, Education and Public Outreach Activity Report 2017 Research, Education and Public Outreach
    Activity Report 2017 Research, Education and Public Outreach Activity Report 2017 Research, Education and Public Outreach Nathalie A. Cabrol Director, Carl Sagan Center, Pamela Harman, Acting Director, Center for Education Rebecca McDonald Director, Center for Outreach Bill Diamond President & CEO The SETI Institute: 189 N Bernardo Avenue Suite 200, Mountain View, CA 94043. Phone: (650) 961-6633 Activity Report 2017 Research, Education and Public Outreach TABLE OF CONTENTS Peer-reviewed publications 10 Conferences: Abstracts & Proceedings 18 Technical Reports & Data Releases 29 Outreach, Media Coverage, Web Stories & Interviews 31 Invited Talks (Professional & Public) 39 Highlights, Significant Events & Activities 46 Fieldwork 52 Honors & Awards 54 Missions, Observations & Strategic Planning 56 Acknowledgements 60 The SETI Institute: 189 N Bernardo Avenue Suite 200, Mountain View, CA 94043. Phone: (650) 961-6633 Activity Report 2017 Research, Education and Public Outreach FROM THE SETI INSTITUTE President and CEO Dear friends, The scientists, educators and outreach professionals of the SETI Institute had yet another banner year of productivity in 2017. We are delighted to present our 2nd annual report, cataloging the research and education programs of the Institute, as well as the myriad of mainstream media stories about our people and our work. Among the highlights from this year’s report are 147 peer-reviewed articles in scientific journals, 225 conference proceedings and abstracts, 172 media stories and interviews, and 177 invited talks.
    [Show full text]
  • Försvarsmaktens Årsredovisning 2006 Huvuddokument
    Försvarsmakten Årsredovisning 2006 FOTO: FÖRSVARETS BILDBYRÅ / ANDREAS KARLSSON 107 85 Stockholm. Telefon: 08-788 75 00. Fax: 08-788 77 78. Webbplats: www.mil.se 2007-02-20 23 386: 63006 Försvarsmaktens ÅRSREDOVISNING 2006 Resultatredovisning, resultaträkning, balansräkning, an- slagsredovisning, finansieringsanalys och noter 2007-02-20 23 386: 63006 INNEHÅLLSFÖRTECKNING ÖVERBEFÄLHAVARENS KOMMENTAR.....................................................................................................1 OPERATIV FÖRMÅGA M.M............................................................................................................................ 4 UTGÅNGSPUNKTER FÖR REDOVISNINGEN............................................................................................................ 4 FÖRSVARSMAKTENS OPERATIVA FÖRMÅGA ........................................................................................................ 4 INSATSORGANISATIONEN .................................................................................................................................... 7 RESULTATREDOVISNING .............................................................................................................................. 9 LÄGET I GRUNDORGANISATIONEN....................................................................................................................... 9 UTBILDNING, PLANERING M.M. ......................................................................................................................... 11 MATERIEL, ANLÄGGNINGAR
    [Show full text]
  • Modern Mars' Geomorphological Activity
    Title: Modern Mars’ geomorphological activity, driven by wind, frost, and gravity Serina Diniega, Ali Bramson, Bonnie Buratti, Peter Buhler, Devon Burr, Matthew Chojnacki, Susan Conway, Colin Dundas, Candice Hansen, Alfred Mcewen, et al. To cite this version: Serina Diniega, Ali Bramson, Bonnie Buratti, Peter Buhler, Devon Burr, et al.. Title: Modern Mars’ geomorphological activity, driven by wind, frost, and gravity. Geomorphology, Elsevier, 2021, 380, pp.107627. 10.1016/j.geomorph.2021.107627. hal-03186543 HAL Id: hal-03186543 https://hal.archives-ouvertes.fr/hal-03186543 Submitted on 31 Mar 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Title: Modern Mars’ geomorphological activity, driven by wind, frost, and gravity 2 3 Authors: Serina Diniega1,*, Ali M. Bramson2, Bonnie Buratti1, Peter Buhler3, Devon M. Burr4, 4 Matthew Chojnacki3, Susan J. Conway5, Colin M. Dundas6, Candice J. Hansen3, Alfred S. 5 McEwen7, Mathieu G. A. Lapôtre8, Joseph Levy9, Lauren Mc Keown10, Sylvain Piqueux1, 6 Ganna Portyankina11, Christy Swann12, Timothy N. Titus6,
    [Show full text]
  • Program to Technical Sessions Thirtieth Lunar and Planetary
    LUNAR AND PLANETARY SCIENCE CoNFERENCE MARCH 15-19, 1999 HOUSTON, TEXAS SPONSORED BY NATIONAL AERONAUTICS AND SPACE ADMINISTRATION L UNAR AND PLANETARY INSTITUTE NASA JOHNSON SPACE CENTER Program to Technical Sessions THIRTIETH LUNAR AND PLANETARY SCIENCE CONFERENCE March 15-19, 1999 Houston, Texas Sponsored By National Aeronautics and Space Administration Lunar and Planetary Institute NASA Johnson Space Center Program Committee Carl Agee, Co-Chair, NASA Johnson Space Center David Black, Co-Chair, Lunar and Planetary Institute Cone! Alexander, Carnegie Institution of Washington Carlton Allen, Lockheed Martin Donald Bogard, NASA Johnson Space Center Harold Connolly, Jr., California Institute ofTechnology Cassandra Coombs, College of Charleston John Grant, NASA Headquarters Friedrich Horz, NASA Johnson Space Center Michael Kelley, Rensselaer Polytechnic Institute Walter Kiefer, Lunar and Planetary Institute David Kring, University of Arizona Renu Malhotra, Lunar and Planetary Institute Timothy Parker, Jet Propulsion Laboratory Frans Rietmeijer, University of New Mexico Graham Ryder, Lunar and Planetary Institute Susan Sakimoto, NASA Goddard Space Flight Center Paul Spudis, Lunar and Planetary Institute Meenakshi Wadhwa, Field Museum of Natural History, Chicago LPI ROOM C 145 FIRST FLOOR Robert R. Gilruth Recreation Facility Building 207 ROOM B ,.. SECOND FLOOR Robert R. Gilruth Recreation Facility Building 207 CONFERENCE INFORMATION Registration-LPI Open House A combination Registration/Open House will be held Sunday, March 14, 1999, from 5:00p.m. until 8:00p.m. at the Lunar and Planetary Institute. Registration will continue in the Gilruth Center, Monday through Thursday, 8:00a.m. to 5:00p.m. A shuttle bus will be available to transport participants between the LPI and local hotels Sunday evening from 4:45 p.m.
    [Show full text]
  • Buscando a Vida Fora Da Terra: Marte
    AGA 0316 Buscando a vida fora da Terra: Marte Why Mars is important for Astrobiology? • Relative proximity – first planet where we can realistically test in loco for biological potential and life • Mars is in many ways similar to Earth. Rocky, terrestrial planet in the inner part of the Solar system with an atmosphere. Yet it is also very different. • Therefore if life is found there it would be a very strong argument in favor of life being an ubiquitous phenomenum in the galaxy History of Martian “Civilization” • In 1784 William Herschel (famous for the discovery of Uranus) claimed that Mars has an atmosphere and is therefore probably inhabited. • Giovanni Schiaparelli claimed to see a network of 79 linear channels (canali) in 1877 • Percival Lowell opened Lowell Observatory in Flagstaff, Arizona in 1894. (claimed to see 200 canals) • Lowell suggested that canals were built by an ancient martian civilization. Giovanni Schiaparelli William Herschel Percival Lowell • In 1965 “Mariner 4” spacecraft send a few dozen good pictures of the Martian surface – no evidence for intelligent life. Mars is in fact a cold and dry planet! 6 7 9 1960’s 1970’s 1990’s 2000’s Pathfinder & Sojourner Spirit + Opportunity Mars Fact Sheet Parameter Value Units Diameter 6787 km Average Distance From the Sun 1.524 AU EARTH’S Atm Average Temperature 210 K (-81 F) CO2 0.04% 3 Mean Density 3.94 g/cm N2 78,1% Rotational Period 24.6229 hours Ar 0.93% Mean Atmospheric Pressure 0.007 bars H2O 0 – 4 % Surface Gravity 3.63 m/s2 Tilt of Axis 25.2 degrees Orbit period 687 days Atmospheric Components Element Symbol Percentage Carbon Dioxide CO2 95.32 Nitrogen N2 2.7 Argon Ar 1.6 Water H2O 0.03 Earth-Mars Similarities • Position in the Solar system – Martian orbit is 1.5 A.U.; Earth’s is 1 A.U.
    [Show full text]
  • Charles R. Reeve Millbum, N
    30,32,34,35,36,37 and 38 Mechanic St., Newark The Oldest W holesale I V.EGBERT tCO. Supply House In Newark IRVINGTON (1920) DIRECTORY 801 PFEFFEB PILKINGTON — Eleanor M elk PruInsCo bds 512 S Grove Pilkington George H carp h 130 Park pi — Frank W shipper bds 512 S Grove — George H Jr elk Town Hall bds 130 Park *V — Harry H salesman bds 512 S Grove Pi Pfeifer Barbara Mrs h 71 Franklin ter Pillsbury John T h 1281 Clinton av — Elizabeth wid Otto h 78 Fern av Pinch Emma E wid Charles W rem to Newark > — Frank rem to Newark Pinkinson Fannie Mrs h 172 2 2 d — Fred shipping elk h 51 Washington ar — John lab bds 172 22d — Herman saloon 874 Clinton av h do Pinney William H elk h 1172 Clinton av — John ironwkr h 255 Ellis av Pins Joseph brewer h 344 17th av 3 — John W plumber bds 78 Fern a v Pinto Michele far h 521 Union av — Julius steamfitter bds 251 Ellis av Pisalsky Helen Mrs h 737 Springfield av H — Lillian jeweler bds 78 Fern a v — Herbert carp bds 737 Springfield av — Louisa Mrs h 251 Ellis av — Herman mech bds 737 Springfield av Pfeiffer Carl waiter h 24 20th av Pischel Ernest h 370 21st — Christian F h 42 Rich —-William A butcher h 447 14th av in — George h 186 Ellis av Pischottel Louis treas Reliable Tool Co 33 ( 6 — Henrietta wid Cort bds 311 21st Ellis av h 33 Alpine — Henry h 46 Florence av Pitrosky Maryan baker h 30 Arverne ter e — Henry Jr letter carrier bds 46 Florence av Pittinger John L h 303 21st — John H toolmkr h 380 21st — Mary S bds 19 Howard Pfeil A Leslie bds 518 Nye av — Theodore F leather cutter h 19 Howard — Charles
    [Show full text]
  • African Studies in French for the Elementary Grades: Phase II of a Twinned Classroom Approach to the Teaching of French in the Elementary Grades
    DOCUMENT RESUME ED 066 993 48 FL 003 581 AUTHOR Jonas, Sister Ruth TITLE African studies in French for the Elementary Grades: Phase II of a Twinned Classroom Approach to the Teaching of French in the Elementary Grades. Volume II, Tapescripts and Essays. INSTITUTION College of Mount St. Joseph-on-the-Ohio, Ohio. SPONS AGENCY Institute of International Studies (DHEW/OE), Washington, D.C. BUREAU NO BR-9-7743 PUB DATE Sep 72 CONTRACT OEC-0-9-097743-4408-014 NOTE 274p.; Final Report EDRS PRICE MF-S0.65 HC-$9.87 DESCRIPTORS *African Culture; Audiolingual Methods; Audiovisual Instruction; Cross Cultural Studies; *Cultural Education; Educational Experiments; Elementary Education; *Fles; Fles Programs; *French; *Instructional Materials; Language Instruction; Language Programs; Language Skills; Mossi; Second Language Learning; Student Evaluation; Student Motivation; Teaching Methods ABSTRACT This experiment examines a new psychological approach . to foreign language study at the elementary school level. A principal objective is to determine the nature and importance of second language learning motivation in monolingual societies devoid of the daily living example of the target language and culture. A five-year French language sequence, consisting of an exchange of 1,200 correlated slides and tapes of the participants in the program and student- and teacher-made instructional materials, is described in the report. The text contains 67 units of materials corresponding to slides of Voltan and American culture. An appendix discussing how the French acquired Upper Volta is included. For the companion document see FL 003 582. (EL) U.S. DIPAITMINI OF KWH, 10110110N & WINN OFFICI OF EDUCATION IMSDOCUMNIHMUMIRIODUUDMILYMRKMMFROMMI HISONOROMMUNNOMMM611 POWSWVIMAROPMMM re\ STATED DO NM MUMMY REPRESENT OFFICIAL OFFICI Of MAHN CT POSITION ORPOLICY.
    [Show full text]
  • Quantitative Mapping and Evaluation of Wet and Dry Formation Mechanisms of Recurring Slope Lineae (Rsl) in Garni Crater, Valles Marineris, Mars
    Ninth International Conference on Mars 2019 (LPI Contrib. No. 2089) 6098.pdf QUANTITATIVE MAPPING AND EVALUATION OF WET AND DRY FORMATION MECHANISMS OF RECURRING SLOPE LINEAE (RSL) IN GARNI CRATER, VALLES MARINERIS, MARS. D. E. Stillman1, B. D. Bue2, K. L. Wagstaff2, K.M. Primm1, T. I. Michaels3, and R. E. Grimm1, 1Dept. of Space Studies, Southwest Research Institute, 1050 Walnut St #300, Boulder, CO 80302 ([email protected]), 2Jet Propul- sion Laboratory, California Institute of Technology, 3SETI Institute Overview: RSL are narrow (0.5–5 m) low-albedo MY31 and MY32 and were even more significant in features that incrementally lengthen down steep slopes MY33 and MY34 before the dust storm. during warm seasons. As hundreds of RSL can exist 2) After the MY34 dust storm, RSL formed on eve- within a single HiRISE image, we developed the Map- ry intercardinal and cardinal slope-facing direction. ping and Automated Analysis of RSL (MAARSL) MAARSL data from MY31 and MY32 suggests that system to reduce the effort involved in manually map- RSL would have normally formed on only three of the ping each RSL in each image. MAARSL analyzes a set eight slope orientations. Additionally, numerous RSL of orthorectified HiRISE images and Digital Elevation tributaries are detected. Map (DEM) to detect candidate RSL, compute de- 3) MAARSL results demonstrated that RSL scriptive statistics, and characterize changes over time. lengthening and fading occur concurrently on the same The results of MAARSL are then used to evaluate dry slopes and even on the same RSL (Fig. 1&2). and wet RSL formation mechanisms.
    [Show full text]