Qt8sq6520t.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Lawrence Berkeley National Laboratory Recent Work Title Heavy quarkonium: Progress, puzzles, and opportunities Permalink https://escholarship.org/uc/item/8sq6520t Journal European Physical Journal C, 71(2) ISSN 1434-6044 Authors Brambilla, N Eidelman, S Heltsley, BK et al. Publication Date 2011 DOI 10.1140/epjc/s10052-010-1534-9 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Eur. Phys. J. C (2011) 71: 1534 DOI 10.1140/epjc/s10052-010-1534-9 Review Heavy quarkonium: progress, puzzles, and opportunities ∗ † ∗ † ∗ † ∗ † † † † N. Brambilla1, , , S. Eidelman2,3, , ,B.K.Heltsley4,a, , , R. Vogt5,6, , ,G.T.Bodwin7, , E. Eichten8, , A.D. Frawley9, , † † † † † † † A.B. Meyer10, , R.E. Mitchell11, , V. Papadimitriou8, , P. Petreczky12, ,A.A.Petrov13, ,P.Robbe14, ,A.Vairo1, , A. Andronic15, R. Arnaldi16, P. Artoisenet17,G.Bali18, A. Bertolin19, D. Bettoni20, J. Brodzicka21, G.E. Bruno22, A. Caldwell23,J.Catmore24, C.-H. Chang25,26, K.-T. Chao27, E. Chudakov28, P. Cortese16, P. Crochet29, A. Drutskoy30, U. Ellwanger31, P. Faccioli32, A. Gabareen Mokhtar33, X. Garcia i Tormo34, C. Hanhart35, F.A. Harris36, D.M. Kaplan37, S.R. Klein38,H.Kowalski10, J.-P. Lansberg39,40,E.Levichev2, V. Lombardo41, C. Lourenço42, F. Maltoni43, A. Mocsy44, R. Mussa16, F.S. Navarra45, M. Negrini20,M.Nielsen45,S.L.Olsen46, P. Pakhlov47, G. Pakhlova47, K. Peters15,A.D.Polosa48,W.Qian49,14,J.-W.Qiu12,50, G. Rong51, M.A. Sanchis-Lozano52, E. Scomparin16, P. Senger15,F.Simon23,53, S. Stracka41,54, Y. Sumino55, M. Voloshin56, C. Weiss28, H.K. Wöhri32, C.-Z. Yuan51 1Physik-Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany 2Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia 3Novosibirsk State University, Novosibirsk 630090, Russia 4Cornell University, Ithaca, NY 14853, USA 5Physics Division, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA 6Physics Department, University of California at Davis, Davis, CA 95616, USA 7High Energy Physics Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA 8Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510, USA 9Physics Department, Florida State University, Tallahassee, FL, 32306-4350, USA 10Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany 11Indiana University, Bloomington, IN 47405, USA 12Physics Department, Brookhaven National Laboratory, Upton, NY 11973-5000, USA 13Department of Physics and Astronomy, Wayne State University, Detroit, MI 48201, USA 14Laboratoire de l’Accélérateur Linéaire, IN2P3/CNRS and Université Paris-Sud 11, Centre Scientifique d’Orsay, BP 34, 91898 Orsay Cedex, France 15GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany 16INFN Sezione di Torino, Via P. Giuria 1, 10125 Torino, Italy 17Department of Physics, The Ohio State University, Columbus, OH 43210, USA 18Institut für Theoretische Physik, Universität Regensburg, 93040 Regensburg, Germany 19INFN Sezione di Padova, Via Marzolo 8, 35131 Padova, Italy 20Università di Ferrara and INFN Sezione di Ferrara, Via del Paradiso 12, 44100 Ferrara, Italy 21Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland 22Università di Bari and INFN Sezione di Bari, Via Amendola 173, 70126 Bari, Italy 23Max Planck Institute for Physics, München, Germany 24Department of Physics, Lancaster University, Lancaster, LA1 4YB, UK 25CCAST (World Laboratory), P.O. Box 8730, Beijing 100190, China 26Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China 27Department of Physics, Peking University, Beijing 100871, China 28Thomas Jefferson National Accelerator Facility, 12000 Jefferson Ave., Newport News, VA 23606, USA 29Clermont Université, Université Blaise Pascal, CNRS-IN2P3, LPC, BP 10448, 63000 Clermont-Ferrand, France 30University of Cincinnati, Cincinnati, OH 45221, USA 31Laboratoire de Physique Théorique, Unité mixte de Recherche, CNRS, UMR 8627, Université de Paris-Sud, 91405 Orsay, France 32LIP, Av. Elias Garcia 14, 1000-149 Lisbon, Portugal 33SLAC National Accelerator Laboratory, Stanford, CA 94309, USA 34Department of Physics, University of Alberta, Edmonton, Alberta, Canada T6G 2G7 35Institut für Kernphysik, Jülich Center for Hadron Physics, and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany 36Department of Physics and Astronomy, University of Hawaii, Honolulu, HI 96822, USA 37Illinois Institute of Technology, Chicago, IL 60616, USA 38Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA 39IPNO, Université Paris-Sud 11, CNRS/IN2P3, Orsay, France 40Centre de Physique Théorique, École Polytechnique, CNRS, 91128 Palaiseau, France 41INFN Sezione di Milano, Via Celoria 16, 20133 Milano, Italy 42CERN, 1211 Geneva 23, Switzerland 43Center for Cosmology, Particle Physics and Phenomenology, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium Page 2 of 178 Eur. Phys. J. C (2011) 71: 1534 44Department of Math and Science, Pratt Institute, 200 Willoughby Ave, ARC LL G-35, Brooklyn, NY 11205, USA 45Instituto de Física, Universidade de São Paulo, C.P. 66318, 05315-970 São Paulo, SP, Brazil 46Department of Physics & Astronomy, Seoul National University, Seoul, Korea 47Institute for Theoretical and Experimental Physics, Moscow 117218, Russia 48INFN Sezione di Roma, Piazzale Aldo Moro 2, 00185 Roma, Italy 49Department of Engineering Physics, Tsinghua University, Beijing 100084, China 50C.N. Yang Institute for Theoretical Physics, Stony Brook University, Stony Brook, NY 11794-3840, USA 51Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China 52Instituto de Física Corpuscular (IFIC) and Departamento de Física Teórica, Centro Mixto Universitat de Valencia-CSIC, Doctor Moliner 50, 46100 Burjassot, Valencia, Spain 53Excellence Cluster ‘Universe’, Technische Universität München, Garching, Germany 54Dipartimento di Fisica, Università di Milano, 20133 Milano, Italy 55Department of Physics, Tohoku University, Sendai, 980-8578, Japan 56William I. Fine Theoretical Physics Institute, School of Physics and Astronomy, University of Minnesota, 116 Church Street SE, Minneapolis, MN 55455, USA Received: 28 October 2010 / Published online: 8 February 2011 © Springer-Verlag / Società Italiana di Fisica 2011 Abstract A golden age for heavy-quarkonium physics New effective field theories for the description of quarko- dawned a decade ago, initiated by the confluence of excit- nium in different regimes have been developed and brought ing advances in quantum chromodynamics (QCD) and an to a high degree of sophistication, thus enabling precise explosion of related experimental activity. The early years and solid theoretical predictions. Many expected decays and of this period were chronicled in the Quarkonium Working transitions have either been measured with precision or for Group (QWG) CERN Yellow Report (YR) in 2004, which the first time, but the confusing patterns of decays, both presented a comprehensive review of the status of the field above and below open-flavor thresholds, endure and have at that time and provided specific recommendations for fur- deepened. The intriguing details of quarkonium suppres- ther progress. However, the broad spectrum of subsequent sion in heavy-ion collisions that have emerged from RHIC breakthroughs, surprises, and continuing puzzles could only have elevated the importance of separating hot- and cold- be partially anticipated. Since the release of the YR, the nuclear-matter effects in quark–gluon plasma studies. This BESII program concluded only to give birth to BESIII; the review systematically addresses all these matters and con- B-factories and CLEO-c flourished; quarkonium production cludes by prioritizing directions for ongoing and future ef- and polarization measurements at HERA and the Tevatron forts. matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved myster- Contents ies for quarkonium physics, and therefore beg for contin- uing investigations at BESIII, the LHC, RHIC, FAIR, the 1 Introduction . 3 Super Flavor and/or Tau–Charm factories, JLab, the ILC, 2 Spectroscopy . 6 and beyond. The list of newly found conventional states ex- 2.1 Conventional vectors above open-flavor h ( P) χ ( P) B+ η ( S) panded to include c 1 , c2 2 , c , and b 1 .In threshold ................... 7 addition, the unexpected and still-fascinating X(3872) has 2.2 Newly found conventional quarkonia . 11 been joined by more than a dozen other charmonium- and 2.3 New unanticipated states . 17 bottomonium-like “XYZ” states that appear to lie outside 2.4 Characteristics of quarkonium systems . 28 the quark model. Many of these still need experimental con- 2.5 Nonrelativistic effective field theories . 30 firmation. The plethora of new states unleashed a flood of 2.6 Lattice QCD spectrum calculations . 32 theoretical investigations into new forms of matter such as 2.7 Predictions for the η (1S) mass....... 35 quark–gluon hybrids, mesonic molecules, and tetraquarks. b 2.8 Standard Model parameter extractions . 35 Measurements of the spectroscopy, decays, production, and 2.9 Exotic states and states near or above in-medium behavior of cc¯, bb¯, and bc¯ bound states have threshold.................... 38 been shown to validate some theoretical approaches to QCD and highlight lack of quantitative success for others. Lattice QCD has grown from a tool with computational possibil- a e-mail: