Abstract Scheibener, Shane Arthur
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Blackstone River Watershed 2008 Benthic Macroinvertebrate Bioassessment
Technical Memorandum CN 325.2 BLACKSTONE RIVER WATERSHED 2008 BENTHIC MACROINVERTEBRATE BIOASSESSMENT Peter Mitchell Division of Watershed Management Watershed Planning Program Worcester, MA January, 2014 Commonwealth of Massachusetts Executive Office of Energy and Environmental Affairs Richard K. Sullivan, Jr., Secretary Department of Environmental Protection Kenneth L. Kimmell, Commissioner Bureau of Resource Protection Bethany A. Card, Assistant Commissioner (This page intentionally left blank) Contents INTRODUCTION.............................................................................................................................................1 METHODS ......................................................................................................................................................1 Macroinvertebrate Sampling - RBPIII..........................................................................................................1 Macroinvertebrate Sample Processing and Data Analysis .........................................................................4 Habitat Assessment.....................................................................................................................................6 RESULTS AND DISCUSSION........................................................................................................................6 SUMMARY....................................................................................................................................................10 LITERATURE -
Life Cycle and Kelp Consumption of Paractora Dreuxi Mirabilis (Diptera: Helcomyzidae): a Primary Decomposer of Stranded Kelp on Marion Island
18 S. Afr. T. Nav. Antarkt., Deel 14, 1984 1 Life cycle and kelp consumption of Paractora dreuxi mirabilis (Diptera: Helcomyzidae): A primary decomposer of stranded kelp on Marion Island J.E. Crafford Department of Entomology University of Pretoria, Hatfield , Pretoria 0083 Wrack beds of the intertidal kelp Durvillea antarctica (Cham.) Apetenus liroralis and Paractora dreuxi mirabilis. are closely Har. on Marion Island (46°54' S, 37"45' E) sustain large kelp fly associated with wrack beds and decomposing kelp. populatior.s. Paractora dreuxi mirabilis (Seguy) is a primary Little is known about the nutrient and energy pathways decomposer of stranded Durv11lea with larvae reaching a operative in the littoral zone on Marion Island (Smith 1977). biomass of2 gper kg ofdecomposing kelp (wet mass). At 10°C Fronds of Durvillea antarccica, an epilitic phaeophyte Paractora completes its life cycle in 80-120 days. Egg, larval and abounding in the intertidal zone, continuously wash up on pupal stages last 4, 60 and 40 days respectively. Larvae eat 0,5 beaches around the island. After heavy seas fronds frequently rimes their own dry mass in kelp per day. They attain an indivi pile up into large and dense wrack beds. Paractora larvae are dual live mass of up to JOO mg. The feeding and burrowing the major decomposers of beached Durvillea, representing by activity of larvae probably enhance microbial decay ofbeached far the greatest biomass of decomposers in beached kelp kelp. Paractora larvae are preyed on by vertebrate insectivores (Crafford, unpublished) and constituting an easily explo1table and probably form an important link in nutrient and energy localised food resource for secondary consumers such as the chains in the littoral zone on Marion Island. -
Research Report110
~ ~ WISCONSIN DEPARTMENT OF NATURAL RESOURCES A Survey of Rare and Endangered Mayflies of Selected RESEARCH Rivers of Wisconsin by Richard A. Lillie REPORT110 Bureau of Research, Monona December 1995 ~ Abstract The mayfly fauna of 25 rivers and streams in Wisconsin were surveyed during 1991-93 to document the temporal and spatial occurrence patterns of two state endangered mayflies, Acantha metropus pecatonica and Anepeorus simplex. Both species are candidates under review for addition to the federal List of Endang ered and Threatened Wildlife. Based on previous records of occur rence in Wisconsin, sampling was conducted during the period May-July using a combination of sampling methods, including dredges, air-lift pumps, kick-nets, and hand-picking of substrates. No specimens of Anepeorus simplex were collected. Three specimens (nymphs or larvae) of Acanthametropus pecatonica were found in the Black River, one nymph was collected from the lower Wisconsin River, and a partial exuviae was collected from the Chippewa River. Homoeoneuria ammophila was recorded from Wisconsin waters for the first time from the Black River and Sugar River. New site distribution records for the following Wiscon sin special concern species include: Macdunnoa persimplex, Metretopus borealis, Paracloeodes minutus, Parameletus chelifer, Pentagenia vittigera, Cercobrachys sp., and Pseudiron centra/is. Collection of many of the aforementioned species from large rivers appears to be dependent upon sampling sand-bottomed substrates at frequent intervals, as several species were relatively abundant during only very short time spans. Most species were associated with sand substrates in water < 2 m deep. Acantha metropus pecatonica and Anepeorus simplex should continue to be listed as endangered for state purposes and receive a biological rarity ranking of critically imperiled (S1 ranking), and both species should be considered as candidates proposed for listing as endangered or threatened as defined by the Endangered Species Act. -
Waterbody: Northeast Black Creek Basin: Bird Sink
Waterbody: Northeast Black Creek Background Healthy, well-balanced stream communities may be maintained with some level of human activity, but ex- cessive human disturbance may result in waterbody degradation. Human stressors may include increased inputs of nutrients, sediments, and/or other contam- inants from watershed runoff, adverse hydrologic al- terations, undesirable removal of habitat or riparian buffer vegetation, and introduction of exotic plants and animals. Water quality standards are designed to protect designated uses of the waters of the state (e.g., recreation, aquatic life, fish consumption), and exceedances of these standards are associated with interference of the designated use. Basin: Bird Sink Due to ongoing beaver activity, station BC1 is no Northeast Black Creek is a tannic, acidic, predomi- longer sampled. Leon County staff continue to nantly nitrogen-limited stream located in northeast- evaluate the hydrological and plant community ern Leon County. The stream forms near Centerville changes that are occurring in this section. Road and the Chemonie Plantation subdivision and Methods flows southeast through the Miccosukee Land Coop- erative before crossing under Capitola Road. The Surface water samples were collected to determine creek then turns northeast to join Still Creek and then the health of Northeast Black Creek and met the re- flows into Bird Sink. quirements of the Florida Department of Environ- mental Protection (FDEP). As shown in the following pie chart, approximately 31% of the 15,783-acre watershed is comprised of Results urban, agriculture/rangeland, transportation and utilities land uses. Increases in stormwater runoff and Nutrients waterbody nutrient loads can often be attributed to According to FDEP requirements, four temporally in- these types of land uses. -
CHAPTER 4: EPHEMEROPTERA (Mayflies)
Guide to Aquatic Invertebrate Families of Mongolia | 2009 CHAPTER 4 EPHEMEROPTERA (Mayflies) EPHEMEROPTERA Draft June 17, 2009 Chapter 4 | EPHEMEROPTERA 45 Guide to Aquatic Invertebrate Families of Mongolia | 2009 ORDER EPHEMEROPTERA Mayflies 4 Mayfly larvae are found in a variety of locations including lakes, wetlands, streams, and rivers, but they are most common and diverse in lotic habitats. They are common and abundant in stream riffles and pools, at lake margins and in some cases lake bottoms. All mayfly larvae are aquatic with terrestrial adults. In most mayfly species the adult only lives for 1-2 days. Consequently, the majority of a mayfly’s life is spent in the water as a larva. The adult lifespan is so short there is no need for the insect to feed and therefore the adult does not possess functional mouthparts. Mayflies are often an indicator of good water quality because most mayflies are relatively intolerant of pollution. Mayflies are also an important food source for fish. Ephemeroptera Morphology Most mayflies have three caudal filaments (tails) (Figure 4.1) although in some taxa the terminal filament (middle tail) is greatly reduced and there appear to be only two caudal filaments (only one genus actually lacks the terminal filament). Mayflies have gills on the dorsal surface of the abdomen (Figure 4.1), but the number and shape of these gills vary widely between taxa. All mayflies possess only one tarsal claw at the end of each leg (Figure 4.1). Characters such as gill shape, gill position, and tarsal claw shape are used to separate different mayfly families. -
Empirically Derived Indices of Biotic Integrity for Forested Wetlands, Coastal Salt Marshes and Wadable Freshwater Streams in Massachusetts
Empirically Derived Indices of Biotic Integrity for Forested Wetlands, Coastal Salt Marshes and Wadable Freshwater Streams in Massachusetts September 15, 2013 This report is the result of several years of field data collection, analyses and IBI development, and consideration of the opportunities for wetland program and policy development in relation to IBIs and CAPS Index of Ecological Integrity (IEI). Contributors include: University of Massachusetts Amherst Kevin McGarigal, Ethan Plunkett, Joanna Grand, Brad Compton, Theresa Portante, Kasey Rolih, and Scott Jackson Massachusetts Office of Coastal Zone Management Jan Smith, Marc Carullo, and Adrienne Pappal Massachusetts Department of Environmental Protection Lisa Rhodes, Lealdon Langley, and Michael Stroman Empirically Derived Indices of Biotic Integrity for Forested Wetlands, Coastal Salt Marshes and Wadable Freshwater Streams in Massachusetts Abstract The purpose of this study was to develop a fully empirically-based method for developing Indices of Biotic Integrity (IBIs) that does not rely on expert opinion or the arbitrary designation of reference sites and pilot its application in forested wetlands, coastal salt marshes and wadable freshwater streams in Massachusetts. The method we developed involves: 1) using a suite of regression models to estimate the abundance of each taxon across a gradient of stressor levels, 2) using statistical calibration based on the fitted regression models and maximum likelihood methods to predict the value of the stressor metric based on the abundance of the taxon at each site, 3) selecting taxa in a forward stepwise procedure that conditionally improves the concordance between the observed stressor value and the predicted value the most and a stopping rule for selecting taxa based on a conditional alpha derived from comparison to pseudotaxa data, and 4) comparing the coefficient of concordance for the final IBI to the expected distribution derived from randomly permuted data. -
Invertebrate Prey Selectivity of Channel Catfish (Ictalurus Punctatus) in Western South Dakota Prairie Streams Erin D
South Dakota State University Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange Electronic Theses and Dissertations 2017 Invertebrate Prey Selectivity of Channel Catfish (Ictalurus punctatus) in Western South Dakota Prairie Streams Erin D. Peterson South Dakota State University Follow this and additional works at: https://openprairie.sdstate.edu/etd Part of the Aquaculture and Fisheries Commons, and the Terrestrial and Aquatic Ecology Commons Recommended Citation Peterson, Erin D., "Invertebrate Prey Selectivity of Channel Catfish (Ictalurus punctatus) in Western South Dakota Prairie Streams" (2017). Electronic Theses and Dissertations. 1677. https://openprairie.sdstate.edu/etd/1677 This Thesis - Open Access is brought to you for free and open access by Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. For more information, please contact [email protected]. INVERTEBRATE PREY SELECTIVITY OF CHANNEL CATFISH (ICTALURUS PUNCTATUS) IN WESTERN SOUTH DAKOTA PRAIRIE STREAMS BY ERIN D. PETERSON A thesis submitted in partial fulfillment of the degree for the Master of Science Major in Wildlife and Fisheries Sciences South Dakota State University 2017 iii ACKNOWLEDGEMENTS South Dakota Game, Fish & Parks provided funding for this project. Oak Lake Field Station and the Department of Natural Resource Management at South Dakota State University provided lab space. My sincerest thanks to my advisor, Dr. Nels H. Troelstrup, Jr., for all of the guidance and support he has provided over the past three years and for taking a chance on me. -
Abstract Poteat, Monica Deshay
ABSTRACT POTEAT, MONICA DESHAY. Comparative Trace Metal Physiology in Aquatic Insects. (Under the direction of Dr. David B. Buchwalter). Despite their dominance in freshwater systems and use in biomonitoring and bioassessment programs worldwide, little is known about the ion/metal physiology of aquatic insects. Even less is known about the variability of trace metal physiologies across aquatic insect species. Here, we measured dissolved metal bioaccumulation dynamics using radiotracers in order to 1) gain an understanding of the uptake and interactions of Ca, Cd and Zn at the apical surface of aquatic insects and 2) comparatively analyze metal bioaccumulation dynamics in closely-related aquatic insect species. Dissolved metal uptake and efflux rate constants were calculated for 19 species. We utilized species from families Hydropsychidae (order Trichoptera) and Ephemerellidae (order Ephemeroptera) because they are particularly species-rich and because they are differentially sensitive to metals in the field – Hydropsychidae are relatively tolerant and Ephemerellidae are relatively sensitive. In uptake experiments with Hydropsyche sparna (Hydropsychidae), we found evidence of two shared transport systems for Cd and Zn – a low capacity-high affinity transporter below 0.8 µM, and a second high capacity-low affinity transporter operating at higher concentrations. Cd outcompeted Zn at concentrations above 0.6 µM, suggesting a higher affinity of Cd for a shared transporter at those concentrations. While Cd and Zn uptake strongly co-varied across 12 species (r = 0.96, p < 0.0001), neither Cd nor Zn uptake significantly co-varied with Ca uptake in these species. Further, Ca only modestly inhibited Cd and Zn uptake, while neither Cd nor Zn inhibited Ca uptake at concentrations up to concentrations of 89 nM Cd and 1.53 µM Zn. -
On Adult Size and Male Mating Success in the Seaweed Fly, Coelopa Frigida A
Heredity (1982), 49 (1),51—62 0018-067X/82/0507005 1$02.OO 1982.The Genetical Society of Great Britain THEEFFECTS OF A CHROMOSOMAL INVERSION ON ADULT SIZE AND MALE MATING SUCCESS IN THE SEAWEED FLY, COELOPA FRIGIDA A. K. BUTLIN, I. L. READ and 1. H. DAY Department of Genetics, University of Nottingham, University Park, Nottingham, NG72RD Received4.iii.82 SUMMARY An association is reported between the a//3inversionpolymorphism on chromo- some I and adult size as assessed by the length of wings. aa flies are larger than (3/3 flies, with heterokaryotypes intermediate, and the differences are more marked in males than in females. Laboratory mating experiments were perfor- med in which a single female was given a choice of two males. By examining the genotypes of the progeny larvae, it is shown that the larger male is successful in a significantly greater proportion of trials than the smaller one. This mating success is dependent on the size difference between the males and on the female size. Together these observations suggest an indirect influence of the inversion on male mating success. The possible relevance of this effect to the maintenance of the inversion polymorphism in natural populations is discussed. 1. INTRODUCTION MANY species of insects are polymorphic for chromosomal inversions. The most extensive studies of these polymorphisms have been in various species of Drosophila (da Cunha, 1955) especially D.pseudoobscura(Dobzhansky, 1971), D. persimilis (Spiess and Spiess, 1969; Yu and Spiess, 1978) and D. subobscura (Krimbas and Loukas, 1979). It is clear from the Drosophila work that there exists a multitude of selection pressures that may influence the frequencies of inversions in natural populations. -
Advances in Deciphering the Genetic Basis of Insect Cuticular Hydrocarbon Biosynthesis and Variation
Heredity (2021) 126:219–234 https://doi.org/10.1038/s41437-020-00380-y REVIEW ARTICLE Advances in deciphering the genetic basis of insect cuticular hydrocarbon biosynthesis and variation 1 1 1,2 Henrietta Holze ● Lukas Schrader ● Jan Buellesbach Received: 6 July 2020 / Revised: 8 October 2020 / Accepted: 9 October 2020 / Published online: 2 November 2020 © The Author(s) 2020. This article is published with open access Abstract Cuticular hydrocarbons (CHCs) have two fundamental functions in insects. They protect terrestrial insects against desiccation and serve as signaling molecules in a wide variety of chemical communication systems. It has been hypothesized that these pivotal dual traits for adaptation to both desiccation and signaling have contributed to the considerable evolutionary success of insects. CHCs have been extensively studied concerning their variation, behavioral impact, physiological properties, and chemical compositions. However, our understanding of the genetic underpinnings of CHC biosynthesis has remained limited and mostly biased towards one particular model organism (Drosophila). This rather narrow focus has hampered the establishment of a comprehensive view of CHC genetics across wider phylogenetic 1234567890();,: 1234567890();,: boundaries. This review attempts to integrate new insights and recent knowledge gained in the genetics of CHC biosynthesis, which is just beginning to incorporate work on more insect taxa beyond Drosophila. It is intended to provide a stepping stone towards a wider and more general understanding of the genetic mechanisms that gave rise to the astonishing diversity of CHC compounds across different insect taxa. Further research in this field is encouraged to aim at better discriminating conserved versus taxon-specific genetic elements underlying CHC variation. -
Coleoptera: Staphylinidae: Genus Aleochara) from Japan
Zootaxa 3517: 1–52 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2012 · Magnolia Press Article ISSN 1175-5334 (online edition) urn:lsid:zoobank.org:pub:F832C768-A8CA-4FEE-8C3B-BD933247FA6E Revision of the Seashore-dwelling Subgenera Emplenota Casey and Triochara Bernhauer (Coleoptera: Staphylinidae: genus Aleochara) from Japan SHÛHEI YAMAMOTO1, 2 & MUNETOSHI MARUYAMA2, 3 1Entomological Laboratory, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Hakozaki 6-10-1, Fukuoka, 812-8581 Japan E-mail: [email protected] 2The Kyushu University Museum, Hakozaki 6-10-1, Fukuoka, 812-8581 Japan 3Correspoding author: E-mail: [email protected] Abstract The Japanese species of the seashore-dwelling subgenera Emplenota Casey and Triochara Bernhauer of the genus Aleochara Gravenhorst are revised. Five species are recognised in Emplenota, of which three are described as new species: Aleochara (Emplenota) segregata n. sp., A. (E.) hayamai n. sp. and A. (E.) yamato n. sp. The remaining known species A. (E.) fucicola Sharp and A. (E.) puetzi (Assing) are redescribed. Three species recognised in Triochara, Aleochara (Triochara) trisulcata Weise, A. (T.) zerchei (Assing) and A. (T.) nubis (Assing) are redescribed. All species are keyed. For some species ecological data are reported. The phylogenetic relationships of the Japanese species are discussed, and the distributions of all species are mapped. Key words: biodiversity, coastal environment, identification key, Palaearctic, redescription, supratidal zones, sympatric species, taxonomy Introduction Recent studies have revealed the worldwide coastal staphylinid diversity (Moore & Legner, 1976; Hammond, 2000; Frank & Ahn, 2011), and the subfamily Aleocharinae is represented by 187 species throughout the world, representing the largest number of coastal staphylinid beetles (Frank & Ahn, 2011). -
Behavioural, Ecological, and Genetic Determinants of Mating and Gene
Thesis committee Thesis supervisor Prof. dr. Marcel Dicke Professor of Entomology, Wageningen University Thesis co-supervisor Dr. Ir. Bart G.J. Knols Medical Entomologist, University of Amsterdam Other members Prof. dr. B.J. Zwaan, Wageningen University Prof. dr. P. Kager, University of Amsterdam Dr. Ir. P. Bijma, Wageningen University Dr. Ir. I.M.A. Heitkonig, Wageningen University This research was conducted under the auspices of the C. T. de Wit Graduate School for Production Ecology and Resource Conservation Behavioural, ecological and genetic determinants of mating and gene flow in African malaria mosquitoes Kija R.N. Ng’habi Thesis Submitted in fulfillment of the requirement for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. dr. M.J. Kropff, in the presence of the Thesis committee appointed by the Academic Board to be defended in public at on Monday 25 October 2010 at 11:00 a.m. in the Aula. Kija R.N. Ng’habi (2010) Behavioural, ecological and genetic determinants of mating and gene flow in African malaria mosquitoes PhD thesis, Wageningen University – with references – with summaries in Dutch and English ISBN – 978-90-8585-766-2 > Abstract Malaria is still a leading threat to the survival of young children and pregnant women, especially in the African region. The ongoing battle against malaria has been hampered by the emergence of drug and insecticide resistance amongst parasites and vectors, re- spectively. The Sterile Insect Technique (SIT) and genetically modified mosquitoes (GM) are new proposed vector control approaches. Successful implementation of these ap- proaches requires a better understanding of male mating biology of target mosquito species.