Agents of Swimmer's Itch—Dangerous Minority in the Digenea Invasion Of
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Diversity of Echinostomes (Digenea: Echinostomatidae) in Their Snail Hosts at High Latitudes
Parasite 28, 59 (2021) Ó C. Pantoja et al., published by EDP Sciences, 2021 https://doi.org/10.1051/parasite/2021054 urn:lsid:zoobank.org:pub:9816A6C3-D479-4E1D-9880-2A7E1DBD2097 Available online at: www.parasite-journal.org RESEARCH ARTICLE OPEN ACCESS Diversity of echinostomes (Digenea: Echinostomatidae) in their snail hosts at high latitudes Camila Pantoja1,2, Anna Faltýnková1,* , Katie O’Dwyer3, Damien Jouet4, Karl Skírnisson5, and Olena Kudlai1,2 1 Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic 2 Institute of Ecology, Nature Research Centre, Akademijos 2, 08412 Vilnius, Lithuania 3 Marine and Freshwater Research Centre, Galway-Mayo Institute of Technology, H91 T8NW, Galway, Ireland 4 BioSpecT EA7506, Faculty of Pharmacy, University of Reims Champagne-Ardenne, 51 rue Cognacq-Jay, 51096 Reims Cedex, France 5 Laboratory of Parasitology, Institute for Experimental Pathology, Keldur, University of Iceland, IS-112 Reykjavík, Iceland Received 26 April 2021, Accepted 24 June 2021, Published online 28 July 2021 Abstract – The biodiversity of freshwater ecosystems globally still leaves much to be discovered, not least in the trematode parasite fauna they support. Echinostome trematode parasites have complex, multiple-host life-cycles, often involving migratory bird definitive hosts, thus leading to widespread distributions. Here, we examined the echinostome diversity in freshwater ecosystems at high latitude locations in Iceland, Finland, Ireland and Alaska (USA). We report 14 echinostome species identified morphologically and molecularly from analyses of nad1 and 28S rDNA sequence data. We found echinostomes parasitising snails of 11 species from the families Lymnaeidae, Planorbidae, Physidae and Valvatidae. -
TRBA 464 Biologische Arbeitsstoffe in Risikogruppen
Ausgabe Juli 2013 Technische Regeln für Einstufung von Parasiten TRBA 464 Biologische Arbeitsstoffe in Risikogruppen Die Technischen Regeln für Biologische Arbeitsstoffe (TRBA) geben den Stand der Technik, Arbeitsmedizin und Arbeitshygiene sowie sonstige gesicherte wissenschaftliche Erkenntnisse für Tätigkeiten mit biologischen Arbeitsstoffen, einschließlich deren Einstufung, wieder. Sie werden vom Ausschuss für Biologische Arbeitsstoffe ermittelt bzw. angepasst und vom Bundesministerium für Arbeit und Soziales im Gemeinsamen Ministerialblatt bekannt gegeben. Die TRBA „Einstufung von Parasiten in Risikogruppen“ konkretisiert im Rahmen des Anwendungsbereichs die Anforderungen der Biostoffverordnung. Bei Einhaltung der Technischen Regeln kann der Arbeitgeber insoweit davon ausgehen, dass die entsprechenden Anforderungen der Verordnung erfüllt sind. Die Einstufungen der biologischen Arbeitsstoffe in Risikogruppen werden nach dem Stand der Wissenschaft vorgenommen; der Arbeitgeber hat die Einstufung zu beachten. Die vorliegende Technische Regel schreibt die Technische Regel „Einstufung von Parasiten in Risikogruppen“ (Stand Oktober 2002) fort und wurde unter Federführung des Fachbereichs „Rohstoffe und chemische Industrie“ in Anwendung des Kooperationsmodells (vgl. Leitlinienpapier1 zur Neuordnung des Vorschriften- und Regelwerks im Arbeitsschutz vom 31. August 2011) erarbeitet. Inhalt 1 Anwendungsbereich 2 Allgemeines 3 Liste der Einstufungen der Parasiten 3.1 Vorbemerkungen 3.2 Einstufung der Endoparasiten von Mensch und Haustieren (einschließlich -
Phenotypic Plasticity in Adult Worms of Schistosoma Mansoni (Trematoda:Schistosomatidae) Evidenced by Brightfield and Confocal L
Mem Inst Oswaldo Cruz, Rio de Janeiro, Vol. 99(2): 131-136, March 2004 131 Phenotypic Plasticity in Adult Worms of Schistosoma mansoni (Trematoda:Schistosomatidae) Evidenced by Brightfield and Confocal Laser Scanning Microscopies Renata Heisler Neves, Michele Costa-Silva, Elaine Machado Martinez, Thiago B Branquinho*, Regina Maria Figueiredo de Oliveira, Henrique Leonel Lenzi*/++, Delir Corrêa Gomes**/++, José Roberto Machado-Silva/+/++ Disciplina de Parasitologia, Departamento de Patologia e Laboratórios, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rua Prof. Manoel de Abreu 444, 5º andar, 20551-170 Rio de Janeiro, RJ, Brasil *Departamento de Patologia **Laboratório de Helmintos Parasitos de Vertebrados, Departamento de Helmintologia, Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro, RJ, Brasil A comparative morphometric study was performed to identify host-induced morphological alterations in Schis- tosoma mansoni adult worms. A wild parasite population was obtained from a naturally infected rodent (Nectomys squamipes) and then recovered from laboratory infected C3H/He mice. Furthermore, allopatric worm populations maintained for long-term under laboratory conditions in Swiss Webster mice were passed on to N. squamipes. Suckers and genital system (testicular lobes, uterine egg, and egg spine) were analyzed by a digital system for image analysis. Confocal laser scanning microscopy (CLSM) showed details of the genital system (testicular lobes, vi- telline glands, and ovary) and the tegument just below the ventral sucker. Significant morphological changes (p < 0.05) were detected in male worms in all experimental conditions, with no significant variability as assessed by CLSM. Significant changes (p < 0.05) were evident in females from the wild population related to their ovaries and vitelline glands, whereas allopatric females presented differences only in this last character. -
Reinvestigation of the Sperm Ultrastructure of Hypoderaeum
Manuscript Click here to download Manuscript Hypoderaeum conoideum Ms ParasitolRes REV.docx Click here to view linked References 1 Reinvestigation of the sperm ultrastructure of Hypoderaeum conoideum (Digenea: 1 2 2 Echinostomatidae) 3 4 5 3 6 7 4 Jordi Miquel1,2,*, Magalie René Martellet3, Lucrecia Acosta4, Rafael Toledo5, Anne- 8 9 6 10 5 Françoise Pétavy 11 12 6 13 14 7 1 Secció de Parasitologia, Departament de Biologia, Sanitat i Medi ambient, Facultat de 15 16 17 8 Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Av. Joan XXIII, sn, 08028 18 19 9 Barcelona, Spain 20 21 2 22 10 Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Av. Diagonal, 645, 23 24 11 08028 Barcelona, Spain 25 26 3 27 12 Université Clermont Auvergne, INRA, VetAgro Sup, UMR EPIA Epidémiologie des 28 29 13 maladies animales et zoonotiques, 63122 Saint-Genès-Champanelle, France 30 31 14 4 Área de Parasitología del Departamento de Agroquímica y Medioambiente, Universidad 32 33 34 15 Miguel Hernández de Elche, Alicante, Spain 35 36 16 5 Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Facultat de Farmàcia, 37 38 39 17 Universitat de València, 46100 Burjassot, València, Spain 40 41 18 6 Laboratoire de Parasitologie et Mycologie Médicale, Faculté de Pharmacie, Université Claude 42 43 44 19 Bernard-Lyon 1, 8 Av. Rockefeller, 69373 Lyon Cedex 08, France 45 46 20 47 48 49 21 *Corresponding author: 50 51 22 Jordi Miquel 52 53 23 Secció de Parasitologia, Departament de Biologia, Sanitat i Medi Ambient, Facultat de 54 55 56 24 Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Av. -
Molecular Detection of Human Parasitic Pathogens
MOLECULAR DETECTION OF HUMAN PARASITIC PATHOGENS MOLECULAR DETECTION OF HUMAN PARASITIC PATHOGENS EDITED BY DONGYOU LIU Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Group, an informa business CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2013 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Version Date: 20120608 International Standard Book Number-13: 978-1-4398-1243-3 (eBook - PDF) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. -
Ultrastructure and Localization of Neorickettsia in Adult Digenean
Washington University School of Medicine Digital Commons@Becker Open Access Publications 2017 Ultrastructure and localization of Neorickettsia in adult digenean trematodes provides novel insights into helminth-endobacteria interaction Kerstin Fischer Washington University School of Medicine in St. Louis Vasyl V. Tkach University of North Dakota Kurt C. Curtis Washington University School of Medicine in St. Louis Peter U. Fischer Washington University School of Medicine in St. Louis Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs Recommended Citation Fischer, Kerstin; Tkach, Vasyl V.; Curtis, Kurt C.; and Fischer, Peter U., ,"Ultrastructure and localization of Neorickettsia in adult digenean trematodes provides novel insights into helminth-endobacteria interaction." Parasites & Vectors.10,. 177. (2017). https://digitalcommons.wustl.edu/open_access_pubs/5789 This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact [email protected]. Fischer et al. Parasites & Vectors (2017) 10:177 DOI 10.1186/s13071-017-2123-7 RESEARCH Open Access Ultrastructure and localization of Neorickettsia in adult digenean trematodes provides novel insights into helminth- endobacteria interaction Kerstin Fischer1, Vasyl V. Tkach2, Kurt C. Curtis1 and Peter U. Fischer1* Abstract Background: Neorickettsia are a group of intracellular α proteobacteria transmitted by digeneans (Platyhelminthes, Trematoda). These endobacteria can also infect vertebrate hosts of the helminths and cause serious diseases in animals and humans. Neorickettsia have been isolated from infected animals and maintained in cell cultures, and their morphology in mammalian cells has been described. -
Genetic Variation and Phylogenetic Relationship of Hypoderaeum
Asian Pacific Journal of Tropical Medicine 2020; 13(11): 515-520 515 Original Article Asian Pacific Journal of Tropical Medicine journal homepage: www.apjtm.org Impact Factor: 1.77 doi: 10.4103/1995-7645.295362 Genetic variation and phylogenetic relationship of Hypoderaeum conoideum (Bloch, 1782) Dietz, 1909 (Trematoda: Echinostomatidae) inferred from nuclear and mitochondrial DNA sequences Chairat Tantrawatpan1, Weerachai Saijuntha2 1Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Rangsit Campus, Pathumthani 12120, Thailand 2Walai Rukhavej Botanical Research Institute, Mahasarakham University, Maha Sarakham 44150, Thailand ABSTRACT 1. Introduction Objective: To explore genetic variations of Hypoderaeum conoideum Hypoderaeum (H.) conoideum (Bloch, 1782) Dietz, 1909 is a species collected from domestic ducks from 12 different localities in of digenetic trematode in the family Echinostomatidae, which Thailand and Lao PDR, as well as their phylogenetic relationship is the causative agent of human and animal echinostomiasis . [1,2] with American and European isolates. The life cycle of H. conoideum has been extensively studied Methods: The nucleotide sequences of their nuclear ribosomal experimentally . A wide variety of freshwater snails, especially [3,4] DNA (ITS), mitochondrial cytochrome c oxidase subunit 1 (CO1), the lymnaeid species, are the first intermediate hosts and shed and NADH dehydrogenase subunit 1 (ND1) were used to analyze cercariae . Aquatic animals, such as bivalves, fishes, and tadpoles, [5] genetic diversity indices. often act as second intermediate hosts. Eating these raw or partially- Results: We found relatively high levels of nucleotide cooked aquatic animals has been identified as the primary mode of polymorphism in ND1 (4.02%), whereas moderate and low levels transmission . -
Global Prevalence Status of Avian Schistosomes: a Systematic Review with Meta-Analysis
Parasite Epidemiology and Control 9 (2020) e00142 Contents lists available at ScienceDirect Parasite Epidemiology and Control journal homepage: www.elsevier.com/locate/parepi Global prevalence status of avian schistosomes: A systematic review with meta-analysis Elham Kia Lashaki a, Saeed Hosseini Teshnizi b, Shirzad Gholami c, Mahdi Fakhar c,⁎, Sara V. Brant d, Samira Dodangeh c a Molecular and Cell Biology Research Center, Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran b Infectious and Tropical Diseases Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran c Toxoplasmosis Research Center, Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran d Museum of Southwestern Biology Division of Parasites, Department of Biology, University of New Mexico, Albuquerque, USA article info abstract Article history: Objectives: Human cercarial dermatitis (HCD) is a water-borne zoonotic parasitic disease. Cer- Received 21 July 2019 cariae of the avian schistosomes of several genera are frequently recognized as the causative Received in revised form 15 February 2020 agent of HCD. Various studies have been performed regarding prevalence of bird schistosomes Accepted 16 February 2020 in different regions of the world. So far, no study has gathered and analyzed this data system- atically. The aim of this systematic review and meta-analysis study was to determine the prev- alence of avian schistosomes worldwide. Keywords: Human cercarial dermatitis Methods: Data were extracted from six available databases for studies published from 1937 to Avian schistosomes 2017. Generally, 41 studies fulfilled the inclusion criteria and were used for data extraction in Prevalence this systematic review. -
The Complete Mitochondrial Genome of Echinostoma Miyagawai
Infection, Genetics and Evolution 75 (2019) 103961 Contents lists available at ScienceDirect Infection, Genetics and Evolution journal homepage: www.elsevier.com/locate/meegid Research paper The complete mitochondrial genome of Echinostoma miyagawai: Comparisons with closely related species and phylogenetic implications T Ye Lia, Yang-Yuan Qiua, Min-Hao Zenga, Pei-Wen Diaoa, Qiao-Cheng Changa, Yuan Gaoa, ⁎ Yan Zhanga, Chun-Ren Wanga,b, a College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, PR China b College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, PR China ARTICLE INFO ABSTRACT Keywords: Echinostoma miyagawai (Trematoda: Echinostomatidae) is a common parasite of poultry that also infects humans. Echinostoma miyagawai Es. miyagawai belongs to the “37 collar-spined” or “revolutum” group, which is very difficult to identify and Echinostomatidae classify based only on morphological characters. Molecular techniques can resolve this problem. The present Mitochondrial genome study, for the first time, determined, and presented the complete Es. miyagawai mitochondrial genome. A Comparative analysis comparative analysis of closely related species, and a reconstruction of Echinostomatidae phylogeny among the Phylogenetic analysis trematodes, is also presented. The Es. miyagawai mitochondrial genome is 14,416 bp in size, and contains 12 protein-coding genes (cox1–3, nad1–6, nad4L, cytb, and atp6), 22 transfer RNA genes (tRNAs), two ribosomal RNA genes (rRNAs), and one non-coding region (NCR). All Es. miyagawai genes are transcribed in the same direction, and gene arrangement in Es. miyagawai is identical to six other Echinostomatidae and Echinochasmidae species. The complete Es. miyagawai mitochondrial genome A + T content is 65.3%, and full- length, pair-wise nucleotide sequence identity between the six species within the two families range from 64.2–84.6%. -
Larval Trematode Communities in Radix Auricularia and Lymnaea Stagnalis in a Reservoir System of the Ruhr River Para- Sites & Vectors 2010, 3:56
Soldánová et al. Parasites & Vectors 2010, 3:56 http://www.parasitesandvectors.com/content/3/1/56 RESEARCH Open Access LarvalResearch trematode communities in Radix auricularia and Lymnaea stagnalis in a reservoir system of the Ruhr River Miroslava Soldánová†1, Christian Selbach†2, Bernd Sures*2, Aneta Kostadinova1 and Ana Pérez-del-Olmo2 Abstract Background: Analysis of the data available from traditional faunistic approaches to mollusc-trematode systems covering large spatial and/or temporal scales in Europe convinced us that a parasite community approach in well- defined aquatic ecosystems is essential for the substantial advancement of our understanding of the parasite response to anthropogenic pressures in urbanised areas which are typical on a European scale. Here we describe communities of larval trematodes in two lymnaeid species, Radix auricularia and Lymnaea stagnalis in four man-made interconnected reservoirs of the Ruhr River (Germany) focusing on among- and within-reservoir variations in parasite prevalence and component community composition and structure. Results: The mature reservoir system on the Ruhr River provides an excellent environment for the development of species-rich and abundant trematode communities in Radix auricularia (12 species) and Lymnaea stagnalis (6 species). The lake-adapted R. auricularia dominated numerically over L. stagnalis and played a major role in the trematode transmission in the reservoir system. Both host-parasite systems were dominated by bird parasites (13 out of 15 species) characteristic for eutrophic water bodies. In addition to snail size, two environmental variables, the oxygen content and pH of the water, were identified as important determinants of the probability of infection. Between- reservoir comparisons indicated an advanced eutrophication at Baldeneysee and Hengsteysee and the small-scale within-reservoir variations of component communities provided evidence that larval trematodes may have reflected spatial bird aggregations (infection 'hot spots'). -
Evolution of the Schistosomes (Digenea: Schistosomatoidea): the Origin of Dioecy and Colonization of the Venous System
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications from the Harold W. Manter Laboratory of Parasitology Parasitology, Harold W. Manter Laboratory of 12-1997 Evolution of the Schistosomes (Digenea: Schistosomatoidea): The Origin of Dioecy and Colonization of the Venous System Thomas R. Platt St. Mary's College Daniel R. Brooks University of Toronto, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/parasitologyfacpubs Part of the Parasitology Commons Platt, Thomas R. and Brooks, Daniel R., "Evolution of the Schistosomes (Digenea: Schistosomatoidea): The Origin of Dioecy and Colonization of the Venous System" (1997). Faculty Publications from the Harold W. Manter Laboratory of Parasitology. 229. https://digitalcommons.unl.edu/parasitologyfacpubs/229 This Article is brought to you for free and open access by the Parasitology, Harold W. Manter Laboratory of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from the Harold W. Manter Laboratory of Parasitology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. J. Parasitol., 83(6), 1997 p. 1035-1044 ? American Society of Parasitologists 1997 EVOLUTIONOF THE SCHISTOSOMES(DIGENEA: SCHISTOSOMATOIDEA): THE ORIGINOF DIOECYAND COLONIZATIONOF THE VENOUS SYSTEM Thomas R. Platt and Daniel R. Brookst Department of Biology, Saint Mary's College, Notre Dame, Indiana 46556 ABSTRACT: Trematodesof the family Schistosomatidaeare -
Trematodes and Neorickettsia: Diversity of Digeneans and Their Bacterial Endosymbionts (Neorickettsia) in Mollusk First Intermediate Hosts from Eastern Mongolia
Georgia Southern University Digital Commons@Georgia Southern University Honors Program Theses 2018 Trematodes and Neorickettsia: diversity of Digeneans and their bacterial endosymbionts (Neorickettsia) in mollusk first intermediate hosts from eastern Mongolia Morgan Gallahue Georgia Southern University Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/honors-theses Part of the Biology Commons Recommended Citation Gallahue, Morgan, "Trematodes and Neorickettsia: diversity of Digeneans and their bacterial endosymbionts (Neorickettsia) in mollusk first intermediate hosts from eastern Mongolia" (2018). University Honors Program Theses. 460. https://digitalcommons.georgiasouthern.edu/honors-theses/460 This thesis (open access) is brought to you for free and open access by Digital Commons@Georgia Southern. It has been accepted for inclusion in University Honors Program Theses by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact [email protected]. Trematodes and Neorickettsia : diversity of Digeneans and their bacterial endosymbionts ( Neorickettsia ) in mollusk first intermediate hosts from eastern Mongolia An Honors Thesis submitted in partial fulfillment of the requirements for Honors in the Department of Biology. By Morgan Gallahue Under the mentorship of Dr. Stephen Greiman ABSTRACT This study focused on the survey of 34 freshwater snail samples collected from NE Mongolia for larval flatworm parasites in the class Trematoda. 32 of the snail samples were infected, and the parasites were identified based on morphology and DNA sequences. Nine of the identified parasite samples were screened for the presence of bacterial endosymbionts in the genus Neorickettsia in the family Anaplasmataceae. All of the samples screened for Neorickettsia were negative for the bacterium. Species of Neorickettsia are known to cause several diseases such as Sennetsu Fever (in humans) and Potomac Horse Fever.