Kimura Et Al. Adna Guinea Pigs Jasreports
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Sweep of History
STUDENT’S World History & Geography 1 1 1 Essentials of World History to 1500 Ver. 3.1.10 – Rev. 2/1/2011 WHG1 The following pages describe significant people, places, events, and concepts in the story of humankind. This information forms the core of our study; it will be fleshed-out by classroom discussions, audio-visual mat erials, readings, writings, and other act ivit ies. This knowledge will help you understand how the world works and how humans behave. It will help you understand many of the books, news reports, films, articles, and events you will encounter throughout the rest of your life. The Student’s Friend World History & Geography 1 Essentials of world history to 1500 History What is history? History is the story of human experience. Why study history? History shows us how the world works and how humans behave. History helps us make judgments about current and future events. History affects our lives every day. History is a fascinating story of human treachery and achievement. Geography What is geography? Geography is the study of interaction between humans and the environment. Why study geography? Geography is a major factor affecting human development. Humans are a major factor affecting our natural environment. Geography affects our lives every day. Geography helps us better understand the peoples of the world. CONTENTS: Overview of history Page 1 Some basic concepts Page 2 Unit 1 - Origins of the Earth and Humans Page 3 Unit 2 - Civilization Arises in Mesopotamia & Egypt Page 5 Unit 3 - Civilization Spreads East to India & China Page 9 Unit 4 - Civilization Spreads West to Greece & Rome Page 13 Unit 5 - Early Middle Ages: 500 to 1000 AD Page 17 Unit 6 - Late Middle Ages: 1000 to 1500 AD Page 21 Copyright © 1998-2011 Michael G. -
Genetic Diversity and Population Structure of the Guinea Pig (Cavia Porcellus, Rodentia, Caviidae) in Colombia
Genetics and Molecular Biology, 34, 4, 711-718 (2011) Copyright © 2011, Sociedade Brasileira de Genética. Printed in Brazil www.sbg.org.br Research Article Genetic diversity and population structure of the Guinea pig (Cavia porcellus, Rodentia, Caviidae) in Colombia William Burgos-Paz1, Mario Cerón-Muñoz1 and Carlos Solarte-Portilla2 1Grupo de Investigación en Genética, Mejoramiento y Modelación Animal, Facultad Ciencias Agrarias, Universidad de Antioquia, Medellín, Colombia. 2Grupo de Investigación en Producción y Sanidad Animal, Universidad de Nariño, Pasto, Colombia. Abstract The aim was to establish the genetic diversity and population structure of three guinea pig lines, from seven produc- tion zones located in Nariño, southwest Colombia. A total of 384 individuals were genotyped with six microsatellite markers. The measurement of intrapopulation diversity revealed allelic richness ranging from 3.0 to 6.56, and ob- served heterozygosity (Ho) from 0.33 to 0.60, with a deficit in heterozygous individuals. Although statistically signifi- cant (p < 0.05), genetic differentiation between population pairs was found to be low. Genetic distance, as well as clustering of guinea-pig lines and populations, coincided with the historical and geographical distribution of the popu- lations. Likewise, high genetic identity between improved and native lines was established. An analysis of group probabilistic assignment revealed that each line should not be considered as a genetically homogeneous group. The findings corroborate the absorption of native genetic material into the improved line introduced into Colombia from Peru. It is necessary to establish conservation programs for native-line individuals in Nariño, and control genealogi- cal and production records in order to reduce the inbreeding values in the populations. -
Domestication and Early Agriculture in the Mediterranean Basin: Origins, Diffusion, and Impact
PERSPECTIVE Domestication and early agriculture in the Mediterranean Basin: Origins, diffusion, and impact Melinda A. Zeder* Archaeobiology Program, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013 Edited by Jeremy A. Sabloff, University of Pennsylvania Museum of Archaeology and Anthropology, Philadelphia, PA, and approved May 27, 2008 (received for review March 20, 2008) The past decade has witnessed a quantum leap in our understanding of the origins, diffusion, and impact of early agriculture in the Mediterranean Basin. In large measure these advances are attributable to new methods for documenting domestication in plants and animals. The initial steps toward plant and animal domestication in the Eastern Mediterranean can now be pushed back to the 12th millennium cal B.P. Evidence for herd management and crop cultivation appears at least 1,000 years earlier than the morphological changes traditionally used to document domestication. Different species seem to have been domesticated in different parts of the Fertile Crescent, with genetic analyses detecting multiple domestic lineages for each species. Recent evidence suggests that the ex- pansion of domesticates and agricultural economies across the Mediterranean was accomplished by several waves of seafaring colonists who established coastal farming enclaves around the Mediterranean Basin. This process also involved the adoption of do- mesticates and domestic technologies by indigenous populations and the local domestication of some endemic species. Human envi- ronmental impacts are seen in the complete replacement of endemic island faunas by imported mainland fauna and in today’s anthropogenic, but threatened, Mediterranean landscapes where sustainable agricultural practices have helped maintain high bio- diversity since the Neolithic. -
Morphological Development of the Testicles and Spermatogenesis in Guinea Pigs (Cavia Porcellus Linnaeus, 1758)
Original article http://dx.doi.org/10.4322/jms.107816 Morphological development of the testicles and spermatogenesis in guinea pigs (Cavia porcellus Linnaeus, 1758) NUNES, A. K. R.1, SANTOS, J. M.1, GOUVEIA, B. B.1, MENEZES, V. G.1, MATOS, M. H. T.2, FARIA, M. D.3 and GRADELA, A.3* 1Projeto de Irrigação Senador Nilo Coelho, Universidade Federal do Vale de São Francisco – UNIVASF, Rod. BR 407, sn, Km 12, Lote 543, C1, CEP 56300-990, Petrolina, PE, Brazil 2Projeto de Irrigação Senador Nilo Coelho, Medicina Veterinária, Núcleo de Biotecnologia Aplicada ao Desenvolvimento Folicular Ovariano, Colegiado de Medicina Veterinária, Universidade Federal do Vale do São Francisco – UNIVASF, Rod. BR 407, sn, Km 12, Lote 543, C1, CEP 56300-990, Petrolina, PE, Brazil 3Projeto de Irrigação Senador Nilo Coelho, Laboratório de Anatomia dos Animais Domésticos e Silvestres, Colegiado de Medicina Veterinária, Universidade Federal do Vale do São Francisco – UNIVASF, Rod. BR 407, sn, Km 12, Lote 543, C1, CEP 56300-990, Petrolina, PE, Brazil *E-mail: [email protected] Abstract Introduction: Understanding the dynamics of spermatogenesis is crucial to clinical andrology and to understanding the processes which define the ability to produce sperm. However, the entire process cannot be modeled in vitro and guinea pig may be an alternative as animal model for studying human reproduction. Objective: In order to establish morphological patterns of the testicular development and spermatogenesis in guinea pigs, we examined testis to assess changes in the testis architecture, transition time from spermatocytes to elongated spermatids and stablishment of puberty. Materials and methods: We used macroscopic analysis, microstructural analysis and absolute measures of seminiferous tubules by light microscopy in fifty-five guinea pigs from one to eleven weeks of age. -
Genetics and Animal Domestication: New Windows on an Elusive Process K
Journal of Zoology. Print ISSN 0952-8369 Genetics and animal domestication: new windows on an elusive process K. Dobney1 & G. Larson2 1 Department of Archaeology, University of Durham, Durham, UK 2 Department of Zoology, Henry Wellcome Ancient Biomolecules Centre, University of Oxford, UK Keywords Abstract domestication; genetics; phylogeography; molecular clocks; paedomorphosis. Domesticated animals are universally familiar. How, when, where and why they became domesticated is less well understood. The genetic revolution of the past few Correspondence decades has facilitated novel insights into a field that previously was principally the Greger Larson, Department of Zoology, domain of archaeozoologists. Although some of the conclusions drawn from Henry Wellcome Ancient Biomolecules genetic data have proved to be contentious, many studies have significantly altered Centre, University of Oxford, South Parks or refined our understanding of past human animal relationships. This review Road OX1 3PS, UK seeks not only to discuss the wider concerns and ramifications of genetic Email: [email protected] approaches to the study of animal domestication but also to provide a broader theoretical framework for understanding the process itself. More specifically, we Received 6 July 2005; accepted 8 September discuss issues related to the terminology associated with domestication, the 2005 possibility of domestication genes, and the promise and problems of genetics to answer the fundamental questions associated with domestication. doi:10.1111/j.1469-7998.2006.00042.x Introduction Defining domestication Over the past 10 000 years, human history has been wholly Terminology typically used in domestication studies, including transformed by the domestication of plants and animals. the word ‘domestication’ itself, is often confusing and poorly Although the term ‘domestic animal’ has universal meaning, defined. -
Assessment of Water Absorption Capacity and Cooking Time of Wild Under-Exploited Vigna Species Towards Their Domestication
agronomy Article Assessment of Water Absorption Capacity and Cooking Time of Wild Under-Exploited Vigna Species towards their Domestication Difo Voukang Harouna 1,2 , Pavithravani B. Venkataramana 2,3, Athanasia O. Matemu 1 and Patrick Alois Ndakidemi 2,3,* 1 Department of Food Biotechnology and Nutritional Sciences, Nelson Mandela African Institution of Science and Technology (NM-AIST), Arusha P.O. Box 447, Tanzania 2 Centre for Research, Agricultural Advancement, Teaching Excellence and Sustainability in Food and Nutrition Security (CREATES-FNS), Nelson Mandela African Institution of Science and Technology, Arusha P.O. Box 447, Tanzania 3 Department of Sustainable Agriculture, Biodiversity and Ecosystems Management, Nelson Mandela African Institution of Science and Technology, Arusha P.O. Box 447, Tanzania * Correspondence: [email protected]; Tel.: +255-757-744-772 Received: 16 July 2019; Accepted: 26 August 2019; Published: 4 September 2019 Abstract: Some phenotypic traits from wild legumes are relatively less examined and exploited towards their domestication and improvement. Cooking time for instance, is one of the most central factors that direct a consumer’s choice for a food legume. However, such characters, together with seed water absorption capacity are less examined by scientists, especially in wild legumes. Therefore, this study explores the cooking time and the water absorption capacity upon soaking on 84 accessions of wild Vigna legumes and establishes a relationship between their cooking time and water absorbed during soaking for the very first time. The accessions were grown in two agro-ecological zones and used in this study. The Mattson cooker apparatus was used to determine the cooking time of each accession and 24 h soaking was performed to evaluate water absorbed by each accession. -
Indigenous Gold from St. John, U.S. Virgin Islands: a Materials-Based Analysis
1 ABSTRACT INDIGENOUS GOLD FROM ST. JOHN, U.S. VIRGIN ISLANDS: A MATERIALS-BASED ANALYSIS Stephen E. Jankiewicz, MA Department of Anthropology Northern Illinois University, 2016 Dr. Mark W. Mehrer, Director The purpose of this research is to examine the origin, manufacturing technique, function, and meaning of metals used during the twelfth and thirteenth centuries on the island of St. John, United States Virgin Islands. This project focuses on two metal artifacts recovered during National Park Service excavations conducted between 1998 and 2001 at a shoreline indigenous site located on Cinnamon Bay. These objects currently represent two of only three metal artifacts reported from the entire ancient Lesser Antilles. Chemical and physical analyses of the objects were completed with nondestructive techniques including binocular stereomicroscopy, scanning electron microscopy, portable X-ray fluorescence spectrometry, and particle-induced X-ray emission spectrometry with assistance from laboratories located at Northern Illinois University, Beloit College, Hope College and The Field Museum. This data will be combined with contextual site data and compared to other metal objects recovered throughout the ancient Caribbean. i NORTHERN ILLINOIS UNIVERSITY DEKALB, ILLINOIS MAY 2016 INDIGENOUS GOLD FROM ST. JOHN, U.S. VIRGIN ISLANDS: A MATERIALS-BASED ANALYSIS BY STEPHEN E. JANKIEWICZ ©2016 Stephen E. Jankiewicz A THESIS SUBMITTED TO THE GRADUATE SCHOOL IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE MASTER OF ARTS DEPARTMENT OF ANTHROPOLOGY Thesis Advisor: Dr. Mark W. Mehrer ii ACKNOWLEDGEMENTS This project would not exist without the help and support of so many wonderful people. I am forever indebted to all of you. I would like to first thank my advisor Dr. -
The Calendars of India
The Calendars of India By Vinod K. Mishra, Ph.D. 1 Preface. 4 1. Introduction 5 2. Basic Astronomy behind the Calendars 8 2.1 Different Kinds of Days 8 2.2 Different Kinds of Months 9 2.2.1 Synodic Month 9 2.2.2 Sidereal Month 11 2.2.3 Anomalistic Month 12 2.2.4 Draconic Month 13 2.2.5 Tropical Month 15 2.2.6 Other Lunar Periodicities 15 2.3 Different Kinds of Years 16 2.3.1 Lunar Year 17 2.3.2 Tropical Year 18 2.3.3 Siderial Year 19 2.3.4 Anomalistic Year 19 2.4 Precession of Equinoxes 19 2.5 Nutation 21 2.6 Planetary Motions 22 3. Types of Calendars 22 3.1 Lunar Calendar: Structure 23 3.2 Lunar Calendar: Example 24 3.3 Solar Calendar: Structure 26 3.4 Solar Calendar: Examples 27 3.4.1 Julian Calendar 27 3.4.2 Gregorian Calendar 28 3.4.3 Pre-Islamic Egyptian Calendar 30 3.4.4 Iranian Calendar 31 3.5 Lunisolar calendars: Structure 32 3.5.1 Method of Cycles 32 3.5.2 Improvements over Metonic Cycle 34 3.5.3 A Mathematical Model for Intercalation 34 3.5.3 Intercalation in India 35 3.6 Lunisolar Calendars: Examples 36 3.6.1 Chinese Lunisolar Year 36 3.6.2 Pre-Christian Greek Lunisolar Year 37 3.6.3 Jewish Lunisolar Year 38 3.7 Non-Astronomical Calendars 38 4. Indian Calendars 42 4.1 Traditional (Siderial Solar) 42 4.2 National Reformed (Tropical Solar) 49 4.3 The Nānakshāhī Calendar (Tropical Solar) 51 4.5 Traditional Lunisolar Year 52 4.5 Traditional Lunisolar Year (vaisnava) 58 5. -
Student's Friend World History & Geography 1
STUDENT’S World History & Geography 1 Essentials of World History to 1500 Ver. 3.1.12 - Rev. 7/1/16 WHG1 The following pages describe significant people, places, events, and concepts in the story of humankind. This information forms the core of our study; it will be fleshed-out by classroom discussions, audio-visual materials, readings, writings, and other activities. This knowledge will help you understand how the world works and how humans behave. It will help you understand many of the books, news reports, films, articles, and events you will encounter throughout the rest of your life. from: www.studentsfriend.com The Student’s Friend World History & Geography 1 Essentials of world history to 1500 History What is history? History is the story of human experience. Why study history? • History shows us how the world works and how humans behave. • History helps us make judgments about current and future events. • History affects our lives every day. • History is a fascinating story of human treachery and achievement. Geography What is geography? Geography is the study of interaction between humans and the environment. Why study geography? • Geography is a major factor affecting human development. • Humans are a major factor affecting our natural environment. • Geography affects our lives every day. • Geography helps us better understand the peoples and places of the world. CONTENTS: Overview of history Page 1 Some basic concepts Page 2 Unit 1 - Origins of the Earth and Humans Page 3 Unit 2 - Civilization Arises in Mesopotamia & Egypt Page 5 Unit 3 - Civilization Spreads East to India & China Page 9 Unit 4 - Civilization Spreads West to Greece & Rome Page 13 Unit 5 - Early Middle Ages: 500 to 1000 AD Page 17 Unit 6 - Late Middle Ages: 1000 to 1500 AD Page 21 Copyright © 2016 www.studentsfriend.com The Student’s Friend: World History & Geography 1 may be freely reproduced and distributed by teachers and students for educational purposes. -
Art Et Symbolisme Art and Symbolism Arte Y Simbolismo
Sommaire • Contents • Contenidos Asociación Internacional de Arqueología del Caribe del Arqueología de Internacional Asociación Session - Sessíon 09 Art et symbolisme Art and Symbolism Arte y simbolismo International Association for Caribbean Archaeology Archaeology Caribbean for Association International Association Internationale d’Archéologie de la Caraïbe Caraïbe la de d’Archéologie Internationale Association 449 Sommaire • Contents • Contenidos Geographic Distributions of Zoomorphic Motifs in Saladoid Ceramics Lawrence WaLdron Department of Fine Arts, St. John’s University, Jamaica, New York ([email protected]) Abstract This article identifies over 20 different species and/or genera of animals represented in Saladoid ceramics. It results from surveys of thousands of Saladoid zoomorphic ceramics in some 15 institutional collections in the Lesser Antilles and the United States with the aim of tracking the geographic distribution of zoomorphs. Strong regional interests in certain zoomorphs are appreciable in the distribution of animal and bird images. Chief among these regional variances are those between the Lesser Antilles and mainland Saladoid ceramics of the Lower Orinoco. Regional differences are also discernable between different groups of islands within the Lesser Antilles. Key words : Saladoid, zoomorph, Pre-Columbian, ceramic, iconography Resumen Este articulo describe alrededor de veinte géneros y/o especies animals diferentes, representadas en las cerámicas de origen Saladoide. También investiga miles de cerámicas Saladoides zoomorfas, encontradas en alrededor de quince colecciones institucionales en las Antillas Menores y los Estados Unidos, con el propósito de rastrear la distribución geográfica de los zoomorfos. Se pueden observar intereses regionales marcados en algunos de los zoomorfos y pueden ser apreciados en la distribución de imagenes de animales y aves. -
Patagonian Cavy (Patagonian Mara) Dolichotis Patagonum
Patagonian Cavy (Patagonian Mara) Dolichotis patagonum Class: Mammalia Order: Rodentia Family: Caviidae Characteristics: The Patagonian mara is a distinctly unusual looking rodent that is about the size of a small dog. They have long ears with a body resembling a small deer. The snout and large dark eyes are also unusual for a rodent. The back and upper sides are brownish grey with a darker patch near the rump. There is one white patch on either side of the rump and down the haunches. Most of the body is a light brown or tan color. They have long, powerful back legs which make them excellent runners. The back feet are a hoof like claw with three digits, while the front feet have four sharp claws to aid in burrowing (Encyclopedia of Life). Behavior: The Patagonian mara is just as unusual in behavior as it is in appearance. These rodents are active during the day and spend a large portion of their time sunbathing. If threatened by a predator, they will escape quickly by galloping or stotting away at speeds over 25 mph. The cavy can be found in breeding pairs that rarely interact with other pairs (Arkive). During breeding season, maras form large groups called settlements, consisting of many individuals sharing the same communal dens. Some large dens are shared by 29-70 maras (Animal Diversity). Reproduction: This species is strictly monogamous and usually bonded for life (BBC Nature). The female has an extremely short estrous, only 30 minutes every 3-4 months. The gestation period is around 100 days in the wild. -
Description of Pudica Wandiquei N. Sp. (Heligmonellidae: Pudicinae)
ISSN 1519-6984 (Print) ISSN 1678-4375 (Online) THE INTERNATIONAL JOURNAL ON NEOTROPICAL BIOLOGY THE INTERNATIONAL JOURNAL ON GLOBAL BIODIVERSITY AND ENVIRONMENT Original Article Description of Pudica wandiquei n. sp. (Heligmonellidae: Pudicinae), a nematode found infecting Proechimys simonsi (Rodentia: Echimyidae) in the Brazilian Amazon Descrição de Pudica wandiquei n. sp. (Heligmonellidae: Pudicinae), nematódeo encontrado infectando Proechimys simonsi (Rodentia: Echimyidae) na Amazônia brasileira B. E. Andrade-Silvaa,b* , G. S. Costaa,c and A. Maldonado Júniora aFundação Oswaldo Cruz – FIOCRUZ, Instituto Oswaldo Cruz – IOC, Laboratório de Biologia e Parasitologia de Mamíferos Silvestres Reservatórios, Rio de Janeiro, RJ, Brasil bFundação Oswaldo Cruz – FIOCRUZ, Instituto Oswaldo Cruz – IOC, Programa de Pós-graduação em Biologia Parasitária, Rio de Janeiro, RJ, Brasil cFundação Centro Universitário Estadual da Zona Oeste – UEZO, Rio de Janeiro, RJ, Brasil Abstract A new species of nematode parasite of the subfamily Pudicinae (Heligmosomoidea: Heligmonellidae) is described from the small intestine of Proechimys simonsi (Rodentia: Echimyidae) from the locality of Nova Cintra in the municpality of Rodrigues Alves, Acre state, Brazil. The genus Pudica includes 15 species parasites of Neotropical rodents of the families Caviidae, Ctenomyidae, Dasyproctidae, Echimyidae, Erethizontidae, and Myocastoridae. Four species of this nematode were found parasitizing three different species rodents of the genus Proechimys in the Amazon biome. Pudica wandiquei n. sp. can be differentiated from all other Pudica species by the distance between the ends of rays 6 and 8 and the 1-3-1 pattern of the caudal bursa in both lobes. Keywords: spiny rats, Nematoda, Acre State, Amazon rainforest. Resumo Uma nova espécie de nematódeo da subfamília Pudicinae (Heligmosomoidea: Heligmonellidae) é descrito parasitando o intestino delgado de Proechimys simonsi (Rodentia: Echimyidae) em Nova Cintra, município de Rodrigues Alves, Estado do Acre, Brasil.