The Diagnosis and Management of Snakebite in Dogs – a Southern African Perspective

Total Page:16

File Type:pdf, Size:1020Kb

The Diagnosis and Management of Snakebite in Dogs – a Southern African Perspective Review article — Oorsigartikel The diagnosis and management of snakebite in dogs – a southern African perspective A L Leisewitza*, R S Blaylockb, F Kettnera, A Goodheada, A Goddarda and J P Schoemana dogs attack snakes with their mouths. ABSTRACT Standing humans are most commonly Cases of snakebite envenomation are frequently presented to veterinary practitioners in bitten below the knee5,9,18. The different southern Africa. Despite this, no published guidelines exist on how this medical emergency anatomical location of this bite distribu- should be managed. Southern African snake venoms can be classified into 3 main types tion has important consequences for the based on the main mechanism of venom action and clinical presentation. A polyvalent outcome of bites, specifically cytotoxic antivenom is manufactured in South Africa and contains antibodies against the most ones. important southern African snake venoms. The cytotoxic venoms are represented mainly by the puff-adder (Bitis arietans), Mozambique spitting cobra (Naja mossabica), black-necked Snakebite is confined almost completely spitting cobra (Naja nigricollis) (in the Western Cape and Namibia) and the stiletto snake to rural environments and is rarely a 11 (Atractaspis bibronii). These venoms may cause dramatic local swelling, high morbidity and problem in built-up urban areas . low mortality and infrequently require the use of antivenom for survival (the only cytotoxic Hunting dogs and dogs that are inquisi- venoms used to prepare the antivenom are the puff-adder and Mozambique spitting co- tive by nature are especially prone to bra). The neurotoxic venoms (represented chiefly by the non-spitting cobras and mambas) bites. There is no study to evaluate cause high mortality due to rapid onset of paresis and require antivenom and mechanical snakebite predilection for breed or sex of ventilatory support which is life-saving. The boomslang (Dispholidus typus) and the vine dog. snake (coagulopathic venom) rarely bite humans but dogs may be bitten more frequently. In humans, cytotoxic bites outnumber These venoms cause a consumption coagulopathy and successful treatment of boomslang neurotoxic bites by about 10:15,9,18,21. This is bites requires the use of snake species-specific monovalent antivenom. There is no likely to be similar for dogs. Morbidity is antivenom available for treating vine snake (Thelotornis capensis), berg adder (Bitis atropos), high in the case of bites from cytotoxic night adder (Causus spp.), stiletto snake and other lesser adder bites. There are some impor- snake species but mortality is low. The tant differences between the way snakebites are managed in humans and dogs. opposite is true of bites due to the neuro- Key words: dog, snakebite, southern Africa. toxic snake species where mortality is Leisewitz A L, Blaylock R S, Kettner F,Goodhead A, Goddard A, Schoeman J P The manage- high and morbidity is low. It is probable ment of snakebite in dogs – a southern African perspective. Journal of the South African that many snake-envenomated dogs die Veterinary Association (2004) 75(1): 7–13 (En.). Department of Companion Animal Clinical prior to veterinary care. Studies, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110 South Africa. SNAKE IDENTIFICATION This can be a daunting task for the novice but some simple, general rules INTRODUCTION species most commonly causing bites in may be helpful in deciding if a southern Snakebite is a common medical their area of practice and be able to iden- African snake is venomous or not. The emergency16 with significant morbidity tify them. Of 175 species of snakes in the following usually indicate a dangerous and mortality in small animal practice in subregion, only a handful are regarded as snake: southern Africa. In Australia, a country poisonous enough to cause death7. There • The snake raises its head from the with similar climatic conditions to south- are some important differences between ground and makes a hood when threat- ern Africa, snakebite is also reported as a humans and dogs in the way snakebite is ened (cobras, Naja spp.; rinkhals, common presentation20. There is almost managed. Haemachatus haemachatus; black mamba, no veterinary literature addressing this Dendroaspis polylepis). The boomslang problem in dogs in southern Africa. EPIDEMIOLOGY (Dispholidus typus) and vine snake Because the interaction between the pet Being ectotherms (cold blooded), the (Thelotornis capensis) will inflate the and the snake is often not witnessed, the level of activity of a snake is determined front portion of the body. diagnosis of snakebite is most often pre- by the temperature of its environment. • The snake is banded as opposed to sumptive, based on clinical presentation. For this reason the highest incidence of striped along the length of the body. A The snake itself, or a good description snakebite in humans and dogs is during chevron-like pattern dorsally (adders) is of the snake, is usually not presented the warmer summer months5,9,18,21. There an indication of danger. with the patient, necessitating syndrom- is a consistent annual peak in late summer • Heavy bodied snakes with a distinct ic management. Veterinarians should and early autumn in the area served by neck and triangular head (adders). have knowledge of the poisonous snake the Onderstepoort Veterinary Academic It is important to remember that some Hospital (OVAH)16. This is thought to snakes will sham death when threatened aDepartment of Companion Animal Clinical Studies, be due to increased pre-hibernation (particularly the rinkhals) and no snake Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110 South Africa. activity. should be assumed dead and handled. If bGold Fields Health Services at Leslie Williams Private The most common bite site in dogs is the snake is presented along with the dog, Hospital, PO Box 968, Carletonville, 2500 South Africa. *Author for correspondence. E-mail: [email protected] cranial to the shoulders, especially the advice on identification should be sought Received: July 2003. Accepted: December 2003. face and the loose skin around the neck as as this would be helpful in predicting the 0038-2809 Jl S.Afr.vet.Ass. (2004) 75(1): 7–13 7 clinical course and outcome of the patient. of fur and looseness of a dog’s skin physiological response to blood loss In this regard owners are poor sources of around the neck may make deep and a fall in blood pressure result in reliable information. In most cases, snake- muscle deposition of the venom more fluid retention, haemodilution and a bite is strongly suspected but never con- difficult in dogs as opposed to humans. later fall in haematocrit. In serious cases, firmed, therefore the clinical presentation Human furless skin requires more pain haematocrit should be monitored twice and progression of clinical signs often receptors for protection which are espe- daily. confirms the diagnosis. cially prevalent on the hands. Some In-saline-agglutination-positive, sec- venom components are hyperalgesic. ondary immune mediated haemolytic VENOM TYPES In the few bites involving muscle bellies anaemia (IMHA) has occasionally been There are essentially 3 important groups in dogs (shoulder and gluteal region), observed following bites. It is necessary to of venoms in terrestrial snakes of southern pain has been severe although tissue monitor cases with a falling haematocrit Africa. Each leads to a particular clinical loss was not remarkable. A further with regular in-saline agglutination tests envenomation syndrome. exception is bites by spitting cobras27 (ISA) and look for signs of free haemoglo- 1. Cytotoxic venoms result in progres- which are extremely painful and cause bin in serum or urine. It may be necessary sive swelling. The 3 important snakes significant skin loss (Fig. 4). to treat this complication with glucocorti- in this group are the puff-adder (Bitis • Infection. It is somewhat surprising coids. arietans) and spitting cobras (Naja that secondary bacterial infections are A non-DIC thrombocytopenia is very mossambica, N. nigricollis), with the uncommon in dogs. This is counter- common in puff-adder bites. In the baboon stiletto snake (Atractaspis bibronii) and intuitive as free blood, anaerobic tissue the venom has been shown to contain a night adder (Causus spp.) causing and bacteria from a snake’s mouth potent irreversible platelet aggregation- lesser swelling. would provide grounds for sepsis. inducing component8 that may be associ- 2. Neurotoxic venoms of the family Snake venom is, however, antibacterial ated with active haemorrhage seen in Elapidae produce progressive paresis. in action2 and there are few bacteria in humans30 which has also been observed This group is represented by the cobras snake mouths4. In 1 study of infected in a dog at the OVAH. Immune-mediated (snouted, Cape and forest cobras, Naja snakebite wounds only aerobic bacteria platelet destruction may occur as a few annulifera, Naja nivea and Naja melano- which were either Gram positive cocci cases develop intravascular haemolysis as leuca, respectively) and the mambas or Gram negative bacilli were isolated3. a result of secondary IMHA. (Dendroaspis spp.). • Systemic signs associated with massive Typically the leukogram observed in 3. Coagulopathic venoms of the family blood loss and hypotension. Progressive the OVAH following puff-adder bites is Colubridae, which includes the swelling from a puff-adder bite is rapid inflammatory
Recommended publications
  • Freshwater Fishes
    WESTERN CAPE PROVINCE state oF BIODIVERSITY 2007 TABLE OF CONTENTS Chapter 1 Introduction 2 Chapter 2 Methods 17 Chapter 3 Freshwater fishes 18 Chapter 4 Amphibians 36 Chapter 5 Reptiles 55 Chapter 6 Mammals 75 Chapter 7 Avifauna 89 Chapter 8 Flora & Vegetation 112 Chapter 9 Land and Protected Areas 139 Chapter 10 Status of River Health 159 Cover page photographs by Andrew Turner (CapeNature), Roger Bills (SAIAB) & Wicus Leeuwner. ISBN 978-0-620-39289-1 SCIENTIFIC SERVICES 2 Western Cape Province State of Biodiversity 2007 CHAPTER 1 INTRODUCTION Andrew Turner [email protected] 1 “We live at a historic moment, a time in which the world’s biological diversity is being rapidly destroyed. The present geological period has more species than any other, yet the current rate of extinction of species is greater now than at any time in the past. Ecosystems and communities are being degraded and destroyed, and species are being driven to extinction. The species that persist are losing genetic variation as the number of individuals in populations shrinks, unique populations and subspecies are destroyed, and remaining populations become increasingly isolated from one another. The cause of this loss of biological diversity at all levels is the range of human activity that alters and destroys natural habitats to suit human needs.” (Primack, 2002). CapeNature launched its State of Biodiversity Programme (SoBP) to assess and monitor the state of biodiversity in the Western Cape in 1999. This programme delivered its first report in 2002 and these reports are updated every five years. The current report (2007) reports on the changes to the state of vertebrate biodiversity and land under conservation usage.
    [Show full text]
  • Notes on the Distribution and Natural History of the King Cobra (Ophiophagus Hannah Cantor, 1836) from the Kumaon Hills of Uttarakhand, India
    Herpetology Notes, volume 11: 217-222 (2018) (published online on 12 March 2018) Notes on the distribution and natural history of the King Cobra (Ophiophagus hannah Cantor, 1836) from the Kumaon Hills of Uttarakhand, India Jignasu Dolia1 Introduction herpetologists believe that the King Cobra may be part of a larger species complex (Das, 2002). However, Native to South and Southeast Asia, the King Cobra further phylogenetic studies based on molecular data (Ophiophagus hannah Cantor, 1836) is the world’s between the different populations are needed to shed longest venomous snake, capable of growing up to 5.49– light on its true taxonomy. 5.79 m (Aagard, 1924; Mehrtens, 1987; Daniel, 2002). The King Cobra’s known altitudinal distribution Its established global distribution includes the following ranges from 150 m to 1530 m in Nepal (Schleich and 15 countries: Bangladesh, Bhutan, Brunei Darussalam, Kästle, 2002) and from sea level to 1800 m in Sumatra Cambodia, China (mainland as well as Hong Kong (David and Vogel, 1996). In India, the species has been Special Administrative Region), India, Indonesia, Lao sighted at 1840 m in Sikkim (Bashir et al., 2010), and People’s Democratic Republic, Malaysia, Myanmar, King Cobra nests have been found between 161 m and Nepal, Philippines, Singapore, Thailand and Vietnam 1170 m in Mizoram (Hrima et al., 2014). The King (Stuart et al., 2012). Although widely distributed, this Cobra has also been recorded up to c. 1830 m in the snake is considered rare in most parts of its range, Nilgiris and in the Western Himalayas (Smith, 1943). except in forested parts of Thailand where it is relatively The highest altitude recorded and published for an common (Stuart et al., 2012).
    [Show full text]
  • Snake Charming and the Exploitation of Snakes in Morocco
    Snake charming and the exploitation of snakes in Morocco J UAN M. PLEGUEZUELOS,MÓNICA F ERICHE,JOSÉ C. BRITO and S OUMÍA F AHD Abstract Traditional activities that potentially threaten bio- also for clothing, tools, medicine and pets, as well as in diversity represent a challenge to conservationists as they try magic and religious activities (review in Alves & Rosa, to reconcile the cultural dimensions of such activities. ). Vertebrates, particularly reptiles, have frequently Quantifying the impact of traditional activities on biodiver- been used for traditional medicine. Alves et al. () iden- sity is always helpful for decision making in conservation. In tified reptile species ( families, genera) currently the case of snake charming in Morocco, the practice was in- used in traditional folk medicine, % of which are included troduced there years ago by the religious order the on the IUCN Red List (IUCN, ) and/or the CITES Aissawas, and is now an attraction in the country’s growing Appendices (CITES, ). Among the reptile species tourism industry. As a consequence wild snake populations being used for medicine, % are snakes. may be threatened by overexploitation. The focal species for Snakes have always both fascinated and repelled people, snake charming, the Egyptian cobra Naja haje, is undergo- and the reported use of snakes in magic and religious activ- ing both range and population declines. We estimated the ities is global (Alves et al., ). The sacred role of snakes level of exploitation of snakes based on field surveys and may be related to a traditional association with health and questionnaires administered to Aissawas during – eternity in some cultures (Angeletti et al., ) and many , and compared our results with those of a study con- species are under pressure from exploitation as a result ducted years previously.
    [Show full text]
  • (Equatorial Spitting Cobra) Venom a P
    The Journal of Venomous Animals and Toxins including Tropical Diseases ISSN 1678-9199 | 2011 | volume 17 | issue 4 | pages 451-459 Biochemical and toxinological characterization of Naja sumatrana ER P (Equatorial spitting cobra) venom A P Yap MKK (1), Tan NH (1), Fung SY (1) RIGINAL O (1) Department of Molecular Medicine, Center for Natural Products and Drug Research (CENAR), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia. Abstract: The lethal and enzymatic activities of venom from Naja sumatrana (Equatorial spitting cobra) were determined and compared to venoms from three other Southeast Asian cobras (Naja sputatrix, Naja siamensis and Naja kaouthia). All four venoms exhibited the common characteristic enzymatic activities of Asiatic cobra venoms: low protease, phosphodiesterase, alkaline phosphomonoesterase and L-amino acid oxidase activities, moderately high acetylcholinesterase and hyaluronidase activities and high phospholipase A2. Fractionation of N. sumatrana venom by Resource® S cation exchange chromatography (GE Healthcare, USA) yielded nine major protein peaks, with all except the acidic protein peak being lethal to mice. Most of the protein peaks exhibit enzymatic activities, and L-amino acid oxidase, alkaline phosphomonoesterase, acetylcholinesterase, 5’-nucleotidase and hyaluronidase exist in multiple forms. Comparison of the Resource® S chromatograms of the four cobra venoms clearly indicates that the protein composition of N. sumatrana venom is distinct from venoms of the other two spitting cobras, N. sputatrix (Javan spitting cobra) and N. siamensis (Indochinese spitting cobra). The results support the revised systematics of the Asiatic cobra based on multivariate analysis of morphological characters. The three spitting cobra venoms exhibit two common features: the presence of basic, potentially pharmacologically active phospholipases A2 and a high content of polypeptide cardiotoxin, suggesting that the pathophysiological actions of the three spitting cobra venoms may be similar.
    [Show full text]
  • Field Notes from Africa
    Field Notes from Africa by Geoff Hammerson, November 2012 Africa! Few place names are evocative on so many levels and for such diverse reasons. Africa hosts Earth’s most spectacular megafauna, and the southern part of the continent, though temperate rather than tropical, has an extraordinarily rich and unique flora. Africa is the “cradle of humankind” and home to our closest living primate relatives. Indigenous peoples in arid southern Africa have learned to live in one of Earth’s most extreme environments. For early sea-going explorers, Africa was both an obstacle and a port of call, and later the continent proved to be a treasure-trove of diamonds, gold, and other natural resources. Sadly, Africa is also a land of human starvation, deadly disease, and genocide, and grotesque slaughter of wildlife to satisfy the superstitions and greed of people on other continents. It was a target for slave traders and a prize for imperialists. Until as recently as 1994, South Africa was a nation where basic human rights and opportunities were Our experience was greatly enhanced by the truly apportioned according to the melanin content of exceptional quality and efforts of our South African one’s skin. Africa’s exploitative and racist history guide, Patrick Cardwell, who was frequently and has made it a cauldron of political and social superbly assisted behind the scenes by Marie- turmoil. Given this mixture of alluring and Louise Cardwell. Patrick’s knowledge and repugnant characteristics, many potential visitors experience repeatedly put us in the right place at to Africa first pause and carefully consider the just the right time.
    [Show full text]
  • Addo Elephant National Park Reptiles Species List
    Addo Elephant National Park Reptiles Species List Common Name Scientific Name Status Snakes Cape cobra Naja nivea Puffadder Bitis arietans Albany adder Bitis albanica very rare Night adder Causes rhombeatus Bergadder Bitis atropos Horned adder Bitis cornuta Boomslang Dispholidus typus Rinkhals Hemachatus hemachatus Herald/Red-lipped snake Crotaphopeltis hotamboeia Olive house snake Lamprophis inornatus Night snake Lamprophis aurora Brown house snake Lamprophis fuliginosus fuliginosus Speckled house snake Homoroselaps lacteus Wolf snake Lycophidion capense Spotted harlequin snake Philothamnus semivariegatus Speckled bush snake Bitis atropos Green water snake Philothamnus hoplogaster Natal green watersnake Philothamnus natalensis occidentalis Shovel-nosed snake Prosymna sundevalli Mole snake Pseudapsis cana Slugeater Duberria lutrix lutrix Common eggeater Dasypeltis scabra scabra Dappled sandsnake Psammophis notosticus Crossmarked sandsnake Psammophis crucifer Black-bellied watersnake Lycodonomorphus laevissimus Common/Red-bellied watersnake Lycodonomorphus rufulus Tortoises/terrapins Angulate tortoise Chersina angulata Leopard tortoise Geochelone pardalis Green parrot-beaked tortoise Homopus areolatus Marsh/Helmeted terrapin Pelomedusa subrufa Tent tortoise Psammobates tentorius Lizards/geckoes/skinks Rock Monitor Lizard/Leguaan Varanus niloticus niloticus Water Monitor Lizard/Leguaan Varanus exanthematicus albigularis Tasman's Girdled Lizard Cordylus tasmani Cape Girdled Lizard Cordylus cordylus Southern Rock Agama Agama atra Burrowing
    [Show full text]
  • Meerkat Survival Audience Activity Designed for 8 Years Old and Up
    Meerkat Survival Audience Activity designed for 8 years old and up. You need at least two people to play. Goal Students will appreciate the important role that meerkats play within their ecosystem as well as gain a better understanding of the predator/prey relationship. Objective • To learn predator/prey relationship. • To understand the important role a meerkat serves. Conservation Message Meerkats are an important part of the ecosystem and can also help shape habitats. They create burrows that act as underground tunnel systems. Once the meerkats move on, they are used as homes for small rodents and reptiles. Meerkats are also import prey species for predators in deserts and savannas of Africa. Background Information Meerkats are native to desert habitats in Botswana, Namibia, and South Africa. These animals live in large communities and abide by the idea that there is safety in numbers. They will often assign a community member, or sometimes multiples members, as a lookout, called the sentinel. The sentinel is looking out for predators such as jackals and eagles. Occasionally meerkats will have a run in with venomous snakes such as the Cape Cobra. When the sentinel sees a potential danger, they will let out a sharp very high-pitched call to warn others to take cover and hide. While there are a few guarding the community, other meerkats will forage for foods and are good hunters that work together to catch rodents, insects and small reptiles. Materials Needed • 10 cups • Small light-weight ball such as ping pong ball • Pen/pencil/marker • Counters (buttons, pennies, beans, etc.) • Sticky Notes or Small Pieces of Paper with tape on back • Scenario Cards Length of Activity 40 minutes Procedure • Read the background information and gather the necessary materials.
    [Show full text]
  • Cobra Risk Assessment
    Invasive animal risk assessment Biosecurity Queensland Agriculture Fisheries and Department of Cobra (all species) Steve Csurhes and Paul Fisher First published 2010 Updated 2016 Pest animal risk assessment © State of Queensland, 2016. The Queensland Government supports and encourages the dissemination and exchange of its information. The copyright in this publication is licensed under a Creative Commons Attribution 3.0 Australia (CC BY) licence. You must keep intact the copyright notice and attribute the State of Queensland as the source of the publication. Note: Some content in this publication may have different licence terms as indicated. For more information on this licence visit http://creativecommons.org/licenses/ by/3.0/au/deed.en" http://creativecommons.org/licenses/by/3.0/au/deed.en Photo: Image from Wikimedia Commons (this image is reproduced under the terms of a GNU Free Documentation License) Invasive animal risk assessment: Cobra 2 Contents Summary 4 Introduction 5 Identity and taxonomy 5 Taxonomy 3 Description 5 Diet 5 Reproduction 6 Predators and diseases 6 Origin and distribution 7 Status in Australia and Queensland 8 Preferred habitat 9 History as a pest elsewhere 9 Uses 9 Pest potential in Queensland 10 Climate match 10 Habitat suitability 10 Broad natural geographic range 11 Generalist diet 11 Venom production 11 Disease 11 Numerical risk analysis 11 References 12 Attachment 1 13 Invasive animal risk assessment: Cobra 3 Summary The common name ‘cobra’ applies to 30 species in 7 genera within the family Elapidae, all of which can produce a hood when threatened. All cobra species are venomous. As a group, cobras have an extensive distribution over large parts of Africa, Asia, Malaysia and Indonesia.
    [Show full text]
  • An in Vivo Examination of the Differences Between Rapid
    www.nature.com/scientificreports OPEN An in vivo examination of the diferences between rapid cardiovascular collapse and prolonged hypotension induced by snake venom Rahini Kakumanu1, Barbara K. Kemp-Harper1, Anjana Silva 1,2, Sanjaya Kuruppu3, Geofrey K. Isbister 1,4 & Wayne C. Hodgson1* We investigated the cardiovascular efects of venoms from seven medically important species of snakes: Australian Eastern Brown snake (Pseudonaja textilis), Sri Lankan Russell’s viper (Daboia russelii), Javanese Russell’s viper (D. siamensis), Gaboon viper (Bitis gabonica), Uracoan rattlesnake (Crotalus vegrandis), Carpet viper (Echis ocellatus) and Puf adder (Bitis arietans), and identifed two distinct patterns of efects: i.e. rapid cardiovascular collapse and prolonged hypotension. P. textilis (5 µg/kg, i.v.) and E. ocellatus (50 µg/kg, i.v.) venoms induced rapid (i.e. within 2 min) cardiovascular collapse in anaesthetised rats. P. textilis (20 mg/kg, i.m.) caused collapse within 10 min. D. russelii (100 µg/kg, i.v.) and D. siamensis (100 µg/kg, i.v.) venoms caused ‘prolonged hypotension’, characterised by a persistent decrease in blood pressure with recovery. D. russelii venom (50 mg/kg and 100 mg/kg, i.m.) also caused prolonged hypotension. A priming dose of P. textilis venom (2 µg/kg, i.v.) prevented collapse by E. ocellatus venom (50 µg/kg, i.v.), but had no signifcant efect on subsequent addition of D. russelii venom (1 mg/kg, i.v). Two priming doses (1 µg/kg, i.v.) of E. ocellatus venom prevented collapse by E. ocellatus venom (50 µg/kg, i.v.). B. gabonica, C. vegrandis and B.
    [Show full text]
  • Annual Report 2017
    3 CONTACT DETAILS Dean Prof Danie Vermeulen +27 51 401 2322 [email protected] MARKETING MANAGER ISSUED BY Ms Elfrieda Lötter Faculty of Natural and Agricultural Sciences +27 51 401 2531 University of the Free State [email protected] EDITORIAL COMPILATION PHYSICAL ADDRESS Ms Elfrieda Lötter Room 9A, Biology Building, Main Campus, Bloemfontein LANGUAGE REVISION Dr Cindé Greyling and Elize Gouws POSTAL ADDRESS University of the Free State REVISION OF BIBLIOGRAPHICAL DATA PO Box 339 Dr Cindé Greyling Bloemfontein DESIGN, LAYOUT South Africa )LUHÀ\3XEOLFDWLRQV 3W\ /WG 9300 PRINTING Email: [email protected] SA Printgroup )DFXOW\ZHEVLWHZZZXIVDF]DQDWDJUL 4 NATURAL AND AGRICULTURAL SCIENCES REPORT 2017 CONTENT PREFACE Message from the Dean 7 AGRICULTURAL SCIENCES Agricultural Economics 12 Animal, Wildlife and Grassland Sciences 18 Plant Sciences 26 Soil, Crop and Climate Sciences 42 BUILDING SCIENCES Architecture 50 Quantity Surveying and Construction Management 56 8UEDQDQG5HJLRQDO3ODQQLQJ NATURAL SCIENCES Chemistry 66 Computer Sciences and Informatics 80 Consumer Sciences 88 Genetics 92 Geography 100 Geology 106 Mathematical Statistics and Actuarial Science 112 Mathematics and Applied Mathematics 116 Mathematics 120 0LFURELDO%LRFKHPLFDODQG)RRG%LRWHFKQRORJ\ Physics 136 Zoology and Entomology 154 5 Academic Centres Disaster Management Training and Education Centre of Africa - DiMTEC 164 Centre for Environmental Management - CEM 170 Centre for Microscopy 180 6XVWDLQDEOH$JULFXOWXUH5XUDO'HYHORSPHQWDQG([WHQVLRQ Paradys Experimental Farm 188 Engineering Sciences 192 Institute for Groundwater Studies 194 ACADEMIC SUPPORT UNITS Electronics Division 202 Instrumentation 206 STATISTICAL DATA Statistics 208 LIST OF ACRONYMS List of Acronyms 209 6 NATURAL AND AGRICULTURAL SCIENCES REPORT 2017 0(66$*( from the '($1 ANNUAL REPORT 2016 will be remembered as one of the worst ±ZKHUHHDFKELQFRXOGFRQWDLQDXQLTXHSURGXFWDQG years for tertiary education in South Africa due once a product is there, it remains.
    [Show full text]
  • Evidence for Range Maintenance and Homing in a New World Elapid, The
    bioRxiv preprint doi: https://doi.org/10.1101/092833; this version posted December 9, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Evidence for Philopatry and Homing in a New World Elapid Snake Alexander S. Hall1, Abigail M. K. Vázquez-Quinto2, Antonio Ramírez-Velázquez2, Eric N. Smith1 1 Department of Biology, The University of Texas at Arlington, Arlington, TX 76019, USA. E- mail: [email protected], [email protected] 2 Zoológico Regional Miguel Álvarez del Toro, Calzada Cerro Hueco, Col Zapotal, C. P. 29094, Tuxtla Gutiérrez, Chiapas, México. E-mail: [email protected], [email protected] Short running title: Homing elapid bioRxiv preprint doi: https://doi.org/10.1101/092833; this version posted December 9, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Homing elapid 2 Abstract Animal navigation allows individuals to efficiently find and use best available habitats. Despite the long history of research into well-studied taxa (e.g., pigeons, salmon, sea turtles), we know relatively little about squamate navigational abilities. Among snakes, documented philopatry (range maintenance) in a non-colubrid species has been rare. In this study, we document the first example of philopatry and homing in a new world elapid snake, Micrurus apiatus.
    [Show full text]
  • A Homoeopathic Drug Proving of Hemachatus Haemachatus with A
    A homoeopathic drug proving of Hemachatus haemachatus with a subsequent comparison of this remedy to those remedies yielding the highest numerical value and total number of rubrics on repertorisation of the proving symptoms. By Jodi Cahill Mini-dissertation submitted in partial compliance with the requirements of the Master‟s Degree in Technology: Homoeopathy in the Faculty of Health Sciences at the Durban University of Technology I, Jodi Cahill do declare that this mini-dissertation is representative of my own work, both in conception and execution. _____________________ ____________________ Signature of Student Date of signature APPROVED FOR FINAL SUBMISSION _____________________ _____________________ Signature of Supervisor Date of signature Dr. Madhu Maharaj M. Tech: Hom. (T.N) _____________________ _____________________ Signature of Co- Supervisor Date of signature Dr. Ashley Ross M. Tech: Hom. (T.N), B. Mus (UCT) 1 To Niko My greatest fan. 2 Acknowledgements Dr Madhu Maharaj Thank you for your light and guidance. You have so humbly taught me to acknowledge the value in remaining a scholar of homoeopathy, and a scholar of life. It has been an honour to have been guided by you and I will forever hold your insight in high regard. Dr Ashley Ross Your deep understanding and passion for homoeopathy inspires me. I have been truly blessed by having such great teachers who are so open to sharing their knowledge. I can only pray that I may cross paths with such great teachers in my journeys to come. Thank you! My Parents Thank you for supporting me through my journey so far. It has been a tough one at times but we have grown together.
    [Show full text]