Snake and Lizards of Minnesota

Total Page:16

File Type:pdf, Size:1020Kb

Snake and Lizards of Minnesota SNAKES AND LIZARDS OF MINNESOTA TABLE OF CONTENTS Acknowledgments . 4 Introduction . 6 Key to Minnesota’s Snakes . 24 Common Gartersnake . 26 Common Watersnake . 28 DeKay’s Brownsnake . 30 Eastern Hog‑nosed Snake . 32 Gophersnake . 34 Lined Snake . 36 Massasauga . 38 Milksnake . 40 North American Racer . 42 Plains Gartersnake . 44 Plains Hog‑nosed Snake . 46 Red‑bellied Snake . 48 Ring‑necked Snake . 50 Smooth Greensnake . 52 Timber Rattlesnake . 54 Western Foxsnake . 56 Western Ratsnake . 58 Key to Minnesota’s Lizards . 61 Common Five‑lined Skink . .. 62 Prairie Skink . 64 Six‑lined Racerunner . 66 Glossary . 68 Appendix . 70 Help Minnesota’s Wildlife! . 71 Cover photos: Timber rattlesnakes photograph by Barb Perry . Common five‑lined skink photograph by Carol Hall . Left: Park naturalist holding gophersnake . Photograph by Deborah Rose . ACKNOWLEDGMENTS Text Rebecca Christoffel, PhD, Contractor Jaime Edwards, Department of Natural Resources (DNR) Nongame Wildlife Specialist Barb Perry, DNR Nongame Wildlife Technician Snakes and Lizards Design of Minnesota Creative Services Unit, DNR Operation Services Division Editing Carol Hall, DNR Minnesota Biological Survey (MBS), Herpetologist Liz Harper, DNR Ecological and Water Resources (EWR), Assistant Central Regional Manager Erica Hoagland, DNR EWR, Nongame Wildlife Specialist Tim Koppelman, DNR Fish and Wildlife, Assistant Area Wildlife Manager Jeff LeClere, DNR, MBS, Animal Survey Specialist John Moriarity, Senior Manager of Wildlife, Three Rivers Park District Pam Perry, DNR, EWR, Nongame Wildlife Lake Specialist (Retired) This booklet was funded through a State Wildlife Grant and the Nongame Wildlife Program, DNR Ecological and Water Resources Division . Thank you for your contributions! See inside back cover . ECOLOGICAL AND WATER RESOURCES INTRODUCTION is understandable in Minnesota, spend most of the active season . In many snakes and lizards, particularly Throughout time, snakes have since we only have three lizard fall, snakes and lizards move back to those that live in dry, sandy or rocky caused fear in many people, while species, and all have a very short their wintering areas, or hibernacula. habitat, become nocturnal, where evoking awe in others . Either way, active season . This “migratory” behavior is more they are active primarily at night, or snakes are often misunderstood common with Minnesota’s snakes crepuscular, where they are active and under‑appreciated . In fact, General Biology than lizards . May is the peak primarily at dawn and dusk . This many people kill snakes simply Minnesota has seventeen snake time for spring movements and change in daily activity period allows because they fear and dislike them, species, two of which are rattle‑ September for fall movements, ectothermic animals, such as snakes and don’t understand what snakes snakes, and three lizard species . making them the peak months for and lizards, to avoid overheating contribute to our world . Snakes and lizards are classified as most snake‑human encounters . during the extreme temperatures of reptiles, which are characterized However, the peak encounter time summer days . This human persecution has led by having scaly skin and being for timber rattlesnakes in Minnesota to the decline of many snake ectothermic (cold‑blooded) . Because is July through August . A few key differences between species, including those found in the body temperature of these snakes and lizards relate to their Minnesota . Fear of snakes is a learned animals is largely controlled by the In addition to seasonal active anatomy . Minnesota’s lizards have behavior, and is often heightened temperature of their surroundings, periods, snakes and lizards also legs, external ear openings, and by media misrepresentation and they are typically only active in have daily activity patterns . Many eyelids, while snakes lack all of these sensationalism . As we learn more Minnesota from April through late snakes and lizards are diurnal, being features . Instead of eyelids, snakes about snakes and their benefits, October . During the winter, they active during the day, particularly in have clear scales, called spectacles, our willingness to coexist with move underground, below the spring and fall when temperatures which cover and protect their eyes . them increases . frost line, and become inactive, are cooler . During the summer, or hibernate . Like snakes, lizards are often unappreciated and somewhat Once snakes and lizards emerge feared by people in the upper from hibernation in spring, they Midwest simply because they are generally will move away from dens so unfamiliar . This lack of direct or other overwintering areas to and indirect experience with lizards hunting areas, where they will Carol Hall Erica Hoagland Erica 6 Snakes and Lizards of Minnesota Snakes and Lizards of Minnesota 7 Skin Snakes and lizards shed their scales, Prior to shedding, the skin appears example, hatchling North American One common misconception about or skin, as a way to allow for growth, faded and dull, especially with racers have blotched patterning, snakes and lizards is that they feel keep their bodies free of mites snakes . Because snakes shed the somewhat similar to a milksnake . slimy . On the contrary, they have and other parasites, and to replace scale covering each eye, their Once the racers are about three dry, scaly skin which can often feel old, worn skin . Skin can be shed in eyes may appear milky as the years old, they will have developed rough . Reptile scales are made of one piece, which typically occurs scales loosen (Figure 3) . Snakes typical adult coloration of solid slate keratin, the same material as human in snakes, or it can flake off, which are particularly vulnerable during gray or blue on their back, with a fingernails . Scales help snakes and is more common in lizards . Snakes this time due to their vision being yellow underside . lizards retain moisture, protect their shed their skin by rubbing their nose impaired, and they may behave more bodies from wear and tear on a rock or some other defensively when encountered . Skin variations can make identifi‑ from their sometimes harsh rough surface to break After shedding, the animal’s skin cation challenging; however, each environments, and provide Shedding the skin . They then crawl color and patterning are bright and species has a scale composition colors and patterns that may typically occurs out of the old skin, leaving clear, and may even appear glossy . (color and/or pattern) that is allow them to blend in with once or twice the shed skin inside out typically characteristic for that their natural surroundings per year. (Figure 2) . Freshly shed The number, shape, color and species (Figure 4) . (cryptic coloration) . Scales snakeskins can be used to patterning of scales can vary also help snakes move as identify different species considerably between species, The dorsal pattern on the backs they crawl and climb . Scales can be because you can often still see the and often within a species . There of snakes and lizards is one smooth or keeled (Figure 1), having pattern and scale composition . can be differences in patterns characteristic used for identification . a ridge along the centerline similar Young snakes and lizards shed more and colors among geographic These patterns can be in the form to the pointed keel of a boat . In frequently than adults, sometimes regions as well as at a more local of blotches, vertical lines/stripes some species, scales are modified to two to three times during the active level . Colors and patterns can also running from head to tail, horizontal form different structures, such as a season . However, once they reach change as the animal matures . For bars/bands running across the body, rattlesnake’s rattle . maturity, shedding typically occurs only once or twice per year . Smooth Keeled James Gerholdt James Figure 2 . Plains gartersnake starting to Figure 1 . Scale comparison . Hoaglund Erica shed skin . Figure 3 . Gophersnake prior to shedding . Notice opaque, milky color of eye . 8 Snakes and Lizards of Minnesota Snakes and Lizards of Minnesota 9 Venomous Verses Eyes also differ between the Nonvenomous Snakes two groups . Rattlesnakes have in Minnesota elliptical, or cat’s eye pupils, but our Many people believe that some of nonvenomous species have round Minnesota’s snakes are poisonous . pupils (Figure 7) . A third difference This is not accurate . Poison is relates to the scale pattern on the generally ingested and intended to ventral tail surface . Minnesota’s ward off or kill predators whereas, rattlesnakes have single ventral venom is a type of toxin that is scales on their tail, whereas, our . injected into prey to help subdue nonvenomous snakes have divided and/or kill it prior to consumption . ventral scales on their tail (Figure 5) . Minnesota’s rattlesnakes are Minnesota DNR Minnesota considered venomous, rather than Both of Minnesota’s rattlesnakes Figure 4 . Snake skin patterns left to right: blotched (milksnake), lined or striped poisonous, because they deliver their are called pit vipers because they (gartersnake), banded (timber rattlesnake) . venom by injection, and their flesh is have a set of loreal or heat‑sensing not poisonous to another animal if it pits located between their eyes and is eaten . nostrils (Figure 7) . Nonvenomous or no pattern (solid) . Some snakes The anal plate is either singular or snakes in Minnesota lack these have patterns on their belly that divided in snakes (Figure 5) . Minnesota has two venomous snakes, pits . Lastly, our rattlesnakes have are used for identification . These both of which are rattlesnakes . triangular‑shaped heads that are patterns include a checker board, a In some snake species, the number of There are several characteristics noticeably wider than their necks, series of half moons, or solid . scale rows and placement of patterns that differentiate our rattlesnakes while our nonvenomous snakes or colors on these rows can be a key from our 15 nonvenomous snake have rounded heads that are The anal plate is often used in snake characteristic for identification . This species . Our two rattlesnakes essentially the same width as their identification .
Recommended publications
  • Cfreptiles & Amphibians
    WWW.IRCF.ORG/REPTILESANDAMPHIBIANSJOURNALTABLE OF CONTENTS IRCF REPTILES & IRCFAMPHIBIANS REPTILES • VOL 15,& NAMPHIBIANSO 4 • DEC 2008 •189 20(4):166–171 • DEC 2013 IRCF REPTILES & AMPHIBIANS CONSERVATION AND NATURAL HISTORY TABLE OF CONTENTS FEATURE ARTICLES Differential. Chasing Bullsnakes (Pituophis catenifer sayiHabitat) in Wisconsin: Use by Common On the Road to Understanding the Ecology and Conservation of the Midwest’s Giant Serpent ...................... Joshua M. Kapfer 190 . The Shared History of Treeboas (Corallus grenadensis) and Humans on Grenada: A WatersnakesHypothetical Excursion ............................................................................................................................ (Nerodia sipedonRobert W. Henderson) 198 Lorin A.RESEARCH Neuman-Lee ARTICLES1,2, Andrew M. Durso1,2, Nicholas M. Kiriazis1,3, Melanie J. Olds1,4, and Stephen J. Mullin1 . The Texas Horned Lizard in Central and Western Texas ....................... Emily Henry, Jason Brewer, Krista Mougey, and Gad Perry 204 1Department of Biological Sciences, Eastern Illinois University, Charleston, Illinois 61920, USA . The Knight Anole (Anolis equestris) in Florida 2 Present ............................................. address: DepartmentBrian of Biology,J. Camposano, Utah Kenneth State L. University, Krysko, Kevin Logan, M. Enge, Utah Ellen 84321,M. Donlan, USA and ([email protected]) Michael Granatosky 212 3Present address: School of Teacher Education and Leadership, Utah State University, Logan, Utah 84321, USA CONSERVATION4Present
    [Show full text]
  • Snake Charming and the Exploitation of Snakes in Morocco
    Snake charming and the exploitation of snakes in Morocco J UAN M. PLEGUEZUELOS,MÓNICA F ERICHE,JOSÉ C. BRITO and S OUMÍA F AHD Abstract Traditional activities that potentially threaten bio- also for clothing, tools, medicine and pets, as well as in diversity represent a challenge to conservationists as they try magic and religious activities (review in Alves & Rosa, to reconcile the cultural dimensions of such activities. ). Vertebrates, particularly reptiles, have frequently Quantifying the impact of traditional activities on biodiver- been used for traditional medicine. Alves et al. () iden- sity is always helpful for decision making in conservation. In tified reptile species ( families, genera) currently the case of snake charming in Morocco, the practice was in- used in traditional folk medicine, % of which are included troduced there years ago by the religious order the on the IUCN Red List (IUCN, ) and/or the CITES Aissawas, and is now an attraction in the country’s growing Appendices (CITES, ). Among the reptile species tourism industry. As a consequence wild snake populations being used for medicine, % are snakes. may be threatened by overexploitation. The focal species for Snakes have always both fascinated and repelled people, snake charming, the Egyptian cobra Naja haje, is undergo- and the reported use of snakes in magic and religious activ- ing both range and population declines. We estimated the ities is global (Alves et al., ). The sacred role of snakes level of exploitation of snakes based on field surveys and may be related to a traditional association with health and questionnaires administered to Aissawas during – eternity in some cultures (Angeletti et al., ) and many , and compared our results with those of a study con- species are under pressure from exploitation as a result ducted years previously.
    [Show full text]
  • WHO Guidance on Management of Snakebites
    GUIDELINES FOR THE MANAGEMENT OF SNAKEBITES 2nd Edition GUIDELINES FOR THE MANAGEMENT OF SNAKEBITES 2nd Edition 1. 2. 3. 4. ISBN 978-92-9022- © World Health Organization 2016 2nd Edition All rights reserved. Requests for publications, or for permission to reproduce or translate WHO publications, whether for sale or for noncommercial distribution, can be obtained from Publishing and Sales, World Health Organization, Regional Office for South-East Asia, Indraprastha Estate, Mahatma Gandhi Marg, New Delhi-110 002, India (fax: +91-11-23370197; e-mail: publications@ searo.who.int). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters. All reasonable precautions have been taken by the World Health Organization to verify the information contained in this publication. However, the published material is being distributed without warranty of any kind, either expressed or implied. The responsibility for the interpretation and use of the material lies with the reader. In no event shall the World Health Organization be liable for damages arising from its use.
    [Show full text]
  • Reptiles A. Cladistics 1. Many Groups of Organisms
    Reptiles A. Cladistics 1. Many groups of organisms are “polyphyletic” a. This means that the group combines 2 or more lineages - example=fish 2. Cladistics follows only pure lineages going back in time - example Osteichthys B. Reptile Classifiecation - looks like a polyphyletic group 1. Dry skin - no loss of water through skin like amphibians 2. Aminotic egg - an egg that can survive on dry land - in contrast with the amphibian egg C. Mammals and Birds are derived from different lineages of reptiles (We will see below) D. Stem Reptiles 1. Different lineages based on the temporal region of their skulls - number of holes (or bars) a. These holes are necessary to accommodate large jaw muscles b. Anapsid Skull - no holes in temporal - jaws can move fast, but with little force 1. Muscles that move the jaw are small 2. There is no good paleotological evidence for the transition between amphibians and reptiles - no fossil intermediates a. Fossil amphibians have lots of dermal bones in skull b. Amphibians have no temporal openings in skull 1. (Aside) both fossil amphibians and primitive reptiles have a parietal “eye” that senses light and dark (“third” eye in middle of head) c. Reptile skull is higher than amphibian to accomodate larger jaw muscles d. Of the modern reptiles only turtles are anapsids 2. Diapsid Skull - has holes in the temporal region a. Diapsid reptiles gave rise to lizards and snakes - they have a diapsid skull 1. Also Tuatara, crocodiles, dinosaurs and pterydactyls Reptiles b. One group of diapsids also had a pre-orbital hole in the skull in front of eye - this hole is still preserved in the birds - this anatomy suggests strongly that the birds are derived from the diapsid reptiles 3.
    [Show full text]
  • Serpent Symbols and Salvation in the Ancient Near East and the Book of Mormon
    Journal of Book of Mormon Studies Volume 10 Number 2 Article 8 7-31-2001 Serpent Symbols and Salvation in the Ancient Near East and the Book of Mormon Andrew C. Skinner Follow this and additional works at: https://scholarsarchive.byu.edu/jbms BYU ScholarsArchive Citation Skinner, Andrew C. (2001) "Serpent Symbols and Salvation in the Ancient Near East and the Book of Mormon," Journal of Book of Mormon Studies: Vol. 10 : No. 2 , Article 8. Available at: https://scholarsarchive.byu.edu/jbms/vol10/iss2/8 This Feature Article is brought to you for free and open access by the Journals at BYU ScholarsArchive. It has been accepted for inclusion in Journal of Book of Mormon Studies by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Title Serpent Symbols and Salvation in the Ancient Near East and the Book of Mormon Author(s) Andrew C. Skinner Reference Journal of Book of Mormon Studies 10/2 (2001): 42–55, 70–71. ISSN 1065-9366 (print), 2168-3158 (online) Abstract The serpent is often used to represent one of two things: Christ or Satan. This article synthesizes evi- dence from Egypt, Mesopotamia, Phoenicia, Greece, and Jerusalem to explain the reason for this duality. Many scholars suggest that the symbol of the serpent was used anciently to represent Jesus Christ but that Satan distorted the symbol, thereby creating this para- dox. The dual nature of the serpent is incorporated into the Old Testament, the New Testament, and the Book of Mormon. erpent ymbols & SSalvation in the ancient near east and the book of mormon andrew c.
    [Show full text]
  • Tropidoclonion Lineatum)
    Region 2 Other Emphasis Species List Lined Snake (Tropidoclonion lineatum) Recommendation Rationale: Not R2 SS, But Should Be Considered For Other Emphasis Species Lists This prairie species is considered secure within the heart of its range, including eastern Nebraska (could extend to Samuel R. McKelvie and Halsey units) and Kansas. Its imperiled ranking in South Dakota is no doubt due to its very limited distribution in the extreme southeast corner of the state. In Colorado, the species has been found in the Denver-Boulder area, out into the central and southeastern plains. Because of its secretive habits, it is anticipated that it may be even more widely spread in eastern Colorado. It is known from the Comanche National Grasslands and could ultimately be found on or near the Pawnee. While populations may have suffered along the rapidly developing Front Range in Colorado, and as a consequence of riparian habitat degradation, the species seems generally tolerant of habitat modification, and remains at least locally common. Consequently, at this time we see no compelling reason to put on the list. However, the species has several life history characteristics that could put it at risk. Therefore, we recommend that the status of the species be monitored by our Plains units and treated as a species of local management concern where problems are identified. Note: In addition to the evaluator’s references, also referred to biodiversity documentation at Natureserve.org; Wyoming Biodiversity Node; distribution data from the Colorado Herpetological Society; Hammerson 1999; Reptiles and Amphibians of Nebraska, 2000, Coop. Unit, Univ. Neb; Collins and Collins (1991) Reptiles and Amphibians of the Cimarron National Grasslands, Morton County, Kansas; Collins Revised on January 29, 2003 by Gary Patton .
    [Show full text]
  • Bibliography and Scientific Name Index to Amphibians
    lb BIBLIOGRAPHY AND SCIENTIFIC NAME INDEX TO AMPHIBIANS AND REPTILES IN THE PUBLICATIONS OF THE BIOLOGICAL SOCIETY OF WASHINGTON BULLETIN 1-8, 1918-1988 AND PROCEEDINGS 1-100, 1882-1987 fi pp ERNEST A. LINER Houma, Louisiana SMITHSONIAN HERPETOLOGICAL INFORMATION SERVICE NO. 92 1992 SMITHSONIAN HERPETOLOGICAL INFORMATION SERVICE The SHIS series publishes and distributes translations, bibliographies, indices, and similar items judged useful to individuals interested in the biology of amphibians and reptiles, but unlikely to be published in the normal technical journals. Single copies are distributed free to interested individuals. Libraries, herpetological associations, and research laboratories are invited to exchange their publications with the Division of Amphibians and Reptiles. We wish to encourage individuals to share their bibliographies, translations, etc. with other herpetologists through the SHIS series. If you have such items please contact George Zug for instructions on preparation and submission. Contributors receive 50 free copies. Please address all requests for copies and inquiries to George Zug, Division of Amphibians and Reptiles, National Museum of Natural History, Smithsonian Institution, Washington DC 20560 USA. Please include a self-addressed mailing label with requests. INTRODUCTION The present alphabetical listing by author (s) covers all papers bearing on herpetology that have appeared in Volume 1-100, 1882-1987, of the Proceedings of the Biological Society of Washington and the four numbers of the Bulletin series concerning reference to amphibians and reptiles. From Volume 1 through 82 (in part) , the articles were issued as separates with only the volume number, page numbers and year printed on each. Articles in Volume 82 (in part) through 89 were issued with volume number, article number, page numbers and year.
    [Show full text]
  • Ostrich Production Systems Part I: a Review
    11111111111,- 1SSN 0254-6019 Ostrich production systems Food and Agriculture Organization of 111160mmi the United Natiorp str. ro ucti s ct1rns Part A review by Dr M.M. ,,hanawany International Consultant Part II Case studies by Dr John Dingle FAO Visiting Scientist Food and , Agriculture Organization of the ' United , Nations Ot,i1 The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. M-21 ISBN 92-5-104300-0 Reproduction of this publication for educational or other non-commercial purposes is authorized without any prior written permission from the copyright holders provided the source is fully acknowledged. Reproduction of this publication for resale or other commercial purposes is prohibited without written permission of the copyright holders. Applications for such permission, with a statement of the purpose and extent of the reproduction, should be addressed to the Director, Information Division, Food and Agriculture Organization of the United Nations, Viale dells Terme di Caracalla, 00100 Rome, Italy. C) FAO 1999 Contents PART I - PRODUCTION SYSTEMS INTRODUCTION Chapter 1 ORIGIN AND EVOLUTION OF THE OSTRICH 5 Classification of the ostrich in the animal kingdom 5 Geographical distribution of ratites 8 Ostrich subspecies 10 The North
    [Show full text]
  • Morphology, Phylogeny, and Evolution of Diadectidae (Cotylosauria: Diadectomorpha)
    Morphology, Phylogeny, and Evolution of Diadectidae (Cotylosauria: Diadectomorpha) by Richard Kissel A thesis submitted in conformity with the requirements for the degree of doctor of philosophy Graduate Department of Ecology & Evolutionary Biology University of Toronto © Copyright by Richard Kissel 2010 Morphology, Phylogeny, and Evolution of Diadectidae (Cotylosauria: Diadectomorpha) Richard Kissel Doctor of Philosophy Graduate Department of Ecology & Evolutionary Biology University of Toronto 2010 Abstract Based on dental, cranial, and postcranial anatomy, members of the Permo-Carboniferous clade Diadectidae are generally regarded as the earliest tetrapods capable of processing high-fiber plant material; presented here is a review of diadectid morphology, phylogeny, taxonomy, and paleozoogeography. Phylogenetic analyses support the monophyly of Diadectidae within Diadectomorpha, the sister-group to Amniota, with Limnoscelis as the sister-taxon to Tseajaia + Diadectidae. Analysis of diadectid interrelationships of all known taxa for which adequate specimens and information are known—the first of its kind conducted—positions Ambedus pusillus as the sister-taxon to all other forms, with Diadectes sanmiguelensis, Orobates pabsti, Desmatodon hesperis, Diadectes absitus, and (Diadectes sideropelicus + Diadectes tenuitectes + Diasparactus zenos) representing progressively more derived taxa in a series of nested clades. In light of these results, it is recommended herein that the species Diadectes sanmiguelensis be referred to the new genus
    [Show full text]
  • Lake Erie Watersnake (Nerodia Sipedon Insularum) in Canada
    PROPOSED Species at Risk Act Management Plan Series Adopted under Section 69 of SARA Management Plan for the Lake Erie Watersnake (Nerodia sipedon insularum) in Canada Lake Erie Watersnake 2019 Recommended citation: Environment and Climate Change Canada. 2019. Management Plan for the Lake Erie Watersnake (Nerodia sipedon insularum) in Canada [Proposed]. Species at Risk Act Management Plan Series. Environment and Climate Change Canada, Ottawa. 2 parts, 28 pp. + 20 pp. For copies of the management plan, or for additional information on species at risk, including the Committee on the Status of Endangered Wildlife in Canada (COSEWIC) Status Reports, residence descriptions, action plans, and other related recovery documents, please visit the Species at Risk (SAR) Public Registry1. Cover illustration: © Gary Allen Également disponible en français sous le titre « Plan de gestion de la couleuvre d’eau du lac Érié (Nerodia sipedon insularum) au Canada [Proposition] » © Her Majesty the Queen in Right of Canada, represented by the Minister of Environment and Climate Change, 2019. All rights reserved. ISBN Catalogue no. Content (excluding the illustrations) may be used without permission, with appropriate credit to the source. 1 www.canada.ca/en/environment-climate-change/services/species-risk-public-registry.html MANAGEMENT PLAN FOR LAKE ERIE WATERSNAKE (Nerodia sipedon insularum) IN CANADA 2019 Under the Accord for the Protection of Species at Risk (1996), the federal, provincial, and territorial governments agreed to work together on legislation, programs, and policies to protect wildlife species at risk throughout Canada. In the spirit of cooperation of the Accord, the Government of Ontario has given permission to the Government of Canada to adopt the Blue Racer, Lake Erie Watersnake and Small-mouthed Salamander and Unisexual Ambystoma (Small- mouthed Salamander dependent population) – Ontario Government Response Statement (Part 2) under Section 69 of the Species at Risk Act (SARA).
    [Show full text]
  • The Global Distribution of Tetrapods Reveals a Need for Targeted Reptile
    1 The global distribution of tetrapods reveals a need for targeted reptile 2 conservation 3 4 Uri Roll#1,2, Anat Feldman#3, Maria Novosolov#3, Allen Allison4, Aaron M. Bauer5, Rodolphe 5 Bernard6, Monika Böhm7, Fernando Castro-Herrera8, Laurent Chirio9, Ben Collen10, Guarino R. 6 Colli11, Lital Dabool12 Indraneil Das13, Tiffany M. Doan14, Lee L. Grismer15, Marinus 7 Hoogmoed16, Yuval Itescu3, Fred Kraus17, Matthew LeBreton18, Amir Lewin3, Marcio Martins19, 8 Erez Maza3, Danny Meirte20, Zoltán T. Nagy21, Cristiano de C. Nogueira19, Olivier S.G. 9 Pauwels22, Daniel Pincheira-Donoso23, Gary Powney24, Roberto Sindaco25, Oliver Tallowin3, 10 Omar Torres-Carvajal26, Jean-François Trape27, Enav Vidan3, Peter Uetz28, Philipp Wagner5,29, 11 Yuezhao Wang30, C David L Orme6, Richard Grenyer✝1 and Shai Meiri✝*3 12 13 # Contributed equally to the paper 14 ✝ Contributed equally to the paper 15 * Corresponding author 16 17 Affiliations: 18 1 School of Geography and the Environment, University of Oxford, Oxford, OX13QY, UK. 19 2 Mitrani Department of Desert Ecology, The Jacob Blaustein Institutes for Desert Research, 20 Ben-Gurion University, Midreshet Ben-Gurion 8499000, Israel. (Current address) 21 3 Department of Zoology, Tel-Aviv University, Tel-Aviv 6997801, Israel. 22 4 Hawaii Biological Survey, 4 Bishop Museum, Honolulu, HI 96817, USA. 23 5 Department of Biology, Villanova University, Villanova, PA 19085, USA. 24 6 Department of Life Sciences, Imperial College London, Silwood Park Campus Silwood Park, 25 Ascot, Berkshire, SL5 7PY, UK 26 7 Institute of Zoology, Zoological Society of London, London NW1 4RY, UK. 27 8 School of Basic Sciences, Physiology Sciences Department, Universidad del Valle, Colombia.
    [Show full text]
  • An in Vivo Examination of the Differences Between Rapid
    www.nature.com/scientificreports OPEN An in vivo examination of the diferences between rapid cardiovascular collapse and prolonged hypotension induced by snake venom Rahini Kakumanu1, Barbara K. Kemp-Harper1, Anjana Silva 1,2, Sanjaya Kuruppu3, Geofrey K. Isbister 1,4 & Wayne C. Hodgson1* We investigated the cardiovascular efects of venoms from seven medically important species of snakes: Australian Eastern Brown snake (Pseudonaja textilis), Sri Lankan Russell’s viper (Daboia russelii), Javanese Russell’s viper (D. siamensis), Gaboon viper (Bitis gabonica), Uracoan rattlesnake (Crotalus vegrandis), Carpet viper (Echis ocellatus) and Puf adder (Bitis arietans), and identifed two distinct patterns of efects: i.e. rapid cardiovascular collapse and prolonged hypotension. P. textilis (5 µg/kg, i.v.) and E. ocellatus (50 µg/kg, i.v.) venoms induced rapid (i.e. within 2 min) cardiovascular collapse in anaesthetised rats. P. textilis (20 mg/kg, i.m.) caused collapse within 10 min. D. russelii (100 µg/kg, i.v.) and D. siamensis (100 µg/kg, i.v.) venoms caused ‘prolonged hypotension’, characterised by a persistent decrease in blood pressure with recovery. D. russelii venom (50 mg/kg and 100 mg/kg, i.m.) also caused prolonged hypotension. A priming dose of P. textilis venom (2 µg/kg, i.v.) prevented collapse by E. ocellatus venom (50 µg/kg, i.v.), but had no signifcant efect on subsequent addition of D. russelii venom (1 mg/kg, i.v). Two priming doses (1 µg/kg, i.v.) of E. ocellatus venom prevented collapse by E. ocellatus venom (50 µg/kg, i.v.). B. gabonica, C. vegrandis and B.
    [Show full text]