Adrenergic Receptor Mechanisms in Spontaneous Contractile Activity of Rat Ileal Longitudinal Smooth Muscle

Total Page:16

File Type:pdf, Size:1020Kb

Adrenergic Receptor Mechanisms in Spontaneous Contractile Activity of Rat Ileal Longitudinal Smooth Muscle View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by RERO DOC Digital Library α- and β-Adrenergic Receptor Mechanisms in Spontaneous Contractile Activity of Rat Ileal Longitudinal Smooth Muscle Roland Seiler, B.A., Andreas Rickenbacher, B.A., Sidney Shaw, Ph.D., Bruno M. Balsiger, M.D. Gastrointestinal motility is influenced by adrenergic modulation. Our aim was to identify specific subtypes of adrenergic receptors involved in inhibitory mechanisms that modulate gut smooth muscle contractile activity. Muscle strips of rat ileal longitudinal muscle were evaluated for spontaneous contractile activity and Ϫ Ϫ for equimolar dose-responses (10 7 to 3 × 10 5 M) to the adrenergic agents norepinephrine (nonselective α α β β agonist), phenylephrine ( 1-agonist), clonidine ( 2-agonist), prenalterol ( 1-agonist), ritodrine ( 2- β agonist), and ZD7114 ( 3-agonist) in the presence and absence of tetrodotoxin (nonselective nerve blocker). Ϫ Norepinephrine (3 × 10 5 M) inhibited 65 Ϯ 6% (mean Ϯ SEM) of spontaneous contractile activity. The same molar dose of ritodrine, phenylephrine, or ZD7114 resulted in less inhibition (46 Ϯ 7%, 31 Ϯ 5%, and 39 Ϯ 3%, respectively; P Ͻ 0.05). The calculated molar concentration of ZD7114 needed to induce 50% inhibition was similar to that of norepinephrine, whereas higher concentrations of phenylephrine or ritodrine were required. Clonidine and prenalterol had no effect on contractile activity. Blockade of intramural neural transmission by tetrodotoxin affected the responses to ritodrine and phenylephrine (but not to norepinephrine or ZD7114), suggesting that these agents exert part of their effects via neurally mediated enteric pathways. Our results suggest that adrenergic modulation of β β α contractile activity in the rat ileum is mediated primarily by muscular 3-, 2-, and 1-receptor mechanisms; the latter two also involve neural pathways. (J GASTROINTEST SURG 2005;9:227–235) Ć 2005 The Society for Surgery of the Alimentary Tract KEY WORDS: Contractility, motility, ileum, rat, in vitro, adrenergic, adrenergic receptor, α-adrenergic receptors, β-adrenergic receptors Coordination and modulation of gastrointestinal In the small bowel, vagal inputs are supplied to myen- motor activity are dependent on the interaction of two teric neurons.3 These enteric neurons influence the complex neural inputs: the enteric nervous system, generation of motor patterns. which is completely intrinsic within the bowel wall, The intestinal sympathetic nervous system consists and the central nervous system, sending its influences of nerve cell bodies located in the prevertebral ganglia through the extrinsic nerves to the gut (vagal, sympa- with their postganglionic fibers entering the gut. No thetic).1 Interactions between the central nervous adrenergic nerve cell bodies are present in the gut system and the enteric nervous system are important wall.1 Most, if not all, sympathetic postganglionic in gastrointestinal responses to stress, eating, and fibers affecting motility are thought to synapse in the behavior.2 enteric nervous system and not directly on smooth Vagal motor pathways modulate mainly the upper muscle cells. Indeed, adrenergic nerves do not syn- gastrointestinal tract and the distal colon and rectum. apse directly on nonsphincter muscle cells in the gut.4 Presented in part at the Forty-Third Annual Meeting of The Society for Surgery of the Alimentary Tract, San Francisco, California, May 19–22, 2002 (poster presentation). From the Gastroenterology Unit (R.S., A.R., B.M.B.) and the Department of Clinical Research (R.S., A.R., S.S., B.M.B.), University of Bern, Bern, Switzerland. Supported by Nycomed AG Switzerland, Ethicon, Switzerland, and the Swiss National Science Foundation (B.M.B.; Nr. 31-61583.00). Reprint requests: Dr. Balsiger, Gastroenterology Unit and Dept. of Clinical Research, University of Bern, Tiefenaustrasse 120, 3004 Bern, Switzerland. e-mail: [email protected] Ć 2005 The Society for Surgery of the Alimentary Tract 1091-255X/05/$—see front matter Published by Elsevier Inc. doi:10.1016/j.gassur.2004.05.012 227 Journal of 228 Seiler et al. Gastrointestinal Surgery Despite the predominant, direct adrenergic input to the direction of the longitudinal muscle. Silk loops the enteric nervous system, we found strong, adrener- were tied at both ends of the strips. The muscles were gically mediated inhibitory motor mechanisms in rat suspended vertically in 5-ml organ chambers (Radnoti jejunum and ileum occurring preferentially at the Glass Technology Inc., Monrovia, CA) filled with level of these smooth muscle cells rather than in modified Krebs-Ringer bicarbonate solution main- 5,6 the enteric nervous system ; these effects appeared tained at 37.5Њ C and bubbled with 95% O2 and 5% to be independent of input from the enteric ner- CO2 (Carbagas, Bern, Switzerland). The lower end vous system. of the muscle strip was connected to a fixed glass Therefore, one approach to target gastrointes- hook in the chamber, and the upper end was attached tinal motility disorders through adrenergic pathways to a noncompliant force transducer (Radnoti Glass would be to direct the pharmacologic therapy at the Technology Inc.), thereby allowing measurement of receptors occurring in the gut on smooth muscle cells. isometric force. To date, therapeutic approaches targeting adrenergic pathways in the gastrointestinal tract have not been Experimental Design very successful, in part because of substantial cardio- 7 After an equilibration period of 80–90 minutes with vascular side effects of the agents used. change of the buffer solution every 20–25 minutes, Therefore, mechanisms involved in modulating each strip was stretched incrementally at 10- to 15- contractile activity of the gut mediated by specific minute intervals to its optimal length (Lo). Lo is de- subtypes of adrenergic receptors are of considerable fined as the length beyond which further stretching interest. Our first aim was to identify which adrener- did not increase the amplitude of spontaneous con- gic receptor subtypes mediate inhibition of spon- tractions. The entire experiment was then performed taneous contractile activity. Second, we wanted to at this Lo; strips without spontaneous activity were determine if these receptor-specific mechanisms were not used (2% of all muscle strips). mediated at the level of the smooth muscle and/or After recording of baseline spontaneous activity, via the enteric nervous system. Our hypothesis was α β one substance was administered per chamber in a that both 1- and 2-receptor mechanisms mediate cumulative manner every 10 minutes. Norepineph- the inhibitory responses and that these mechanisms rine (NE) was chosen as the nonselective adrenergic are active directly at the level of the smooth muscle and α α agonist; phenylephrine and clonidine as 1- and 2- not indirectly via effects mediated through the enteric selective agonists; and prenalterol, ritodrine, and nervous system. β β β ZD7114, as 1-, 2-, and 3-selective agonists, respec- Ϫ tively. Drugs were added in cumulative doses (10 7 to Ϫ 3 × 10 5 M) every 10 minutes. The highest dose used Ϫ METHODS was 3 × 10 5 M according to our previous work using Preparation of Tissue only NE.5,6 One chamber contained a control strip Procedures and animal care were performed ac- to confirm stable activity during the duration of the cording to the guidelines of the Department of Agri- experiment, and the final chamber contained a spare culture of the Canton of Bern, Switzerland. Male strip. Wistar rats were used in all experiments. Anesthesia After the dose-response experiment, the chambers was achieved with intraperitoneal sodium pentobarbi- were washed 4 times with modified Krebs-Ringer tal (5 mg/100 g; Abbott Laboratories, North Chicago, buffer. When spontaneous contractions returned to Ϫ IL). A 5-cm segment of the ileum was removed begin- baseline activity, tetrodotoxin (TTX; 10 6 M) was ning 2 cm orad to the ileocecal valve and stored in cold added to every chamber. TTX is thought to abolish Krebs-Ringer buffer (concentration in mM: NaCl most all enteric neural input by blocking neuronal 118.3, KCl 4.7, CaCl2 2.5, MgSO4 1.2, KH2PO4 1.2, sodium channels. After a 15- to 20-minute equilibra- NaHCO3 25.0, calcium disodium edetate 0.26, and tion, the same dose-response experiment was re- glucose 11.1). The distal end of the specimen was peated in each chamber with the same agonist. marked. At the conclusion of the experiment, the length of each strip between the two ties of silk loops and wet Recording of Contractile Activity weight was measured. The segment of the distal ileum was immersed in Data Analysis chilled, modified Krebs-Ringer bicarbonate solu- tion and opened along the mesenteric border. The Total spontaneous contractile activity was quanti- tissue was pinned flat in a Petri dish, and eight fied as the integral of the generated force (g × time full-thickness muscle strips per rat were prepared in as total area under the contractile curve) measured Vol. 9, No. 2 2005 Adrenergic Mechanisms of Ileal Contractility 229 for 5 minutes at Lo, whereas responses to adrenergic estimated for each agonist based on the dose-response agonists were quantified by measuring the integral of curve. A greater EC50 represents a smaller concentra- force for 5 minutes immediately after drug adminis- tion of an agonist needed to induce 50% inhibition tration. The integral of force was calculated by of spontaneous activity. computerized methodology using special software Values are presented as mean Ϯ SEM. Student’s (AcqKnowledge, Biopac Systems, Inc., Goleta, CA), t tests with a Bonferroni correction were used to normalized per millimeter squared of cross-sectional compare the effects of each specific agonist with spon- area (CSA) for each muscle strip. taneous activity at all doses and with the respective The CSA was calculated using the following effect of NE. The effect of TTX on spontaneous equation: activity, on EC50, and on each dose of the respective agonist was evaluated in the same way.
Recommended publications
  • Transdermal Drug Delivery Device Including An
    (19) TZZ_ZZ¥¥_T (11) EP 1 807 033 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: A61F 13/02 (2006.01) A61L 15/16 (2006.01) 20.07.2016 Bulletin 2016/29 (86) International application number: (21) Application number: 05815555.7 PCT/US2005/035806 (22) Date of filing: 07.10.2005 (87) International publication number: WO 2006/044206 (27.04.2006 Gazette 2006/17) (54) TRANSDERMAL DRUG DELIVERY DEVICE INCLUDING AN OCCLUSIVE BACKING VORRICHTUNG ZUR TRANSDERMALEN VERABREICHUNG VON ARZNEIMITTELN EINSCHLIESSLICH EINER VERSTOPFUNGSSICHERUNG DISPOSITIF D’ADMINISTRATION TRANSDERMIQUE DE MEDICAMENTS AVEC COUCHE SUPPORT OCCLUSIVE (84) Designated Contracting States: • MANTELLE, Juan AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Miami, FL 33186 (US) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • NGUYEN, Viet SK TR Miami, FL 33176 (US) (30) Priority: 08.10.2004 US 616861 P (74) Representative: Awapatent AB P.O. Box 5117 (43) Date of publication of application: 200 71 Malmö (SE) 18.07.2007 Bulletin 2007/29 (56) References cited: (73) Proprietor: NOVEN PHARMACEUTICALS, INC. WO-A-02/36103 WO-A-97/23205 Miami, FL 33186 (US) WO-A-2005/046600 WO-A-2006/028863 US-A- 4 994 278 US-A- 4 994 278 (72) Inventors: US-A- 5 246 705 US-A- 5 474 783 • KANIOS, David US-A- 5 474 783 US-A1- 2001 051 180 Miami, FL 33196 (US) US-A1- 2002 128 345 US-A1- 2006 034 905 Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations.
    [Show full text]
  • (12) United States Patent (10) Patent N0.: US 7,723,065 B2 Trewhella Et A]
    US007723065B2 (12) United States Patent (10) Patent N0.: US 7,723,065 B2 Trewhella et a]. (45) Date of Patent: May 25, 2010 (54) CONDITIONS FOR REACTIONS MEDIATED Kumar A, Ner DH, Dike SY, A New Chemoenzymatic Enantioselec BY YEAST tive Synthesis of R-(—)-Tomoxetine, R- and S-Fluoxetine, Tetrahe dron Letters, 1991, 32(16): 1901-1904.* (75) Inventors: Maurice Arthur TreWhella, Hoppers Liu X, Zhu T-S, Sun P-D, Xu J-H, Asymmetric Reduction of Aro Crossing (AU); Nick Athanasiou, matic Ketones by the Baker’s Yeast in Organic Solvent Systems, Yarraville (AU); Andrew John Synthetic Communications, 2001, 31(10): 1521-1526.* Smallridge, Hampton East (AU) Chem 231 Lecture No. 10 Sp 1999* Ohta et al. “Asymmeteric Reduction of Nitro Ole?ns by Fermment (73) Assignee: Victoria University, Victoria (AU) ing Baker’sYeast.” J. Org. Chem. vol. 54, pp. 1802-1804. 1989* ( * ) Notice: Subject to any disclaimer, the term of this KaWai et al. “Asymmeteric Reduction of nitroalkenes With baker’s patent is extended or adjusted under 35 yeast.” Tetrahedron: Asymmetry. vol. 12, pp. 309-318. 2001.* U.S.C. 154(b) by 933 days. Y. Gao and K. B. Sharpless-“Asymmetric Synthesis of Both Enantionmers of Tomoxentine and Fluoxentine. Selective Reduction of 2, 3-Epoxycinnamyl Alcohol With Red-A1”, J. Org. Chem. 1988, (21) Appl.No.: 10/814,891 53, 4081-4084. © 1988 American Chemical Society. (22) Filed: Mar. 31, 2004 Badan S. Deol et al., Asymmetric Reduction of Carbonyl Compounds byYeast. II; Aust. J. Chem., 1976, 29, 2459-67, 9 pages. (65) Prior Publication Data * cited by examiner US 2005/0084943 A1 Apr.
    [Show full text]
  • Treatment for Calcium Channel Blocker Poisoning: a Systematic Review
    Clinical Toxicology (2014), 52, 926–944 Copyright © 2014 Informa Healthcare USA, Inc. ISSN: 1556-3650 print / 1556-9519 online DOI: 10.3109/15563650.2014.965827 REVIEW ARTICLE Treatment for calcium channel blocker poisoning: A systematic review M. ST-ONGE , 1,2,3 P.-A. DUB É , 4,5,6 S. GOSSELIN ,7,8,9 C. GUIMONT , 10 J. GODWIN , 1,3 P. M. ARCHAMBAULT , 11,12,13,14 J.-M. CHAUNY , 15,16 A. J. FRENETTE , 15,17 M. DARVEAU , 18 N. LE SAGE , 10,14 J. POITRAS , 11,12 J. PROVENCHER , 19 D. N. JUURLINK , 1,20,21 and R. BLAIS 7 1 Ontario and Manitoba Poison Centre, Toronto, ON, Canada 2 Institute of Medical Science, University of Toronto, Toronto, ON, Canada 3 Department of Clinical Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada 4 Direction of Environmental Health and Toxicology, Institut national de sant é publique du Qu é bec, Qu é bec, QC, Canada 5 Centre Hospitalier Universitaire de Qu é bec, Qu é bec, QC, Canada 6 Faculty of Pharmacy, Université Laval, Qu é bec, QC, Canada 7 Centre antipoison du Qu é bec, Qu é bec, QC, Canada 8 Department of Medicine, McGill University, Montr é al, QC, Canada 9 Toxicology Consulting Service, McGill University Health Centre, Montr é al, QC, Canada 10 Centre Hospitalier Universitaire de Qu é bec, Qu é bec, QC, Canada 11 Centre de sant é et services sociaux Alphonse-Desjardins (CHAU de Lévis), L é vis, QC, Canada 12 Department of Family Medicine and Emergency Medicine, Universit é Laval, Québec, QC, Canada 13 Division de soins intensifs, Universit é Laval, Qu é bec, QC, Canada 14 Populations
    [Show full text]
  • Role of Selective Α and Β Adrenergic Receptor Mechanisms in Rat Jejunal Longitudinal Muscle Contractility
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by RERO DOC Digital Library J Gastrointest Surg (2008) 12:1087–1093 DOI 10.1007/s11605-007-0327-4 Role of Selective α and β Adrenergic Receptor Mechanisms in Rat Jejunal Longitudinal Muscle Contractility Roland Seiler & Andreas Rickenbacher & Sidney Shaw & Simon Haefliger & Bruno M. Balsiger Received: 29 August 2007 /Accepted: 5 September 2007 /Published online: 19 September 2007 # 2007 The Society for Surgery of the Alimentary Tract Abstract Gut motility is modulated by adrenergic mechanisms. The aim of our study was to examine mechanisms of selective adrenergic receptors in rat jejunum. Spontaneous contractile activity of longitudinal muscle strips from rat jejunum was measured in 5-ml tissue chambers. Dose–responses (six doses, 10−7–3×10−5M) to norepinephrine (NE, nonspecific), phenylephrine (PH, α1), clonidine (C, α2), prenalterol (PR, β1), ritodrine (RI, β2), and ZD7714 (ZD, β3) were evaluated with and without tetrodotoxin (TTX, nerve blocker). NE(3 × 10−5M) inhibited 74 ± 5% (mean ± SEM) of spontaneous activity. This was the maximum effect. The same dose of RI(β2), PH(α1), or ZD(β3) resulted in an inhibition of only 56 ± 5, 43 ± 4, 33 ± 6, respectively. The calculated concentration to induce 50% inhibition (EC50) of ZD(β3) was similar to NE, whereas higher concentrations of PH(α1) or RI(β2) were required. C(α2) and PR(β1) had no effect. TTX changed exclusively the EC50 of RI from 4.4 ± 0.2 to 2.7 ± 0.8% (p < 0.04). Contractility was inhibited by NE (nonspecific).
    [Show full text]
  • Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DIX to the HTSUS—Continued
    20558 Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DEPARMENT OF THE TREASURY Services, U.S. Customs Service, 1301 TABLE 1.ÐPHARMACEUTICAL APPEN- Constitution Avenue NW, Washington, DIX TO THE HTSUSÐContinued Customs Service D.C. 20229 at (202) 927±1060. CAS No. Pharmaceutical [T.D. 95±33] Dated: April 14, 1995. 52±78±8 ..................... NORETHANDROLONE. A. W. Tennant, 52±86±8 ..................... HALOPERIDOL. Pharmaceutical Tables 1 and 3 of the Director, Office of Laboratories and Scientific 52±88±0 ..................... ATROPINE METHONITRATE. HTSUS 52±90±4 ..................... CYSTEINE. Services. 53±03±2 ..................... PREDNISONE. 53±06±5 ..................... CORTISONE. AGENCY: Customs Service, Department TABLE 1.ÐPHARMACEUTICAL 53±10±1 ..................... HYDROXYDIONE SODIUM SUCCI- of the Treasury. NATE. APPENDIX TO THE HTSUS 53±16±7 ..................... ESTRONE. ACTION: Listing of the products found in 53±18±9 ..................... BIETASERPINE. Table 1 and Table 3 of the CAS No. Pharmaceutical 53±19±0 ..................... MITOTANE. 53±31±6 ..................... MEDIBAZINE. Pharmaceutical Appendix to the N/A ............................. ACTAGARDIN. 53±33±8 ..................... PARAMETHASONE. Harmonized Tariff Schedule of the N/A ............................. ARDACIN. 53±34±9 ..................... FLUPREDNISOLONE. N/A ............................. BICIROMAB. 53±39±4 ..................... OXANDROLONE. United States of America in Chemical N/A ............................. CELUCLORAL. 53±43±0
    [Show full text]
  • Stembook 2018.Pdf
    The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances FORMER DOCUMENT NUMBER: WHO/PHARM S/NOM 15 WHO/EMP/RHT/TSN/2018.1 © World Health Organization 2018 Some rights reserved. This work is available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization. Suggested citation. The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances. Geneva: World Health Organization; 2018 (WHO/EMP/RHT/TSN/2018.1). Licence: CC BY-NC-SA 3.0 IGO. Cataloguing-in-Publication (CIP) data.
    [Show full text]
  • I (Acts Whose Publication Is Obligatory) COMMISSION
    13.4.2002 EN Official Journal of the European Communities L 97/1 I (Acts whose publication is obligatory) COMMISSION REGULATION (EC) No 578/2002 of 20 March 2002 amending Annex I to Council Regulation (EEC) No 2658/87 on the tariff and statistical nomenclature and on the Common Customs Tariff THE COMMISSION OF THE EUROPEAN COMMUNITIES, Nomenclature in order to take into account the new scope of that heading. Having regard to the Treaty establishing the European Commu- nity, (4) Since more than 100 substances of Annex 3 to the Com- bined Nomenclature, currently classified elsewhere than within heading 2937, are transferred to heading 2937, it is appropriate to replace the said Annex with a new Annex. Having regard to Council Regulation (EEC) No 2658/87 of 23 July 1987 on the tariff and statistical nomenclature and on the Com- mon Customs Tariff (1), as last amended by Regulation (EC) No 2433/2001 (2), and in particular Article 9 thereof, (5) Annex I to Council regulation (EEC) No 2658/87 should therefore be amended accordingly. Whereas: (6) This measure does not involve any adjustment of duty rates. Furthermore, it does not involve either the deletion of sub- stances or addition of new substances to Annex 3 to the (1) Regulation (EEC) No 2658/87 established a goods nomen- Combined Nomenclature. clature, hereinafter called the ‘Combined Nomenclature’, to meet, at one and the same time, the requirements of the Common Customs Tariff, the external trade statistics of the Community and other Community policies concerning the (7) The measures provided for in this Regulation are in accor- importation or exportation of goods.
    [Show full text]
  • Beta-2 Adrenergic Effects on the Sympathetic Nervous System
    BETA-2 ADRENERGIC EFFECTS ON THE SYMPATHETIC NERVOUS SYSTEM. Beta-2 Adrenerge Effecten op het Sympathische Zenuwstelsel PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Erasmus Universiteit Rotterdam op gezag van de rector magnificus Prof. Dr. A.H.G. Rinnooy Kan en volgens besluit van het college van dekanen. De openbare verdediging zal plaatsvinden op woensdag 3 mei 1989 om 13.45 uur door Hieronymus Henricus Vincent geboren te Schiedam. 1 PROMOTIE-COMMISSIE Promotor: Prof. Dr. M. A.. D. H. Schalekamp Overige leden: Prof. Dr. W.H. Birkenhäger Prof. Dr. P.R. Saxena Dr. Th.A. Thien 2 CONTENTS Chapter 1: Introduetion .••.•...••...•.....•...•......• 5 Chapter 2: Elevated plasma noradrenaline in response to beta adrenoceptor stimulation in man ....•...•........ l3 Chapter 3: Effects of selective and non-selective beta agonists on plasma potassium and norepinephrine ...... l8 Chapter 4: Stress levels of adrenaline amplify the blood pressure response to sympathetic stimulation ... 26 Chapter 5: Is beta-l antagonism essential to the antihypertensive action of betablockers? ........... 32 Chapter 6: Beta-2 agonists increase plasma renin through beta-l adrenoceptor activatien by transmitter noradrenaline. Evidence for functional presynaptic beta recepters in the kidney ..•.••....•...••....• , ........ 3 8 Chapter 7: General discussion ........................ 52 Chapter 8: Samenvatting ..•.......•........••......... 60 Curriculum vitae .••.•.•....•..•.•.•.•..•........•...• 68 Dankwoord .......•..•....•..•....•...•................ 6 9 3 4 Chapter 1 INTRODUeTION The origin of the studies, described in this thesis, dates back to 1979. In that year my colleague, R.P. Verhoeven, studied the responsiveness of hyperthyroid patients to beta adrenoceptor activation [1]. In his experiments he made the serendipitous observation that the plasma levels of the sympathetic transmitter, noradrenaline, increased during infusion of the beta adrenoceptor agonist isoprenaline.
    [Show full text]
  • II the Thermodynamics of Efficacy and Ligand Proton Transfer
    Towards a Thermodynamic Definition of Efficacy in Partial Agonism: II The Thermodynamics of Efficacy and Ligand Proton Transfer in a G Protein-coupled Receptor of the Rhodopsin Class Kenneth J. Broadley, Shane C. Sykes, Robin H. Davies To cite this version: Kenneth J. Broadley, Shane C. Sykes, Robin H. Davies. Towards a Thermodynamic Definition of Efficacy in Partial Agonism: II The Thermodynamics of Efficacy and Ligand Proton Transferina G Protein-coupled Receptor of the Rhodopsin Class. Biochemical Pharmacology, Elsevier, 2010, 80 (10), pp.1537. 10.1016/j.bcp.2010.07.044. hal-00626230 HAL Id: hal-00626230 https://hal.archives-ouvertes.fr/hal-00626230 Submitted on 24 Sep 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Accepted Manuscript Title: Towards a Thermodynamic Definition of Efficacy in Partial Agonism: II The Thermodynamics of Efficacy and Ligand Proton Transfer in a G Protein-coupled Receptor of the Rhodopsin Class Authors: Kenneth J. Broadley, Shane C. Sykes, Robin H. Davies PII: S0006-2952(10)00583-6 DOI: doi:10.1016/j.bcp.2010.07.044 Reference: BCP 10678 To appear in: BCP Received date: 28-6-2010 Accepted date: 21-7-2010 Please cite this article as: Broadley KJ, Sykes SC, Davies RH, Towards a Thermodynamic Definition of Efficacy in Partial Agonism: II The Thermodynamics of Efficacy and Ligand Proton Transfer in a G Protein-coupled Receptor of the Rhodopsin Class, Biochemical Pharmacology (2010), doi:10.1016/j.bcp.2010.07.044 This is a PDF file of an unedited manuscript that has been accepted for publication.
    [Show full text]
  • Sympathetic NS
    Pharmacology of the Autonomic Nervous System Indented = similar action to parent compound italic = less important agent [ ] = questionable therapeutic value I =drug interactions S = side effects T = toxicity CV = cardiovascular system CNS = central nervous system Agent (trade name®) Therapeutic Use Notes E. Ishac Adrenoceptor Agonists MAOI = Monoamine oxidase inhibitors TCA = Tricyclic antidepressants Norepinephrine (Levarterenol) Hypotension, pressor agent α / β1 β3 (β2) neuronal, non-circulating, I: MAOI, TCA Epinephrine (generic) Allergic reactions, shock, CPR α / β1 β2 (β3) adrenal medulla, circulating; I: MAOI, TCA Dopamine (Intropin) Renal vasodilatation during shock α1 / β1 / D, precursor to NE, I: MAOI Isoproterenol (Isuprel) Asthma, cardiac stimulant β, synthetic, not endogenous; (↓, --) BP HR Phenylephrine (Neosynephrine) Nasal decongestant, hypotension not commonly used for hypotension; S: CV, reflex Methoxamine (Vasoxyl) Hypotension, pressor agent bradycardia Metaraminol (Aramine) Hypotension, pressor agent α, orally active; NE or DA better choice Clonidine (Catapres) Hypertension α2, ↓ cns sympathetic outflow, inhibit NE release, Guanfacine (Tenex) rebound HT; S: dry mouth, sedation, impotence. α-methyl-dopa is metabolized to α-methyl-NE (α - α 2 -methyl-dopa (Aldomet) agonist) Dobutamine (Dobutrex) CHF, cardiac stimulant β1, iv infusion, tolerance, desensitization Prenalterol Terbutaline (Brethaire) Asthma, premature labor β2-selective, Oral 1-2 hrs onset ! 4-6 hrs duration, Ritodrine (Yutopar) Premature labor Inhalation
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2010/0184806 A1 Barlow Et Al
    US 20100184806A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2010/0184806 A1 Barlow et al. (43) Pub. Date: Jul. 22, 2010 (54) MODULATION OF NEUROGENESIS BY PPAR (60) Provisional application No. 60/826,206, filed on Sep. AGENTS 19, 2006. (75) Inventors: Carrolee Barlow, Del Mar, CA (US); Todd Carter, San Diego, CA Publication Classification (US); Andrew Morse, San Diego, (51) Int. Cl. CA (US); Kai Treuner, San Diego, A6II 3/4433 (2006.01) CA (US); Kym Lorrain, San A6II 3/4439 (2006.01) Diego, CA (US) A6IP 25/00 (2006.01) A6IP 25/28 (2006.01) Correspondence Address: A6IP 25/18 (2006.01) SUGHRUE MION, PLLC A6IP 25/22 (2006.01) 2100 PENNSYLVANIA AVENUE, N.W., SUITE 8OO (52) U.S. Cl. ......................................... 514/337; 514/342 WASHINGTON, DC 20037 (US) (57) ABSTRACT (73) Assignee: BrainCells, Inc., San Diego, CA (US) The instant disclosure describes methods for treating diseases and conditions of the central and peripheral nervous system (21) Appl. No.: 12/690,915 including by stimulating or increasing neurogenesis, neuro proliferation, and/or neurodifferentiation. The disclosure (22) Filed: Jan. 20, 2010 includes compositions and methods based on use of a peroxi some proliferator-activated receptor (PPAR) agent, option Related U.S. Application Data ally in combination with one or more neurogenic agents, to (63) Continuation-in-part of application No. 1 1/857,221, stimulate or increase a neurogenic response and/or to treat a filed on Sep. 18, 2007. nervous system disease or disorder. Patent Application Publication Jul. 22, 2010 Sheet 1 of 9 US 2010/O184806 A1 Figure 1: Human Neurogenesis Assay Ciprofibrate Neuronal Differentiation (TUJ1) 100 8090 Ciprofibrates 10-8.5 10-8.0 10-7.5 10-7.0 10-6.5 10-6.0 10-5.5 10-5.0 10-4.5 Conc(M) Patent Application Publication Jul.
    [Show full text]
  • The Classification of Drugs and Drug Receptors in Isolated Tissues
    0031-6997/84/3603-0165$02.00/0 PHARMACOLOGICAL REVIEWS Vol. 36, No.3 Copyright © 1984 by The American Society for Pharmacology and Experimental Therapeutics Printed in U.S.A. The Classification of Drugs and Drug Receptors in Isolated Tissues TERRY P. KENAKIN Department of Pharmacology, The Welkome Research Laboratories, Burroughs Welkome Co., Research Triangle Park, North Carolina I. Introduction 165 A. Isolated tissue and binding studies 166 II. Factors in the choice of isolated tissues 167 A. Animals 167 B. Preservation of tissue viability 167 C. Some isolated tissues from animals and man 168 D. Methods of tissue preparation 168 E. Measurement of tissue responses 172 F. Sources of variation in tissues 172 1. Heterogeneous receptor distribution 172 2. Animal maturity 173 G. Comparisons between isolated tissues 173 Downloaded from III. Equilibrium conditions in isolated tissues 173 A. Chemical degradation of drugs 174 B. Release of endogenous substances 174 C. Removal of drugs by tissues 176 1. Diffusion into isolated tissues 176 2. Drug removal processes in isolated tissues 177 by guest on June 7, 2018 3. Consequences of uptake inhibition in isolated tissues 179 IV. Quantification of responses of agonists 183 A. Dose-response curves 183 B. Drug receptor theory 184 C. The relationship between stimulus and response 185 1. Tissue response as a function of stimulus 185 2. Receptor density 188 V. Methods of drug receptor classification 188 A. Agonist potency ratios 188 B. Selective agonism 189 C. Measurement of agonist affinity and relative efficacy 192 1. Agonist affinity 192 2. Agonist efficacy 195 3. Experimental manipulation of receptor number and efficiency of stimulus response coupling 196 D.
    [Show full text]