Notes on the Course “Algebraic Topology”
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Equivariant Geometric K-Homology with Coefficients
Equivariant geometric K-homology with coefficients Michael Walter Equivariant geometric K-homology with coefficients Diplomarbeit vorgelegt von Michael Walter geboren in Lahr angefertigt am Mathematischen Institut der Georg-August-Universität zu Göttingen 2010 v Equivariant geometric K-homology with coefficients Michael Walter Abstract K-homology is the dual of K-theory. Kasparov’s analytic version, where cycles are given by (ab- stract) elliptic operators over (not necessarily commutative) spaces, has proved to be an extremely powerful tool which, together with its bivariant generalization KK-theory, lies at the heart of many important results at the intersection of algebraic topology, functional analysis and geome- try. Independently, Baum and Douglas have proposed a geometric version of K-homology inspired by singular bordism. Cycles for this theory are given by vector bundles over compact Spinc- manifolds with boundary which map to the target, i.e. E f (M, BM) / (X, Y). There is a natural transformation to analytic K-homology defined by sending such a cycle to the pushforward of the class determined by the twisted Dirac operator. It is well-known to be an isomorphism, although a rigorous proof has appeared only recently. While both theories have obvious generalizations to the equivariant case and coefficients, the question whether these remain isomorphic is far from trivial (and has negative answer in the general case). In their work on equivariant correspondences Emerson and Meyer have isolated a useful sufficient condition for their theory which, while vastly more general, only deals with the absolute case. Our focus is not so much to construct a geometric theory in the most general situation, but to show that in the presence of a group action and coefficients the above picture still gives a generalized homology theory in a very geometrical way, isomorphic to Kasparov’s theory. -
Differentiable Manifolds
Prof. A. Cattaneo Institut f¨urMathematik FS 2018 Universit¨atZ¨urich Differentiable Manifolds Solutions to Exercise Sheet 1 p Exercise 1 (A non-differentiable manifold). Consider R with the atlas f(R; id); (R; x 7! sgn(x) x)g. Show R with this atlas is a topological manifold but not a differentiable manifold. p Solution: This follows from the fact that the transition function x 7! sgn(x) x is a homeomor- phism but not differentiable at 0. Exercise 2 (Stereographic projection). Let f : Sn − f(0; :::; 0; 1)g ! Rn be the stereographic projection from N = (0; :::; 0; 1). More precisely, f sends a point p on Sn different from N to the intersection f(p) of the line Np passing through N and p with the equatorial plane xn+1 = 0, as shown in figure 1. Figure 1: Stereographic projection of S2 (a) Find an explicit formula for the stereographic projection map f. (b) Find an explicit formula for the inverse stereographic projection map f −1 (c) If S = −N, U = Sn − N, V = Sn − S and g : Sn ! Rn is the stereographic projection from S, then show that (U; f) and (V; g) form a C1 atlas of Sn. Solution: We show each point separately. (a) Stereographic projection f : Sn − f(0; :::; 0; 1)g ! Rn is given by 1 f(x1; :::; xn+1) = (x1; :::; xn): 1 − xn+1 (b) The inverse stereographic projection f −1 is given by 1 f −1(y1; :::; yn) = (2y1; :::; 2yn; kyk2 − 1): kyk2 + 1 2 Pn i 2 Here kyk = i=1(y ) . -
The Fundamental Group
The Fundamental Group Tyrone Cutler July 9, 2020 Contents 1 Where do Homotopy Groups Come From? 1 2 The Fundamental Group 3 3 Methods of Computation 8 3.1 Covering Spaces . 8 3.2 The Seifert-van Kampen Theorem . 10 1 Where do Homotopy Groups Come From? 0 Working in the based category T op∗, a `point' of a space X is a map S ! X. Unfortunately, 0 the set T op∗(S ;X) of points of X determines no topological information about the space. The same is true in the homotopy category. The set of `points' of X in this case is the set 0 π0X = [S ;X] = [∗;X]0 (1.1) of its path components. As expected, this pointed set is a very coarse invariant of the pointed homotopy type of X. How might we squeeze out some more useful information from it? 0 One approach is to back up a step and return to the set T op∗(S ;X) before quotienting out the homotopy relation. As we saw in the first lecture, there is extra information in this set in the form of track homotopies which is discarded upon passage to [S0;X]. Recall our slogan: it matters not only that a map is null homotopic, but also the manner in which it becomes so. So, taking a cue from algebraic geometry, let us try to understand the automorphism group of the zero map S0 ! ∗ ! X with regards to this extra structure. If we vary the basepoint of X across all its points, maybe it could be possible to detect information not visible on the level of π0. -
Notices of the American Mathematical Society
OF THE AMERICAN MATHEMATICAL SOCIETY ISSU! NO. 116 OF THE AMERICAN MATHEMATICAL SOCIETY Edited by Everett Pitcher and Gordon L. Walker CONTENTS MEETINGS Calendar of Meetings ••••••••••••••••••••••••••••••••••.• 874 Program of the Meeting in Cambridge, Massachusetts •••.•.••••..•• 875 Abstracts for the Meeting- Pages 947-953 PRELIMINARY ANNOUNCEMENTS OF MEETINGS •••••••••••••••••.•• 878 AN APPEAL FOR PRESERVATION OF ARCHIVAL MATERIALS .•••••••••• 888 CAN MATHEMATICS BE SAVED? ••••••••••.••••••••..•.•••••••.. 89 0 DOCTORATES CONFERRED IN 1968-1969 ••••••••••••••.••••••.•••• 895 VISITING MATHEMATICIANS .•••••••••••••••••••••••••..•••••.. 925 ANNUAL SALARY SURVEY ••••••••••••.••••.••••.•.•.••••••.•• 933 PERSONAL ITEMS •••••••••••••••••••••••••••••...•••••••••• 936 MEMORANDA TO MEMBERS Audio Recordings of Mathematical Lectures ••••••••..•••••.•••.• 940 Travel Grants. International Congress of Mathematicians ••..•.•••••.• 940 Symposia Information Center ••••.•• o o • o ••••• o o •••• 0 •••••••• 940 Colloquium Lectures •••••••••••••••••••••••.• 0 ••••••••••• 941 Mathematical Sciences E'mployment Register .•.••••••..•. o • o ••••• 941 Retired Mathematicians ••••• 0 •••••••• 0 ••••••••••••••••• 0 •• 942 MOS Reprints .•••••• o •• o ••••••••••••••••••••••• o •••••• 942 NEWS ITEMS AND ANNOUNCEMENTS •••••. o •••••••••••••••• 877, 932, 943 ABSTRACTS PRESENTED TO THE SOCIETY •••••.••••.•.•.••..•..•• 947 RESERVATION FORM. o •••••••••••••••••••••••••••••••••••••• 1000 MEETINGS Calendar of Meetings NOTE: This Calendar lists all of the meetings which have -
DEGREE-L MAPS INTO LENS SPACES and FREE CYCLIC ACTIONS on HOMOLOGY 3-SPHERES*
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Topology and its Applications 37 (1990) 131-136 131 North-Holland DEGREE-l MAPS INTO LENS SPACES AND FREE CYCLIC ACTIONS ON HOMOLOGY 3-SPHERES* E. LUST and D. SJERVE Department of Mathematics, The University of British Columbia, Vancouver, BC, Canada V6T 1 Y4 Received 20 September 1988 Revised 7 August 1989 If M is a closed orientable 3-manifold with H,(M) = Z,, then there is a lens space L,, unique up to homotopy, and a degree-l map f: A4+ L,,. As a corollary we prove that if 6 is a homology 3-sphere admitting a fixed point free action by Z,, then the regular covering fi + It?/??, is induced from the universal covering S3 --f L,,,, by a degree-l map f: 6/Z, + L,,,. AMS (MOS) Subj. Class.: Primary 57M99 homology 3-spheres degree-l maps lens spaces 1. Introduction In this paper we will be concerned with the existence of degree-l mapsf: M + L,, where M is a closed orientable 3-manifold and L,, is some lens space. If H,(M) = Z,, such maps exist and the lens space L,, is unique up to homotopy equivalence (see Theorem 3.4). If fi is a homology 3-sphere and p : A? -+ M is a regular covering with the cyclic group Z,, as its covering group, then H,(M) =Z,, and the covering p : A? + M is induced from the universal covering q : S3 -+ L,, by means of a degree-l map f: M + L,, (see Th eorem 3.5). -
1. CW Complex 1.1. Cellular Complex. Given a Space X, We Call N-Cell a Subspace That Is Home- Omorphic to the Interior of an N-Disk
1. CW Complex 1.1. Cellular Complex. Given a space X, we call n-cell a subspace that is home- omorphic to the interior of an n-disk. Definition 1.1. Given a Hausdorff space X, we call cellular structure on X a n collection of disjoint cells of X, say ffeαgα2An gn2N (where the An are indexing sets), together with a collection of continuous maps called characteristic maps, say n n n k ffΦα : Dα ! Xgα2An gn2N, such that, if X := feαj0 ≤ k ≤ ng (for all n), then : S S n (1) X = ( eα), n2N α2An n n n (2)Φ α Int(Dn) is a homeomorphism of Int(D ) onto eα, n n F k (3) and Φα(@D ) ⊂ eα. k n−1 eα2X We shall call X together with a cellular structure a cellular complex. n n n Remark 1.2. We call X ⊂ feαg the n-skeleton of X. Also, we shall identify X S k n n with eα and vice versa for simplicity of notations. So (3) becomes Φα(@Dα) ⊂ k n eα⊂X S Xn−1. k k n Since X is a Hausdorff space (in the definition above), we have that eα = Φα(D ) k n k (where the closure is taken in X). Indeed, we easily have that Φα(D ) ⊂ eα by n n continuity of Φα. Moreover, since D is compact, we have that its image under k k n k Φα also is, and since X is Hausdorff, Φα(D ) is a closed subset containing eα. Hence we have the other inclusion (Remember that the closure of a subset is the k intersection of all closed subset containing it). -
LEGENDRIAN LENS SPACE SURGERIES 3 Where the Ai ≥ 2 Are the Terms in the Negative Continued Fraction Expansion P 1 = A0 − =: [A0,...,Ak]
LEGENDRIAN LENS SPACE SURGERIES HANSJORG¨ GEIGES AND SINEM ONARAN Abstract. We show that every tight contact structure on any of the lens spaces L(ns2 − s + 1,s2) with n ≥ 2, s ≥ 1, can be obtained by a single Legendrian surgery along a suitable Legendrian realisation of the negative torus knot T (s, −(sn − 1)) in the tight or an overtwisted contact structure on the 3-sphere. 1. Introduction A knot K in the 3-sphere S3 is said to admit a lens space surgery if, for some rational number r, the 3-manifold obtained by Dehn surgery along K with surgery coefficient r is a lens space. In [17] L. Moser showed that all torus knots admit lens space surgeries. More precisely, −(ab ± 1)-surgery along the negative torus knot T (a, −b) results in the lens space L(ab ± 1,a2), cf. [21]; for positive torus knots one takes the mirror of the knot and the surgery coefficient of opposite sign, resulting in a negatively oriented lens space. Contrary to what was conjectured by Moser, there are surgeries along other knots that produce lens spaces. The first example was due to J. Bailey and D. Rolfsen [1], who constructed the lens space L(23, 7) by integral surgery along an iterated cable knot. The question which knots admit lens space surgeries is still open and the subject of much current research. The fundamental result in this area is due to Culler– Gordon–Luecke–Shalen [2], proved as a corollary of their cyclic surgery theorem: if K is not a torus knot, then at most two surgery coefficients, which must be successive integers, can correspond to a lens space surgery. -
Algebraic Topology
ALGEBRAIC TOPOLOGY C.R. F. MAUNDER ALGEBRAIC TOPOLOGY C. R. F. MAUNDER Fellow of Christ's College and University Lecturer in Pure Mathematics, Cambridge CAMBRIDGE UNIVERSITY PRESS CAMBRIDGE LONDON NEW YORK NEW ROCHELLE MELBOURNE SYDNEY Published by the Press Syndicate of the University of Cambridge The Pitt Building, Trumpington Street, Cambridge C82inP 32East 57th Street, New York, NYzoozz,USA 296 Beaconsfield Parade, Middle Park, Melbourne 3206, Australia CC. R. F. Miunder '970 CCambridge University Press 1980 First published by VanNostrandReinhold (UK) Ltd First published by the Cambridge University Press 1980 Firstprinted in Great Britain by Lewis Reprints Ltd, London and Tonbridge Reprinted in Great Britain at the University Press, Cambridge British Library cataloguing in publication data Maunder, Charles Richard Francis Algebraic topology. r.Algebraic topology I. Title 514'.2QA6!2 79—41610 ISBN 0521 231612 hard covers ISBN 0 521298407paperback INTRODUCTION Most of this book is based on lectures to third-year undergraduate and postgraduate students. It aims to provide a thorough grounding in the more elementary parts of algebraic topology, although these are treated wherever possible in an up-to-date way. The reader interested in pursuing the subject further will find ions for further reading in the notes at the end of each chapter. Chapter 1 is a survey of results in algebra and analytic topology that will be assumed known in the rest of the book. The knowledgeable reader is advised to read it, however, since in it a good deal of standard notation is set up. Chapter 2 deals with the topology of simplicial complexes, and Chapter 3 with the fundamental group. -
Fixed Point Free Involutions on Cohomology Projective Spaces
Indian J. pure appl. Math., 39(3): 285-291, June 2008 °c Printed in India. FIXED POINT FREE INVOLUTIONS ON COHOMOLOGY PROJECTIVE SPACES HEMANT KUMAR SINGH1 AND TEJ BAHADUR SINGH Department of Mathematics, University of Delhi, Delhi 110 007, India e-mail: tej b [email protected] (Received 22 September 2006; after final revision 24 January 2008; accepted 14 February 2008) Let X be a finitistic space with the mod 2 cohomology ring isomorphic to that of CP n, n odd. In this paper, we determine the mod 2 cohomology ring of the orbit space of a fixed point free involution on X. This gives a classification of cohomology type of spaces with the fundamental group Z2 and the covering space a complex projective space. Moreover, we show that there exists no equivariant map Sm ! X for m > 2 relative to the antipodal action on Sm. An analogous result is obtained for a fixed point free involution on a mod 2 cohomology real projective space. Key Words: Projective space; free action; cohomology algebra; spectral sequence 1. INTRODUCTION Suppose that a topological group G acts (continuously) on a topological space X. Associated with the transformation group (G; X) are two new spaces: The fixed point set XG = fx²Xjgx = x; for all g²Gg and the orbit space X=G whose elements are the orbits G(x) = fgxjg²Gg and the topology is induced by the natural projection ¼ : X ! X=G; x ! G(x). If X and Y are G-spaces, then an equivariant map from X to Y is a continuous map Á : X ! Y such that gÁ(x) = Ág(x) for all g²G; x 2 X. -
Zuoqin Wang Time: March 25, 2021 the QUOTIENT TOPOLOGY 1. The
Topology (H) Lecture 6 Lecturer: Zuoqin Wang Time: March 25, 2021 THE QUOTIENT TOPOLOGY 1. The quotient topology { The quotient topology. Last time we introduced several abstract methods to construct topologies on ab- stract spaces (which is widely used in point-set topology and analysis). Today we will introduce another way to construct topological spaces: the quotient topology. In fact the quotient topology is not a brand new method to construct topology. It is merely a simple special case of the co-induced topology that we introduced last time. However, since it is very concrete and \visible", it is widely used in geometry and algebraic topology. Here is the definition: Definition 1.1 (The quotient topology). (1) Let (X; TX ) be a topological space, Y be a set, and p : X ! Y be a surjective map. The co-induced topology on Y induced by the map p is called the quotient topology on Y . In other words, −1 a set V ⊂ Y is open if and only if p (V ) is open in (X; TX ). (2) A continuous surjective map p :(X; TX ) ! (Y; TY ) is called a quotient map, and Y is called the quotient space of X if TY coincides with the quotient topology on Y induced by p. (3) Given a quotient map p, we call p−1(y) the fiber of p over the point y 2 Y . Note: by definition, the composition of two quotient maps is again a quotient map. Here is a typical way to construct quotient maps/quotient topology: Start with a topological space (X; TX ), and define an equivalent relation ∼ on X. -
Lecture 2: Spaces of Maps, Loop Spaces and Reduced Suspension
LECTURE 2: SPACES OF MAPS, LOOP SPACES AND REDUCED SUSPENSION In this section we will give the important constructions of loop spaces and reduced suspensions associated to pointed spaces. For this purpose there will be a short digression on spaces of maps between (pointed) spaces and the relevant topologies. To be a bit more specific, one aim is to see that given a pointed space (X; x0), then there is an entire pointed space of loops in X. In order to obtain such a loop space Ω(X; x0) 2 Top∗; we have to specify an underlying set, choose a base point, and construct a topology on it. The underlying set of Ω(X; x0) is just given by the set of maps 1 Top∗((S ; ∗); (X; x0)): A base point is also easily found by considering the constant loop κx0 at x0 defined by: 1 κx0 :(S ; ∗) ! (X; x0): t 7! x0 The topology which we will consider on this set is a special case of the so-called compact-open topology. We begin by introducing this topology in a more general context. 1. Function spaces Let K be a compact Hausdorff space, and let X be an arbitrary space. The set Top(K; X) of continuous maps K ! X carries a natural topology, called the compact-open topology. It has a subbasis formed by the sets of the form B(T;U) = ff : K ! X j f(T ) ⊆ Ug where T ⊆ K is compact and U ⊆ X is open. Thus, for a map f : K ! X, one can form a typical basis open neighborhood by choosing compact subsets T1;:::;Tn ⊆ K and small open sets Ui ⊆ X with f(Ti) ⊆ Ui to get a neighborhood Of of f, Of = B(T1;U1) \ ::: \ B(Tn;Un): One can even choose the Ti to cover K, so as to `control' the behavior of functions g 2 Of on all of K. -
Combinatorial Topology and Applications to Quantum Field Theory
Combinatorial Topology and Applications to Quantum Field Theory by Ryan George Thorngren A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Mathematics in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Vivek Shende, Chair Professor Ian Agol Professor Constantin Teleman Professor Joel Moore Fall 2018 Abstract Combinatorial Topology and Applications to Quantum Field Theory by Ryan George Thorngren Doctor of Philosophy in Mathematics University of California, Berkeley Professor Vivek Shende, Chair Topology has become increasingly important in the study of many-body quantum mechanics, in both high energy and condensed matter applications. While the importance of smooth topology has long been appreciated in this context, especially with the rise of index theory, torsion phenomena and dis- crete group symmetries are relatively new directions. In this thesis, I collect some mathematical results and conjectures that I have encountered in the exploration of these new topics. I also give an introduction to some quantum field theory topics I hope will be accessible to topologists. 1 To my loving parents, kind friends, and patient teachers. i Contents I Discrete Topology Toolbox1 1 Basics4 1.1 Discrete Spaces..........................4 1.1.1 Cellular Maps and Cellular Approximation.......6 1.1.2 Triangulations and Barycentric Subdivision......6 1.1.3 PL-Manifolds and Combinatorial Duality........8 1.1.4 Discrete Morse Flows...................9 1.2 Chains, Cycles, Cochains, Cocycles............... 13 1.2.1 Chains, Cycles, and Homology.............. 13 1.2.2 Pushforward of Chains.................. 15 1.2.3 Cochains, Cocycles, and Cohomology.........