Multi-Epoch Observations with High Spatial Resolution of Multiple T Tauri Systems
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
INAUGURAL – DISSERTATION Dipl.-Phys. Alexander A. Schegerer
INAUGURAL – DISSERTATION zur Erlangung der Doktorwurde¨ der Naturwissenschaftlich-Mathematischen Gesamtfakult¨at der Ruprecht - Karls - Universit¨at Heidelberg vorgelegt von Dipl.-Phys. Alexander A. Schegerer, geboren in Kaufbeuren Tag der mundlichen¨ Prufung:¨ 17. Oktober 2007 II Struktur- und Staubentwicklung in zirkumstellaren Scheiben um T Tauri-Sterne Analyse und Modellierung hochaufl¨osender Beobachtungen in verschiedenen Wellenl¨angenbereichen Gutachter: Prof. Dr. Thomas Henning Prof. Dr. Wolfgang Duschl IV Meinen Eltern, Maria-Christa und Wolfgang Schegerer, gewidmet. VI Thema Im Zentrum dieser Doktorarbeit steht die Untersuchung der inneren Strukturen zirkumstella- rer Scheiben um T Tauri-Sterne sowie die Analyse zirkumstellarer Staub- und Eisteilchen und ihres Einflusses auf die Scheibenstruktur. Unter Zuhilfenahme von theoretisch berechneten Vergleichsspektren gibt der Verlauf der 10 µm-Emissionsbande in den Spektren junger stellarer Objekte Hinweise auf den Entwick- lungsgrad von Silikatstaub. Die Silikatbanden von 27 T Tauri-Objekten werden analysiert, um nach potentiell vorliegenden Korrelationen zwischen der Silikatstaubzusammensetzung und den stellaren Eigenschaften zu suchen. Analog erlaubt das Absorptionsband bei 3 µm, das dem Wassereis zugeschrieben wird, eine Untersuchung der Entwicklung von Eisk¨ornern in jungen stellaren Objekten. Erstmals ist es gelungen, kristallines Wassereis im Spektrum eines T Tauri-Objektes nachzuweisen. Unser wichtigstes Hilfsmittel zur Analyse der Temperatur- und Dichtestrukturen zirkum- stellarer -
Applications of 2-D Moiré Deflectometry to Atmospheric Turbulence
Journal of Applied Fluid Mechanics, Vol. 7, No. 4, pp. 651-657, 2014. Available online at www.jafmonline.net, ISSN 1735-3572, EISSN 1735-3645. DOI: 10.36884/jafm.7.04.21420 Applications of 2-D Moiré Deflectometry to Atmospheric Turbulence S. Rasouli1, 2†, M. D. Niry1, Y. Rajabi1, A. A. Panahi1 and J. J. Niemela3 1 Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran 2 Optics Research Center, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran 3The Abdus Salam ICTP, Strada Costiera 11, 34151 Trieste, Italy †Corresponding Author Email: [email protected] (Received August 23, 2013; accepted December 1, 2013) ABSTRACT We report on applications of a moiré deflectometry to observations of anisotropy in the statistical properties of atmospheric turbulence. Specifically, combining the use of a telescope with moiré deflectometry allows enhanced sensitivity to fluctuations in the wave-front phase, which reflect fluctuations in the fluid density. Such phase fluctuations in the aperture of the telescope are imaged on the first grating of the moiré deflectometer, giving high spatial resolution. In particular, we have measured the covariance of the angle of arrival (AA) between pairs of points displaced spatially on the telescope aperture which allows a quantitative measure of anisotropy in the atmospheric surface layer. Importantly, the telescope-based moiré deflectometry measures directly in the spatial domain and, besides being a non-intrusive method for studying turbulent flows, has the advantage of being relatively simple and inexpensive. Keywords: Boundary layers: turbulence; Electromagnetic waves: atmospheric propagation; Turbulence: atmospheric; Diffraction gratings: optical; Interferometers. -
CRIRES User Manual
EUROPEAN SOUTHERN OBSERVATORY Organisation Europ´eene pour des Recherches Astronomiques dans l’H´emisph`ere Austral Europ¨aische Organisation f¨urastronomische Forschung in der s¨udlichen Hemisph¨are ESO - European Southern Observatory Karl-Schwarzschild Str. 2, D-85748 Garching bei M¨unchen Instrumentation Division CRIRES User Manual Doc. No. VLT-MAN-ESO-14500-3486 Issue 1, Date 06/01/2006 Prepared for Review - INTERNAL USE ONLY Ralf Siebenmorgen 06.01.2006 Prepared .......................................... Date Signature CRIRES User Manual VLT-MAN-ESO-14500-3486 ii Change Record Issue/Rev. Date Section/Parag. affected Reason/Initiation/Documents/Remarks Issue 0.5 06/12/04 RSI First draft CRIRES User Manual VLT-MAN-ESO-14500-3486 iii Abbreviations and Acronyms AO Adaptive optics APD Avalanche photo-diode CRIRES High-resolution infrared echelle spectrometer of the VLT DM Deformable mirror DMD Data management division ESO European Southern Observatory ETC Exposure time calculator FC Finding chart FoV Field of view FWHM Full width at half maximum NIR Near infrared OB Observing block P2PP Phase II proposal preparation PSF Point spread function QC Quality control RTC Real time computer SM Service mode SR Strehl ratio TIO Telescope and instrument operator USG User support group VLT Very large telescope VM Visitor mode WF Wave front WFS Wave front sensor CRIRES User Manual VLT-MAN-ESO-14500-3486 iv Wavelength range 1 − 5µm Resolving power (2 pixels) 105 Slit width 0.200 − 100 Slit length 5000 Pixel scale 0.100 Adaptive optics 60 actuator curvature -
Observing Dust Grain Growth and Sedimentation in Circumstellar Discs Interpretations and Predictions of Their Observable Quantities in a Multi-Wavelength Approach
Observing dust grain growth and sedimentation in circumstellar discs Interpretations and predictions of their observable quantities in a multi-wavelength approach Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftliche Fakult¨at der Christian-Albrechts Universit¨atzu Kiel vorgelegt von J¨urgenSauter Kiel, 2011 Referent : Prof. Dr. S. Wolf Koreferent: Prof. Dr. C. Dullemond Tag der m¨undlichen Pr¨ufung: 7. Juli 2011 Zum Druck genehmigt: 7. Juli 2011 gez. Prof. Dr. L. Kipp, Dekan To my growing family Abstract In the present thesis, the observational effects of dust grain growth and sedimentation in circumstellar discs are investigated. The growth of dust grains from some nanometres in diameter as found in the inter- stellar medium towards planetesimal bodies some meters in diameter is an important step in the formation of planets. However, this process is currently not entirely un- derstood. Especially, in the literature several `barriers' are discussed that apparently prohibit an effective growth of dust grains. Hence, it is of particular interest to compare theories and observational data in this respect. State-of-the-art radiative transfer techniques allow one to derive observable quantities from theoretical models that allow this comparison. In this thesis, generic tracers of dust grain growth in spatially high resolution multi-wavelength images are identified for the first time. Further, a possibility to detect a dust trapping mechanism for dust grains by local pressure maxima using the new interferometer, ALMA, is established. By fitting parametric models to new observations of the disc in the Bok globule CB 26, unexpected features of the system are revealed, such as a large inner void and the possibility to interpret the data without the need for grain growth. -
Evaluation of Clear Sky Models for Satellite-Based Irradiance Estimates Manajit Sengupta and Peter Gotseff National Renewable Energy Laboratory
Evaluation of Clear Sky Models for Satellite-Based Irradiance Estimates Manajit Sengupta and Peter Gotseff National Renewable Energy Laboratory NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Technical Report NREL/TP-5D00-60735 December 2013 Contract No. DE-AC36-08GO28308 Evaluation of Clear Sky Models for Satellite-Based Irradiance Estimates Manajit Sengupta and Peter Gotseff National Renewable Energy Laboratory Prepared under Task No. SS13.8041 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. National Renewable Energy Laboratory Technical Report 15013 Denver West Parkway NREL/TP-5D00-60735 Golden, CO 80401 December 2013 303-275-3000 • www.nrel.gov Contract No. DE-AC36-08GO28308 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. -
GERSON DE OLIVEIRA BARBOSA Formação Planetária Em Sistemas
GERSON DE OLIVEIRA BARBOSA Formação Planetária em Sistemas Binários Guaratinguetá - SP 2016 Gerson de Oliveira Barbosa Formação Planetária em Sistemas Binários Trabalho de Graduação apresentado ao Conselho de Curso de Graduação em Licenciatura em Matemática da Faculdade de Engenharia do Campus de Guaratinguetá, Universidade Estadual Paulista, como parte dos requisitos para obtenção do diploma de Graduação em Licenciatura em Matemática. Orientador: Othon Cabo Winter Coorientador: Rita de Cássia Domingos Guaratinguetá - SP 2016 Barbosa, Gerson de Oliveira Formação planetária em sistemas binários / Gerson de Oliveira B238f Barbosa – Guaratinguetá, 2017. 63f. : il. Bibliografia: f. 61-63 Trabalho de Graduação em Licenciatura em Matemática – Universidade Estadual Paulista, Faculdade de Engenharia de Guaratinguetá, 2017. Orientador: Prof. Dr. Othon Cabo Winter Coorientadora: Rita de Cássia Domingos 1. Exoplanetas. 2. Planetas. 3. Sistema binário (Matemática). 4. Sistema solar. I. Título CDU 523.4 DADOS CURRICULARES NOME COMPLETO DO AUTOR NASCIMENTO 17.08.1987 – Guaratinguetá / SP FILIAÇÃO Geraldo Cotta Barbosa Janaína Fabrício de Oliveira Barbosa 2013/2016 Graduado em Licenciatura em Matemática Universidade Estadual Paulista “Júlio Mesquita Filho” - FEG dedico este trabalho de modo especial, à minha família. AGRADECIMENTOS Agradeço a todos que estiveram comigo nessa jornada e que de alguma forma contribuíram para minha formação. Em especial: Aos meus pais Geraldo Cotta Barbosa e Janaína Fabrício de Oliveira Barbosa, que me ensinaram as principais coisas da vida e confiaram cegamente no meu sucesso. Não sei dizer o quanto tenho orgulho de ser filho de vocês, obrigado meus velhos! Ao meu orientador, Prof. Dr. Othon Cabo Winter que me inspira, motiva e orgulha. Fez- me conhecer a coisa que mais gosto de fazer e sempre ocupou a posição de maior estima e referência. -
X-Ray Emission of Multiple T Tauri Stars in Taurus
A&A 369, 971–980 (2001) Astronomy DOI: 10.1051/0004-6361:20010173 & c ESO 2001 Astrophysics X-ray emission of multiple T Tauri stars in Taurus B. K¨onig1, R. Neuh¨auser1;2, and B. Stelzer1 1 MPI f¨ur extraterrestrische Physik, Giessenbachstraße 1, 85740 Garching, Germany 2 Institute for Astronomy, University of Hawaii, Honolulu, USA Received 29 February 2000 / Accepted 26 January 2001 Abstract. We present a study of X-ray emission of known multiple T Tauri stars (TTS) in Taurus based on ROSAT observations. We used the ROSAT All-Sky Survey (RASS) detection rates of single classical (cTTS) and weak-line TTS (wTTS) to investigate statistically the TTS nature (classical or weak-line) of the components in multiple TTS, which are too close for spatially resolved spectroscopy so far. Because single wTTS show a higher RASS detection rate than single cTTS, the different binary TTS (cTTS-cTTS, cTTS-wTTS, wTTS-wTTS) should also have different detection rates. We find that the observed RASS detection rates of binary wTTS, where the nature of the secondary is unknown, are in agreement with the secondaries being wTTS rather than cTTS, and mixed pairs are very rare. Furthermore we analyse the X-ray emission of TTS systems resolvable by the ROSAT HRI. Among those systems we find statistical evidence that primaries show larger X-ray luminosity than secondaries, and that the samples of primary and secondary TTS are similar concerning the X-ray over bolometric luminosity ratios. Furthermore, primaries always emit harder X-rays than secondaries. In all cases where rotational velocities and/or periods are known for both companions, it is always the primary that rotates faster. -
High-Resolution Optical and Near-Infrared Imaging of Young Circumstellar Disks
HIGH-RESOLUTION OPTICAL AND NEAR-INFRARED IMAGING OF YOUNG CIRCUMSTELLAR DISKS MARK McCAUGHREAN Astrophysikalisches Institut Potsdam KARL STAPELFELDT Jet Propulsion Laboratory, California Institute of Technology and LAIRD CLOSE Institute for Astronomy, University of Hawaii In the past five years, observations at optical and near-infrared wavelengths obtained with the Hubble Space Telescope and ground-based adaptive op- tics have provided the first well-resolved images of young circumstellar disks which may form planetary systems. We review these two observational tech- niques and highlight their results by presenting prototype examples of disks imaged in the Taurns-Auriga and Orion star-forming regions. As appropri- ate, we discuss the disk parameters that may be typically derived from the observations, as well as the implications that the observations may have on our understanding of, for example, the role of the ambient environment in shaping the disk evolution. We end with a brief summary of the prospects for future improvements in space- and ground-based optical/IR imaging tech- niques, and how they may impact disk studies. I. DIRECT IMAGING OF CIRCUMSTELLAR DISKS The Copernican demotion of humankind away from the center of our local planetary system also provided the shift in perspective re- quired to understand its cosmogony. Once it was apparent that the solar system comprised a number of planets in essentially circular and coplanar orbits around the Sun, theories for its formation were devel- oped involving condensation from a rotating disk-shaped primordial nebula, or Urnebel. The so-called "Kant-Laplace nebular hypothesis" eventually held sway in the latter half of the twentieth century af- ter lengthy competition with rival "catastrophic" theories (see Koerner 1997 for a review), and was subsequently vindicated by the discovery of analogues to the Urnebel around young stars elsewhere in the galaxy. -
Uvic Thesis Template
On the Modelling of Solar Radiation in Urban Environments – Applications of Geomatics and Climatology Towards Climate Action in Victoria by Christopher B. Krasowski B.Sc., University of Victoria, 2012 A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE in the Department of Geography Christopher B. Krasowski 2019 All rights reserved. This Thesis may not be reproduced in whole or in part, by photocopy or other means, without the permission of the author. ii On the Modelling of Solar Radiation in Urban Environments – Applications of Geomatics and Climatology Towards Climate Action by Christopher B. Krasowski B.Sc., University of Victoria, 2012 Supervisory Committee Dr. David E. Atkinson, Department of Geography Supervisor Dr. Johannes Feddema, Department of Geography Member iii Abstract Modelling solar radiation data at a high spatiotemporal resolution for an urban environment can inform many different applications related to climate action, such as urban agriculture, forest, building, and renewable energy studies. However, the complexity of urban form, vastness of city-wide coverage, and general dearth of climatological information pose unique challenges doing so. To address some climate action goals related to reducing building emissions in the City of Victoria, British Columbia, Canada, applied geomatics and climatology were used to model solar radiation data suitable for informing renewable energy feasibility studies, including photovoltaic system sizing, costing, carbon offsets, and financial payback. The research presents a comprehensive review of solar radiation attenuates, as well as methods of accounting for them, specifically in urban environments. A novel methodology is derived from the review and integrates existing models, data, and tools – those typically available to a local government. -
Probing the Close Environment of Young Stellar Objects With
Probing the close environment of young stellar objects with interferometry Fabien Malbet ([email protected]) Laboratoire d’Astrophysique, Observatoire de Grenoble, UMR 5571 CNRS/UJF, Grenoble, France Abstract. The study of Young Stellar Objects (YSOs) is one of the most ex- citing topics that can be undertaken by long baseline optical interferometry. The magnitudes of these objects are at the edge of capabilities of current optical inter- ferometers, limiting the studies to a few dozen, but are well within the capability of coming large aperture interferometers like the VLT Interferometer, the Keck Inter- ferometer, the Large Binocular Telescope or ’OHANA. The milli-arcsecond spatial resolution reached by interferometry probes the very close environment of young stars, down to a tenth of an astronomical unit. In this paper, I review the different aspects of star formation that can be tackled by interferometry: circumstellar disks, multiplicity, jets. I present recent observations performed with operational infrared interferometers, IOTA, PTI and ISI, and I show why in the next future one will extend these studies with large aperture interferometers. Keywords: Interferometry, Optical, Infrared, Star Formation, Young Stellar Ob- jects, Pre-Main Sequence Stars 1. Introduction When trying to understand the origin of our planetary system, one has basically two approaches: (i) looking for other existing planetary systems in the universe to characterize them or (ii) investigate how stellar systems have been forming. By studying young stellar objects (hereafter YSOs) in our Universe, i.e. stars in their early stages of evolution, one focuses our attention to the second approach. So far, these objects have been extensively observed by spectropho- arXiv:astro-ph/0303260v1 12 Mar 2003 tometry with seeing-limited resolution that corresponds at best to a hundred of astronomical units for typical star formation regions, thus many questions are still unresolved 1 because our incapability to disen- tangle the various phenomena at smaller scales. -
Eric Jensen1, Rachel Akeson2, and Aaron Hersch1, 1Swarthmore College, 2Caltech/IPAC, Nexsci
Measuring Protoplanetary Disk Alignment in Young Binary Systems Eric Jensen1, Rachel Akeson2, and Aaron Hersch1, 1Swarthmore College, 2Caltech/IPAC, NExSci Figure 1: Velocity maps of CO 3–2 emission from circumstellar disks in ve young binary systems (see a sixth system at lower right, Fig. 4). Note that the axis scales are dierent in each gure. Results: Disks in a small sample of binary systems are neither perfectly aligned nor randomly oriented, showing more tendency toward alignment. Context Many of the known planetary systems are unlike our Solar System, con- Observations and Methods taining hot Jupiters or planets orbiting their host stars on eccentric or in- We used ALMA to observe continuum and CO(3-2) emission from 14 young binary systems clined orbits. One possible explanation for producing such orbits is mi- in Taurus-Auriga, Ophiuchus, and Lupus. The kinematics of the CO emission allows us to gration driven by Kozai-Lidov oscillations, which can be induced by a deduce the spatial orientation of the disks, even for disks that are near our resolution limit. companion on a suciently inclined orbit. Observations of protoplane- Six systems had strong enough emission for both components to be detected in CO. We tary disks can help determine whether young binary companions are in- used CASA to image the sources and create velocity maps. We also included in our analysis clined relative to the individual stars’ nascent planetary systems and thus the previously measured position angles of the disks in V2434 Ori (Williams et al. 2014) and could induce such migration. HK Tau (Jensen & Akeson 2014) . -
Atmospheric Effects
Atmospheric effects 1. Basics & Nomenclature Ground-based astronomers must reckon with the effect of the atmosphere on their observations. The atmosphere imprints wavelength-dependent absorption on the incoming light. It glows with a complex, time-dependent and space-dependent spectrum. It refracts the light as a function of zenith angle and wavelength. Finally, turbulence in the atmosphere distorts the incoming light's wave fronts, leading to image motion and blur. When calculating the effects of the atmosphere, the zenith angle z is a critical factor. In the plane-parallel approximation, which virtually always holds, the column density of atmosphere at z scales as the airmass, a = 1= cos z. Figure 1 shows the atmospheric transmission at zenith t(z = 0◦) as a function of wavelength at sea level. The transmission at other airmasses is: t(z) = [t(z = 0◦)]a; (1) where a is the airmass. It also depends on height above sea level. The sharp absorption features are known as telluric lines; the strongest of these are the Fraunhofer A and B bands around 7000{7500 A,˚ due to O2. The ultraviolet and higher energy photons are essentially entirely absorbed below 3500 A˚, mostly due to ozone. Starting in the near-infrared and continuing to about mm wavelengths, the atmosphere has strong absorption bands associated with water vapor and carbon dioxide. The exact level of absorption depends on the humidity, pressure, and temperature. This means the transmission spectra depends on time and the average conditions vary considerably between different locations. Favorable locations include but are not limited to the high deserts of Chile and the South Pole.