Observing Dust Grain Growth and Sedimentation in Circumstellar Discs Interpretations and Predictions of Their Observable Quantities in a Multi-Wavelength Approach
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
INAUGURAL – DISSERTATION Dipl.-Phys. Alexander A. Schegerer
INAUGURAL – DISSERTATION zur Erlangung der Doktorwurde¨ der Naturwissenschaftlich-Mathematischen Gesamtfakult¨at der Ruprecht - Karls - Universit¨at Heidelberg vorgelegt von Dipl.-Phys. Alexander A. Schegerer, geboren in Kaufbeuren Tag der mundlichen¨ Prufung:¨ 17. Oktober 2007 II Struktur- und Staubentwicklung in zirkumstellaren Scheiben um T Tauri-Sterne Analyse und Modellierung hochaufl¨osender Beobachtungen in verschiedenen Wellenl¨angenbereichen Gutachter: Prof. Dr. Thomas Henning Prof. Dr. Wolfgang Duschl IV Meinen Eltern, Maria-Christa und Wolfgang Schegerer, gewidmet. VI Thema Im Zentrum dieser Doktorarbeit steht die Untersuchung der inneren Strukturen zirkumstella- rer Scheiben um T Tauri-Sterne sowie die Analyse zirkumstellarer Staub- und Eisteilchen und ihres Einflusses auf die Scheibenstruktur. Unter Zuhilfenahme von theoretisch berechneten Vergleichsspektren gibt der Verlauf der 10 µm-Emissionsbande in den Spektren junger stellarer Objekte Hinweise auf den Entwick- lungsgrad von Silikatstaub. Die Silikatbanden von 27 T Tauri-Objekten werden analysiert, um nach potentiell vorliegenden Korrelationen zwischen der Silikatstaubzusammensetzung und den stellaren Eigenschaften zu suchen. Analog erlaubt das Absorptionsband bei 3 µm, das dem Wassereis zugeschrieben wird, eine Untersuchung der Entwicklung von Eisk¨ornern in jungen stellaren Objekten. Erstmals ist es gelungen, kristallines Wassereis im Spektrum eines T Tauri-Objektes nachzuweisen. Unser wichtigstes Hilfsmittel zur Analyse der Temperatur- und Dichtestrukturen zirkum- stellarer -
Kuchner, M. & Seager, S., Extrasolar Carbon Planets, Arxiv:Astro-Ph
Extrasolar Carbon Planets Marc J. Kuchner1 Princeton University Department of Astrophysical Sciences Peyton Hall, Princeton, NJ 08544 S. Seager Carnegie Institution of Washington, 5241 Broad Branch Rd. NW, Washington DC 20015 [email protected] ABSTRACT We suggest that some extrasolar planets . 60 ML will form substantially from silicon carbide and other carbon compounds. Pulsar planets and low-mass white dwarf planets are especially good candidate members of this new class of planets, but these objects could also conceivably form around stars like the Sun. This planet-formation pathway requires only a factor of two local enhancement of the protoplanetary disk’s C/O ratio above solar, a condition that pileups of carbonaceous grains may create in ordinary protoplanetary disks. Hot, Neptune- mass carbon planets should show a significant paucity of water vapor in their spectra compared to hot planets with solar abundances. Cooler, less massive carbon planets may show hydrocarbon-rich spectra and tar-covered surfaces. The high sublimation temperatures of diamond, SiC, and other carbon compounds could protect these planets from carbon depletion at high temperatures. arXiv:astro-ph/0504214v2 2 May 2005 Subject headings: astrobiology — planets and satellites, individual (Mercury, Jupiter) — planetary systems: formation — pulsars, individual (PSR 1257+12) — white dwarfs 1. INTRODUCTION The recent discoveries of Neptune-mass extrasolar planets by the radial velocity method (Santos et al. 2004; McArthur et al. 2004; Butler et al. 2004) and the rapid development 1Hubble Fellow –2– of new technologies to study the compositions of low-mass extrasolar planets (see, e.g., the review by Kuchner & Spergel 2003) have compelled several authors to consider planets with chemistries unlike those found in the solar system (Stevenson 2004) such as water planets (Kuchner 2003; Leger et al. -
1 Towards a Molecular Inventory of Protostellar
TOWARDS A MOLECULAR INVENTORY OF PROTOSTELLAR DISCS Glenn J White (1), Mark A. Thompson (1), C.V. Malcolm Fridlund (2), Monica Huldtgren White (3) (1) University of Kent, UK, [email protected] (2) ESTEC, NL, (3) Stockholm Observatory, Sweden Abstract solid, atomic and ionised material in the pre- planetary environment. The chemical environment in circumstellar discs is a unique diagnostic of the thermal, physical and Details of the survey chemical environment. In this paper we examine the structure of star formation regions giving rise to low We are carrying out a survey of nearby star mass stars, and the chemical environment inside formation regions to them, and the circumstellar discs around the developing stars. • Search in the optical/IR region for triggered/induced solar-type star formation. Introduction We measure the boundary conditions, such as external pressure of ionised gas that Life develops from a sequence of organic chemical triggering the star formation using radio processes that develop sufficient complexity to lead observations, and from molecular line to mutating and self-replicating sentient organisms. tracers, estimate the internal pressure in the Cellular structures, formed following selective molecular gas. evolution along the Tree of Life, emerged from the • Characterise the properties of the central reactions amongst these simple organic compounds, protostellar core and protostellar discs at which were derived from cosmically abundant submm, mid and near-IR wavelengths, by elements and molecules that are abundant in space. measuring the spectral energy distributions Much of this early chemical inventory was delivered and the atomic and molecular inventory of a to the surfaces of planets, including the Earth, during sample of circumstellar discs the early phase of massive cometary bombardment of • Measure the chemical inventory of gas- the earth - e.g. -
GERSON DE OLIVEIRA BARBOSA Formação Planetária Em Sistemas
GERSON DE OLIVEIRA BARBOSA Formação Planetária em Sistemas Binários Guaratinguetá - SP 2016 Gerson de Oliveira Barbosa Formação Planetária em Sistemas Binários Trabalho de Graduação apresentado ao Conselho de Curso de Graduação em Licenciatura em Matemática da Faculdade de Engenharia do Campus de Guaratinguetá, Universidade Estadual Paulista, como parte dos requisitos para obtenção do diploma de Graduação em Licenciatura em Matemática. Orientador: Othon Cabo Winter Coorientador: Rita de Cássia Domingos Guaratinguetá - SP 2016 Barbosa, Gerson de Oliveira Formação planetária em sistemas binários / Gerson de Oliveira B238f Barbosa – Guaratinguetá, 2017. 63f. : il. Bibliografia: f. 61-63 Trabalho de Graduação em Licenciatura em Matemática – Universidade Estadual Paulista, Faculdade de Engenharia de Guaratinguetá, 2017. Orientador: Prof. Dr. Othon Cabo Winter Coorientadora: Rita de Cássia Domingos 1. Exoplanetas. 2. Planetas. 3. Sistema binário (Matemática). 4. Sistema solar. I. Título CDU 523.4 DADOS CURRICULARES NOME COMPLETO DO AUTOR NASCIMENTO 17.08.1987 – Guaratinguetá / SP FILIAÇÃO Geraldo Cotta Barbosa Janaína Fabrício de Oliveira Barbosa 2013/2016 Graduado em Licenciatura em Matemática Universidade Estadual Paulista “Júlio Mesquita Filho” - FEG dedico este trabalho de modo especial, à minha família. AGRADECIMENTOS Agradeço a todos que estiveram comigo nessa jornada e que de alguma forma contribuíram para minha formação. Em especial: Aos meus pais Geraldo Cotta Barbosa e Janaína Fabrício de Oliveira Barbosa, que me ensinaram as principais coisas da vida e confiaram cegamente no meu sucesso. Não sei dizer o quanto tenho orgulho de ser filho de vocês, obrigado meus velhos! Ao meu orientador, Prof. Dr. Othon Cabo Winter que me inspira, motiva e orgulha. Fez- me conhecer a coisa que mais gosto de fazer e sempre ocupou a posição de maior estima e referência. -
X-Ray Emission of Multiple T Tauri Stars in Taurus
A&A 369, 971–980 (2001) Astronomy DOI: 10.1051/0004-6361:20010173 & c ESO 2001 Astrophysics X-ray emission of multiple T Tauri stars in Taurus B. K¨onig1, R. Neuh¨auser1;2, and B. Stelzer1 1 MPI f¨ur extraterrestrische Physik, Giessenbachstraße 1, 85740 Garching, Germany 2 Institute for Astronomy, University of Hawaii, Honolulu, USA Received 29 February 2000 / Accepted 26 January 2001 Abstract. We present a study of X-ray emission of known multiple T Tauri stars (TTS) in Taurus based on ROSAT observations. We used the ROSAT All-Sky Survey (RASS) detection rates of single classical (cTTS) and weak-line TTS (wTTS) to investigate statistically the TTS nature (classical or weak-line) of the components in multiple TTS, which are too close for spatially resolved spectroscopy so far. Because single wTTS show a higher RASS detection rate than single cTTS, the different binary TTS (cTTS-cTTS, cTTS-wTTS, wTTS-wTTS) should also have different detection rates. We find that the observed RASS detection rates of binary wTTS, where the nature of the secondary is unknown, are in agreement with the secondaries being wTTS rather than cTTS, and mixed pairs are very rare. Furthermore we analyse the X-ray emission of TTS systems resolvable by the ROSAT HRI. Among those systems we find statistical evidence that primaries show larger X-ray luminosity than secondaries, and that the samples of primary and secondary TTS are similar concerning the X-ray over bolometric luminosity ratios. Furthermore, primaries always emit harder X-rays than secondaries. In all cases where rotational velocities and/or periods are known for both companions, it is always the primary that rotates faster. -
High-Resolution Optical and Near-Infrared Imaging of Young Circumstellar Disks
HIGH-RESOLUTION OPTICAL AND NEAR-INFRARED IMAGING OF YOUNG CIRCUMSTELLAR DISKS MARK McCAUGHREAN Astrophysikalisches Institut Potsdam KARL STAPELFELDT Jet Propulsion Laboratory, California Institute of Technology and LAIRD CLOSE Institute for Astronomy, University of Hawaii In the past five years, observations at optical and near-infrared wavelengths obtained with the Hubble Space Telescope and ground-based adaptive op- tics have provided the first well-resolved images of young circumstellar disks which may form planetary systems. We review these two observational tech- niques and highlight their results by presenting prototype examples of disks imaged in the Taurns-Auriga and Orion star-forming regions. As appropri- ate, we discuss the disk parameters that may be typically derived from the observations, as well as the implications that the observations may have on our understanding of, for example, the role of the ambient environment in shaping the disk evolution. We end with a brief summary of the prospects for future improvements in space- and ground-based optical/IR imaging tech- niques, and how they may impact disk studies. I. DIRECT IMAGING OF CIRCUMSTELLAR DISKS The Copernican demotion of humankind away from the center of our local planetary system also provided the shift in perspective re- quired to understand its cosmogony. Once it was apparent that the solar system comprised a number of planets in essentially circular and coplanar orbits around the Sun, theories for its formation were devel- oped involving condensation from a rotating disk-shaped primordial nebula, or Urnebel. The so-called "Kant-Laplace nebular hypothesis" eventually held sway in the latter half of the twentieth century af- ter lengthy competition with rival "catastrophic" theories (see Koerner 1997 for a review), and was subsequently vindicated by the discovery of analogues to the Urnebel around young stars elsewhere in the galaxy. -
Probing the Close Environment of Young Stellar Objects With
Probing the close environment of young stellar objects with interferometry Fabien Malbet ([email protected]) Laboratoire d’Astrophysique, Observatoire de Grenoble, UMR 5571 CNRS/UJF, Grenoble, France Abstract. The study of Young Stellar Objects (YSOs) is one of the most ex- citing topics that can be undertaken by long baseline optical interferometry. The magnitudes of these objects are at the edge of capabilities of current optical inter- ferometers, limiting the studies to a few dozen, but are well within the capability of coming large aperture interferometers like the VLT Interferometer, the Keck Inter- ferometer, the Large Binocular Telescope or ’OHANA. The milli-arcsecond spatial resolution reached by interferometry probes the very close environment of young stars, down to a tenth of an astronomical unit. In this paper, I review the different aspects of star formation that can be tackled by interferometry: circumstellar disks, multiplicity, jets. I present recent observations performed with operational infrared interferometers, IOTA, PTI and ISI, and I show why in the next future one will extend these studies with large aperture interferometers. Keywords: Interferometry, Optical, Infrared, Star Formation, Young Stellar Ob- jects, Pre-Main Sequence Stars 1. Introduction When trying to understand the origin of our planetary system, one has basically two approaches: (i) looking for other existing planetary systems in the universe to characterize them or (ii) investigate how stellar systems have been forming. By studying young stellar objects (hereafter YSOs) in our Universe, i.e. stars in their early stages of evolution, one focuses our attention to the second approach. So far, these objects have been extensively observed by spectropho- arXiv:astro-ph/0303260v1 12 Mar 2003 tometry with seeing-limited resolution that corresponds at best to a hundred of astronomical units for typical star formation regions, thus many questions are still unresolved 1 because our incapability to disen- tangle the various phenomena at smaller scales. -
Eric Jensen1, Rachel Akeson2, and Aaron Hersch1, 1Swarthmore College, 2Caltech/IPAC, Nexsci
Measuring Protoplanetary Disk Alignment in Young Binary Systems Eric Jensen1, Rachel Akeson2, and Aaron Hersch1, 1Swarthmore College, 2Caltech/IPAC, NExSci Figure 1: Velocity maps of CO 3–2 emission from circumstellar disks in ve young binary systems (see a sixth system at lower right, Fig. 4). Note that the axis scales are dierent in each gure. Results: Disks in a small sample of binary systems are neither perfectly aligned nor randomly oriented, showing more tendency toward alignment. Context Many of the known planetary systems are unlike our Solar System, con- Observations and Methods taining hot Jupiters or planets orbiting their host stars on eccentric or in- We used ALMA to observe continuum and CO(3-2) emission from 14 young binary systems clined orbits. One possible explanation for producing such orbits is mi- in Taurus-Auriga, Ophiuchus, and Lupus. The kinematics of the CO emission allows us to gration driven by Kozai-Lidov oscillations, which can be induced by a deduce the spatial orientation of the disks, even for disks that are near our resolution limit. companion on a suciently inclined orbit. Observations of protoplane- Six systems had strong enough emission for both components to be detected in CO. We tary disks can help determine whether young binary companions are in- used CASA to image the sources and create velocity maps. We also included in our analysis clined relative to the individual stars’ nascent planetary systems and thus the previously measured position angles of the disks in V2434 Ori (Williams et al. 2014) and could induce such migration. HK Tau (Jensen & Akeson 2014) . -
The Dispersal of Planet-Forming Discs: Theory Confronts Observations Rsos.Royalsocietypublishing.Org Barbara Ercolano1,2, Ilaria Pascucci3,4
The Dispersal of Planet-forming discs: Theory confronts Observations rsos.royalsocietypublishing.org Barbara Ercolano1;2, Ilaria Pascucci3;4 1Universitäts-Sternwarte München, Scheinerstr. 1, Research 81679 München, Germany 2Excellence Cluster Origin and Structure of the Article submitted to journal Universe, Boltzmannstr.2, 85748 Garching bei München, Germany 3Lunar and Planetary Laboratory, The University of Subject Areas: Arizona, Tucson, AZ 85721, USA Astrophysics 4Earths in Other Solar Systems Team, NASA Nexus Keywords: for Exoplanet System Science Protoplanetary Disks, Planet Formation Discs of gas and dust around Myr-old stars are a by-product of the star formation process and provide the raw material to form planets. Hence, their Author for correspondence: evolution and dispersal directly impact what type ercolanousm.lmu.de of planets can form and affect the final architecture of planetary systems. Here, we review empirical constraints on disc evolution and dispersal with special emphasis on transition discs, a subset of discs that appear to be caught in the act of clearing out planet-forming material. Along with observations, we summarize theoretical models that build our physical understanding of how discs evolve and disperse and discuss their significance in the context of the formation and evolution of planetary systems. By confronting theoretical predictions with observations, we also identify the most promising areas for future progress. ............ arXiv:1704.00214v2 [astro-ph.EP] 4 Apr 2017 c 2014 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/ by/4.0/, which permits unrestricted use, provided the original author and source are credited. -
Pennsylvania Science Olympiad Southeast Regional Tournament 2013 Astronomy C Division Exam March 4, 2013
PENNSYLVANIA SCIENCE OLYMPIAD SOUTHEAST REGIONAL TOURNAMENT 2013 ASTRONOMY C DIVISION EXAM MARCH 4, 2013 SCHOOL:________________________________________ TEAM NUMBER:_________________ INSTRUCTIONS: 1. Turn in all exam materials at the end of this event. Missing exam materials will result in immediate disqualification of the team in question. There is an exam packet as well as a blank answer sheet. 2. You may separate the exam pages. You may write in the exam. 3. Only the answers provided on the answer page will be considered. Do not write outside the designated spaces for each answer. 4. Include school name and school code number at the bottom of the answer sheet. Indicate the names of the participants legibly at the bottom of the answer sheet. Be prepared to display your wristband to the supervisor when asked. 5. Each question is worth one point. Tiebreaker questions are indicated with a (T#) in which the number indicates the order of consultation in the event of a tie. Tiebreaker questions count toward the overall raw score, and are only used as tiebreakers when there is a tie. In such cases, (T1) will be examined first, then (T2), and so on until the tie is broken. There are 12 tiebreakers. 6. When the time is up, the time is up. Continuing to write after the time is up risks immediate disqualification. 7. In the BONUS box on the answer sheet, name the gentleman depicted on the cover for a bonus point. 8. As per the 2013 Division C Rules Manual, each team is permitted to bring “either two laptop computers OR two 3-ring binders of any size, or one binder and one laptop” and programmable calculators. -
Timescales of the Solar Protoplanetary Disk 233
Russell et al.: Timescales of the Solar Protoplanetary Disk 233 Timescales of the Solar Protoplanetary Disk Sara S. Russell The Natural History Museum Lee Hartmann Harvard-Smithsonian Center for Astrophysics Jeff Cuzzi NASA Ames Research Center Alexander N. Krot Hawai‘i Institute of Geophysics and Planetology Matthieu Gounelle CSNSM–Université Paris XI Stu Weidenschilling Planetary Science Institute We summarize geochemical, astronomical, and theoretical constraints on the lifetime of the protoplanetary disk. Absolute Pb-Pb-isotopic dating of CAIs in CV chondrites (4567.2 ± 0.7 m.y.) and chondrules in CV (4566.7 ± 1 m.y.), CR (4564.7 ± 0.6 m.y.), and CB (4562.7 ± 0.5 m.y.) chondrites, and relative Al-Mg chronology of CAIs and chondrules in primitive chon- drites, suggest that high-temperature nebular processes, such as CAI and chondrule formation, lasted for about 3–5 m.y. Astronomical observations of the disks of low-mass, pre-main-se- quence stars suggest that disk lifetimes are about 3–5 m.y.; there are only few young stellar objects that survive with strong dust emission and gas accretion to ages of 10 m.y. These con- straints are generally consistent with dynamical modeling of solid particles in the protoplanetary disk, if rapid accretion of solids into bodies large enough to resist orbital decay and turbulent diffusion are taken into account. 1. INTRODUCTION chondritic meteorites — chondrules, refractory inclusions [Ca,Al-rich inclusions (CAIs) and amoeboid olivine ag- Both geochemical and astronomical techniques can be gregates (AOAs)], Fe,Ni-metal grains, and fine-grained ma- applied to constrain the age of the solar system and the trices — are largely crystalline, and were formed from chronology of early solar system processes (e.g., Podosek thermal processing of these grains and from condensation and Cassen, 1994). -
Abstracts of Talks 1
Abstracts of Talks 1 INVITED AND CONTRIBUTED TALKS (in order of presentation) Milky Way and Magellanic Cloud Surveys for Planetary Nebulae Quentin A. Parker, Macquarie University I will review current major progress in PN surveys in our own Galaxy and the Magellanic clouds whilst giving relevant historical context and background. The recent on-line availability of large-scale wide-field surveys of the Galaxy in several optical and near/mid-infrared passbands has provided unprecedented opportunities to refine selection techniques and eliminate contaminants. This has been coupled with surveys offering improved sensitivity and resolution, permitting more extreme ends of the PN luminosity function to be explored while probing hitherto underrepresented evolutionary states. Known PN in our Galaxy and LMC have been significantly increased over the last few years due primarily to the advent of narrow-band imaging in important nebula lines such as H-alpha, [OIII] and [SIII]. These PNe are generally of lower surface brightness, larger angular extent, in more obscured regions and in later stages of evolution than those in most previous surveys. A more representative PN population for in-depth study is now available, particularly in the LMC where the known distance adds considerable utility for derived PN parameters. Future prospects for Galactic and LMC PN research are briefly highlighted. Local Group Surveys for Planetary Nebulae Laura Magrini, INAF, Osservatorio Astrofisico di Arcetri The Local Group (LG) represents the best environment to study in detail the PN population in a large number of morphological types of galaxies. The closeness of the LG galaxies allows us to investigate the faintest side of the PN luminosity function and to detect PNe also in the less luminous galaxies, the dwarf galaxies, where a small number of them is expected.