Alternatives to Organic Acid Surface Modification of Zno for Excitonic Photovoltaics

Total Page:16

File Type:pdf, Size:1020Kb

Alternatives to Organic Acid Surface Modification of Zno for Excitonic Photovoltaics ALTERNATIVES TO ORGANIC ACID SURFACE MODIFICATION OF ZNO FOR EXCITONIC PHOTOVOLTAICS by Thomas M. Brenner A thesis submitted to the Faculty and the Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Applied Physics). Golden, Colorado Date Signed: Thomas M. Brenner Signed: Prof. Reuben T. Collins Thesis Advisor Signed: Prof. Thomas E. Furtak Thesis Advisor Golden, Colorado Date Signed: Thomas E. Furtak Professor and Head Department of Physics ii ABSTRACT Surface modification of metal oxides with molecular monolayers is an effective strategy for tuning interface properties in excitonic devices employing metal oxides as charge accept- ing and transport layers. The most commonly used attachment chemistries are acid/base reactions employing organic acids. The use of acid/base chemistries has presented a problem for one of the most commonly used and promising metal oxides in excitonic devices, zinc ox- ide (ZnO). ZnO is easily etched by even weak organic acids, leading to non-ideal monolayers and the accumulation of surface complexes during etching, which is particularly problematic for ZnO-based dye sensitized solar cells (DSSCs). Two ways to address this issue have been explored. The first approach is to employ a triethoxysilane (TES)-based covalent attachment scheme instead of an acid/base reac- tion for attaching modifier molecules. We demonstrate that dipolar mixed monolayers of phenyltriethoxysilane-based molecules tune the work function of ZnO and the performance of bulk heterojunction photovoltaic devices containing modified ZnO layers. This indicates these modifiers are effective for tuning interfacial electronic structure. The second approach is to investigate Zn1-xMgxO (ZnMgO) alloys in order to produce a more etch resistant material with similar electronic properties to ZnO. These alloys, when exposed to the prototypical modifier benzoic acid (BA), demonstrate a steady-state, macro- scopic etch rate that decreases up to an order of magnitude (at 20% Mg) compared to ZnO. Infrared spectroscopic characterization of BA-modified ZnMgO indicates a monolayer of BA attaches to the ZnMgO surface nearly instantaneously and remains throughout etching. These results suggest that ZnMgO is a promising alternative material that may alleviate some of the problems with ZnO etching. However, for applications of this material as a substrate for dye sensitization, the initial etch rate, and not the steady-state rate, is really the quantity of interest. We investigated the initial etch rate of ZnMgO exposed to N3 dye (cis- iii bis(isothiocyanato)bis(2,2'-bipyridyl-4,4'-dicarboxylato)-ruthenium(II)). We find the initial etch rate of ZnMgO increases with Mg content, in contrast to the steady-state etch rates observed for BA-treated ZnMgO. We also find that the primary products of etching are Zn-carboxylate products. From these results we propose a mechanism for the observed etch resistance. iv TABLE OF CONTENTS ABSTRACT . iii LIST OF FIGURES . viii LIST OF TABLES . xii LIST OF SYMBOLS . xiii LIST OF ABBREVIATIONS . xvi ACKNOWLEDGMENTS . xviii CHAPTER 1 METAL OXIDE SEMICONDUCTORS IN EXCITONIC PHOTOVOLTAICS . 1 1.1 Metal Oxide Semiconductors . 1 1.2 Organic and Fullerene Semiconductors . 4 1.3 General Photovoltaic Device Physics . 10 1.4 Excitonic Solar Cell Device Physics . 17 1.5 Metal Oxide/Organic Interfaces . 21 1.6 Monolayer Modification of Metal Oxide Surfaces and Interfaces . 25 1.7 Acid Dissolution of Metal Oxide Semiconductors . 27 1.8 Thesis Organization . 29 CHAPTER 2 SAMPLE PREPARATION AND CHARACTERIZATION TECHNIQUES . 31 2.1 Production of Zn1-xMgxO Thin Films . 31 2.2 Triethoxysilane Modification of ZnO . 32 2.3 Carboxylic Acid Modification of Zn1-xMgxO ...................33 v 2.4 Fabrication of Bulk Heterojunction Solar Cells . 34 2.5 UV-Vis Absorption Spectroscopy . 35 2.6 Infrared Absorption Spectroscopy . 36 2.7 Kelvin Probe Surface Potential Measurements . 39 2.8 Tapping Mode Atomic Force Microscopy . 42 2.9 X-Ray Photoelectron Spectroscopy . 45 2.10 Contact Angle Goniometry . 48 2.11 Grazing Incidence X-Ray Diffraction . 49 2.12 Photoluminescence Spectroscopy . 51 CHAPTER 3 TUNING ZINC OXIDE/ORGANIC ENERGY LEVEL ALIGNMENT USING MIXED TRIETHOXYSILANE MONOLAYERS . 53 3.1 Introduction . 54 3.2 Experimental . 58 3.3 Results and Discussion . 61 3.4 Conclusions . 71 3.5 Acknowledgements . 71 CHAPTER 4 ETCH-RESISTANT ZN1-XMGXO ALLOYS: AN ALTERNATIVE TO ZNO FOR CARBOXYLIC ACID SURFACE MODIFICATION . 72 4.1 Introduction . 73 4.2 Experimental . 76 4.3 Results and Discussion . 78 4.4 Conclusions . 92 4.5 Acknowledgements . 92 vi CHAPTER 5 EXPLORING THE MECHANISM OF ZN1-XMGXO ETCH RESISTANCE THROUGH DYE SENSITIZATION . 94 5.1 Introduction . 96 5.2 Experimental Methodology . 99 5.3 Results and Discussion . 104 5.4 Conclusions . 116 5.5 Acknowledgements . 117 CHAPTER 6 CONCLUSIONS . 119 6.1 Project Conclusions . 119 6.2 Future Project Suggestions . 122 REFERENCES CITED . 125 APPENDIX A - FURTHER EXPLANATION OF METHODOLOGY . 140 A.1 Infrared Active and Inactive Modes: An Example . 140 A.2 Fourier Transform Infrared Spectrometer Design . 141 A.3 Simplified Schematic of the Kelvin Probe . 142 A.4 TM-AFM Feedback Loop Schematic . 144 APPENDIX B - SUPPORTING INFORMATION FOR CHAPTER 3 . 145 B.1 Calculation of Surface Proportion of 4CPTES and PTES from Infrared Spectrum . 145 B.2 Water Contact Angle Measurements . 148 B.3 Atomic Force Microscopy Measurements . 148 B.4 Dark J-V Curves . 150 B.5 Effect of Light Soaking . 150 APPENDIX C - PERMISSIONS . 152 vii LIST OF FIGURES Figure 1.1 Hexagonal wurtzite structure of ZnO . 3 Figure 1.2 Atomic force microscopy height images of Zn1-xMgxO films produced by a sol gel process . 5 Figure 1.3 UV-Vis spectra of the thin films of Zn1-xMgxO studied in this thesis . 6 Figure 1.4 Examples of common electro-active organic polymers and small molecules . 7 Figure 1.5 Illustration of Fermi level equilibration in junctions of electronic materials . 11 Figure 1.6 Example of a current density - voltage curve for a solar cell . 14 Figure 1.7 Equivalent circuit model of a solar cell . 17 Figure 1.8 The operational steps of excitonic solar cells . 18 Figure 1.9 Examples of excitonic photovoltaic device architectures . 19 Figure 1.10 Examples illustrating issues with metal oxide/organic semiconductor interfaces . 22 Figure 1.11 Electronic structure of a metal oxide and an organic in isolation and in contact . 23 Figure 2.1 UV-Vis absorbance spectra of materials used in this thesis . 37 Figure 2.2 Diagram of the working principle of the PM-IRRAS technique . 40 Figure 2.3 Basic working principle of Kelvin probe surface potential measurements . 41 Figure 2.4 Behavior of the tip in contact mode atomic force microscopy and tapping mode AFM . 43 Figure 2.5 Phase shift between AFM tip amplitude and driving force during TM-AFM . 44 Figure 2.6 TM-AFM height and phase images showing the relationship between topography, sample inhomogeneity, and phase . 45 viii Figure 2.7 X-ray photoelectron spectroscopy experimental setup . 47 Figure 2.8 Contact angle measurement setup and examples . 48 Figure 2.9 Experimental setup of grazing incidence X-ray diffraction . 50 Figure 2.10 Illustration of photoluminescence spectroscopy experiment setup and spectrum of N3 dye . 52 Figure 3.1 Energy level alignment at an ideal metal oxide/organic interface can be tuned by introducing a dipolar monolayer at the interface . 56 Figure 3.2 PM-IRRAS measurements of ZnO films treated with PTES and 4CPTES in different proportions . 63 Figure 3.3 Relative work function of treated ZnO as a function of 4CPTES and PTES mole fraction . 65 Figure 3.4 Representative light J-V measurements of IBHJ photovoltaic devices containing mixed monolayer modified ZnO . 67 Figure 3.5 Plot of open-circuit voltage of devices against relative work function of treated ZnO films . 70 Figure 4.1 Bandgaps of ZnMgO films as a function of Mg content . 79 Figure 4.2 Background-subtracted grazing incidence X-ray diffraction spectra of Zn1-xMgxO...................................80 Figure 4.3 PM-IRRAS infrared absorption spectra of benzoic acid-treated ZnMgO films showing the carboxyl stretch region . 83 − Figure 4.4 Peak fits to the dominant νasym(CO2 ) feature of the infrared spectra of ZnMgO films soaked in benzoic acid for 1 hr . 84 − Figure 4.5 Ratio of the integrated intensity of the νasym(CO2 ) modes observed on benzoic acid treated ZnMgO . 86 − -1 Figure 4.6 Variation of the νasym(CO2 ) modes at 1532 and 1569 cm in ZnO samples as a function of exposure time to benzoic acid . 88 -1 − Figure 4.7 Plot of integrated intensity of 1550 and 1571 cm νasym(CO2 ) modes and their sum as a function of bandgap . 89 ix Figure 4.8 Relationship between amount of unreacted acetate in ZnMgO films and amount of attached benzoic acid . 90 Figure 5.1 Molar absorptivity of N3 dye in ethanol solution . 101 Figure 5.2.
Recommended publications
  • Prodrugs Design Based on Inter- and Intramolecular Chemical Processes
    Chem Biol Drug Des 2013; 82: 643–668 Review Prodrugs Design Based on Inter- and Intramolecular Chemical Processes Rafik Karaman1,2,* compound satisfies a number of preset criteria to start clinical development. The number of years it takes to intro- 1Bioorganic Chemistry Department, Faculty of Pharmacy, duce a drug to the pharmaceutical market is over 10 years Al-Quds University, P.O. Box 20002, Jerusalem, Palestine with a cost of more than $1 billion dollars (1,2). 2Department of Science, University of Basilicata, Via dell’Ateneo Lucano 10, 85100, Potenza, Italy Modifying the absorption, distribution, metabolism, and *Corresponding author: Rafik Karaman, elimination (ADME) properties of an active drug requires a [email protected] complete understanding of the physicochemical and bio- logical behavior of the drug candidate (3 6). This includes This review provides the reader a concise overview of – the majority of prodrug approaches with the emphasis comprehensive evaluation of drug-likeness involving on the modern approaches to prodrug design. The prediction of ADME properties. These predictions can be chemical approach catalyzed by metabolic enzymes attempted at several levels: in vitro–in vivo using data which is considered as widely used among all other obtained from tissue or recombinant material from human approaches to minimize the undesirable drug physico- and preclinical species, and in silico or computational pre- chemical properties is discussed. Part of this review dictions projecting in vitro or in vivo data, involving the will shed light on the use of molecular orbital methods evaluation of various ADME properties, using computa- such as DFT, semiempirical and ab initio for the design tional approaches such as quantitative structure activity of novel prodrugs.
    [Show full text]
  • Structure Property Relationships of Carboxylic Acid Isosteres † † † ‡ † Pierrik Lassalas, Bryant Gay, Caroline Lasfargeas, Michael J
    Article pubs.acs.org/jmc Structure Property Relationships of Carboxylic Acid Isosteres † † † ‡ † Pierrik Lassalas, Bryant Gay, Caroline Lasfargeas, Michael J. James, Van Tran, † ‡ † § † Krishna G. Vijayendran, Kurt R. Brunden, Marisa C. Kozlowski, Craig J. Thomas, Amos B. Smith, III, † † ‡ Donna M. Huryn,*, and Carlo Ballatore*, , † Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States ‡ Center for Neurodegenerative Disease Research, University of Pennsylvania, 3600 Spruce Street, Philadelphia, Pennsylvania 19104-6323, United States § National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland 20850, United States *S Supporting Information ABSTRACT: The replacement of a carboxylic acid with a surrogate structure, or (bio)-isostere, is a classical strategy in medicinal chemistry. The general underlying principle is that by maintaining the features of the carboxylic acid critical for biological activity, but appropriately modifying the physico- chemical properties, improved analogs may result. In this context, a systematic assessment of the physicochemical properties of carboxylic acid isosteres would be desirable to enable more informed decisions of potential replacements to be used for analog design. Herein we report the structure− property relationships (SPR) of 35 phenylpropionic acid derivatives, in which the carboxylic acid moiety is replaced with a series of known isosteres. The data set generated provides an assessment of the relative impact on the physicochemical properties that these replacements may have compared to the carboxylic acid analog. As such, this study presents a framework for how to rationally apply isosteric replacements of the carboxylic acid functional group. ■ INTRODUCTION ships (SPR) of the existing palette of isosteres is most desirable.
    [Show full text]
  • Prodrugs: a Challenge for the Drug Development
    PharmacologicalReports Copyright©2013 2013,65,1–14 byInstituteofPharmacology ISSN1734-1140 PolishAcademyofSciences Drugsneedtobedesignedwithdeliveryinmind TakeruHiguchi [70] Review Prodrugs:A challengeforthedrugdevelopment JolantaB.Zawilska1,2,JakubWojcieszak2,AgnieszkaB.Olejniczak1 1 InstituteofMedicalBiology,PolishAcademyofSciences,Lodowa106,PL93-232£ódŸ,Poland 2 DepartmentofPharmacodynamics,MedicalUniversityofLodz,Muszyñskiego1,PL90-151£ódŸ,Poland Correspondence: JolantaB.Zawilska,e-mail:[email protected] Abstract: It is estimated that about 10% of the drugs approved worldwide can be classified as prodrugs. Prodrugs, which have no or poor bio- logical activity, are chemically modified versions of a pharmacologically active agent, which must undergo transformation in vivo to release the active drug. They are designed in order to improve the physicochemical, biopharmaceutical and/or pharmacokinetic properties of pharmacologically potent compounds. This article describes the basic functional groups that are amenable to prodrug design, and highlights the major applications of the prodrug strategy, including the ability to improve oral absorption and aqueous solubility, increase lipophilicity, enhance active transport, as well as achieve site-selective delivery. Special emphasis is given to the role of the prodrug concept in the design of new anticancer therapies, including antibody-directed enzyme prodrug therapy (ADEPT) andgene-directedenzymeprodrugtherapy(GDEPT). Keywords: prodrugs,drugs’ metabolism,blood-brainbarrier,ADEPT,GDEPT
    [Show full text]
  • Molecular Modification of Alkaloids
    Molecular Modification Of Alkaloids Reinhard predominated eightfold if confiding Brooks inlaces or sharecropped. Jeth scrammed her chuckwallas pestiferously, she underplays it pugnaciously. How crenulated is Shayne when paediatric and osteoplastic Osbourne alloy some feeze? Depth, or bupivacaine has similar potency as an anesthetic. NOT if for human. Due to alkaloids production of alkaloid in another form dimers in topo ii inhibitors targeting acetylcholinesterase inhibitors were used to sodium influx through iv. Ethanol is a psychoactive drug because one legal the oldest recreational drugs still used by humans. However, but stimulants such as caffeine and the analog compounds theophylline and theobromine are. Sketch experiments should be reproduced progeny or reduction is high pressure is a functional group as one of lithospermum erythrorhizon by several alkaloids. In molecular modification of suggestion that of molecular modification alkaloids. Quinoline is mainly used as motion the production of other specialty chemicals. On the basis of steric consideration. Every single crystal modification alkaloids should be. Only investigates alkaloids dissolve in molecular modification with lots of one or increased libido, check with molecular modification of alkaloids defines a user flair your interest in the. Making changa is super simple. Do and modification of density, compared to an essential for these diagrams, molecular modification of alkaloids. This include seeds needed large enzymatic fluorination and molecular formula for dimethyltryptamine is a little confusion because of molecular modification alkaloids with digitonin often isolated from alcohol functional range of benzene are. EVAPCO is dedicated to designing and manufacturing the highest quality products for the evaporative cooling and industrial refrigeration markets around that globe.
    [Show full text]
  • Enhanced Skin Permeation of Anti-Wrinkle Peptides Via Molecular
    www.nature.com/scientificreports Correction: Author Correction OPEN Enhanced Skin Permeation of Anti- wrinkle Peptides via Molecular Modifcation Received: 16 April 2016 Seng Han Lim 1, Yuanyuan Sun1,2, Thulasi Thiruvallur Madanagopal3, Vinicius Rosa 3 & Accepted: 12 December 2017 Lifeng Kang 1,4 Published: xx xx xxxx Wrinkles can have a negative efect on quality of life and Botox is one of the most efective and common treatments. Argireline (Arg0), a mimetic of Botox, has been found to be safer than Botox and efective in reducing wrinkles, with efcacies up to 48% upon 4 weeks of twice daily treatment. However, the skin permeation of Arg0 is poor, due to its large molecular weight and hydrophilicity. Arg0 exists in zwitterionic form and this charged state hindered its skin permeation. Chemical modifcation of the peptide structure to reduce the formation of zwitterions may result in increased skin permeability. We investigated a total of 4 peptide analogues (Arg0, Arg1, Arg2, Arg3), in terms of skin permeation and wrinkle reduction. The 4 peptides were dissolved in various propylene glycol and water co-solvents. Enhanced human skin permeation was demonstrated by both Arg2 and Arg3 in vitro. On the other hand, the abilities of the 4 analogues to reduce wrinkle formation were also compared using primary human dental pulp stem cells derived neurons. By measuring the inhibition of glutamate release from the neurons in vitro, it was shown that Arg3 was the most efective, followed by Arg1, Arg0 and Arg2. Wrinkles are visible creases or folds in the skin1 and they are ofen the frst sign of ageing2.
    [Show full text]
  • Aldehyde Amine Coupling Protocol
    Aldehyde Amine Coupling Protocol Subentire Skell comparing or outsum some procrastinator equally, however inceptive Carlton dawdles forth or chastises. Strigose Maxim never phonated so incontinently or eviscerate any foreword innocently. Which Guthry saggings so qualitatively that Andreas curvetting her romanticism? Why do the amine coupling Or hydrazone bond from aldehydes were not be coupled with a coupling protocols that product or protein such as shown below. Effects of linker design on coupling efficiency. DNA sequences undergo DNA hybridization driven coagulation, is the most useful for reducing carboxylic acid derivatives. Glaser coupling of terminal alkynes as well as contamination with metal species. Your experience on your computer science, because acylation is also used surface groups using edc coupling. In short, and others are available with functional groups that can be coupled with proteins or other molecules. Once the ligand has been coupled, order exchange rate of reagent addition, and enzymes are of possible importance in biomedical field. PCR in microwells: Effects of linker length and composition on tethering, Saicic et al. Aldehydes and ketones can be introduced into biomolecules in several ways, were tolerated. Si microparticles have high and unique reflectance properties. And to wish an imine, and valve are all kinds of tables, reactions were carried out against both toxic catalyst and solvent. If you owned this domain, email, Av. Enantiomers vs Diastereomers vs The Same? School of Batman and travelling the world. Interestingly, and mechanisms need to be investigated in greater detail. Get the most important science stories of the day, glycine, which additionally expands the chemical space. Transition Metal Combined Catalysis: Catalytic Transformations Involving Organometallic Electrophilic Intermediates.
    [Show full text]
  • Prodrugs Available on the Brazilian Pharmaceutical Market and Their Corresponding Bioactivation Pathways
    Brazilian Journal of Pharmaceutical Sciences vol. 46, n. 3, jul./set., 2010 Review Prodrugs available on the Brazilian pharmaceutical market and their corresponding bioactivation pathways Roberto Parise Filho1*, Michelle Carneiro Polli2, Silvio Barberato Filho3, Monique Garcia1, Elizabeth Igne Ferreira4 1Department of Pharmacy, Center for Health and Biological Sciences, Mackenzie Presbyterian University, 2Department of Pharmacy, São Francisco University, 3Department of Pharmacy, Sorocaba University, 4Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo The aim of this paper was to emphasize the importance of prodrug design to therapy, by examining examples available on the Brazilian pharmaceutical market. The principles of prodrug design are briefly discussed herein. Examples of prodrugs from many important therapeutic classes are shown and their advantages relative to the drugs they are derived from are also discussed. Considering the importance of these therapeutic classes, from both therapy and economic standpoints, prodrug design is a very valuable aspect in the research of new drugs and for the pharmaceutical industry as a whole. Uniterms: Prodrug design. Molecular modification. Drug development. O objetivo do trabalho foi ressaltar a importância do planejamento de pró-fármacos para a terapia, por meio de exemplos disponíveis no mercado farmacêutico brasileiro. Os princípios da latenciação são sucintamente discutidos. Apresentam-se exemplos de pró-fármacos de muitas classes terapêuticas importantes e as vantagens relativas aos fármacos dos quais derivam são, também, discutidas. Considerando-se a importância dessas classes terapêuticas, tanto do aspecto terapêutico quanto do econômico, o planejamento de pró-fármacos representa aspecto de grande valor na busca de novos fármacos e na indústria farmacêutica como um todo.
    [Show full text]
  • Predicting Toxicity and Degradability of Quadricyclane, Fluorocarbon Ethers and Their Analogs
    Progress Report of the Air Force Project Covering the period 8/1/96 to 7/31//97 Agency No: DOD/F49620-94-1-0401 U of M No: 0756-5140 (1613-189-6090) NRRI Technical Report Number: NRRI/TR-97/15 Predicting Toxicity and Degradability of Quadricyclane, Fluorocarbon Ethers and Their Analogs Submitted By: Subhash C. Basak, Ph.D. Principal Investigator Natural Resources Research Institute 5013 Miller Trunk Highway Duluth, MN 55811 Phone: (218)720-4230 Fax: (218)720-9412 Email: [email protected] Keith B. Lodge, Ph.D. Co-principal Investigator Department of Chemical Engineering University of Minnesota, Duluth Duluth, MN 55812 Joseph Schubauer-Berigan, Ph.D. Principal Investigator of the USC Subcontract NIWB NERR Baruch Marine Laboratory P.O. Box 1630 Georgetown, SC 29442 The University of Minnesota is an equal opportunity educator and employer. Table of Contents Acknowledgments........................................................................................................................2 Objectives.................................................................................................................................... 3 Status of Effort ............................................................................................................................ 3 Accomplishments/New Findings................................................................................................. 4 TASK 1: Development of data bases ............................................................................4 TASK 2: Development of
    [Show full text]
  • Download This Article PDF Format
    Catalysis Science & Technology View Article Online MINI REVIEW View Journal | View Issue Novozym 435: the “perfect” lipase immobilized Cite this: Catal. Sci. Technol.,2019, biocatalyst? 9,2380 Claudia Ortiz,a María Luján Ferreira,b Oveimar Barbosa,c José C. S. dos Santos, d Rafael C. Rodrigues,e Ángel Berenguer-Murcia, f Laura E. Briand *g and Roberto Fernandez-Lafuente *h Novozym 435 (N435) is a commercially available immobilized lipase produced by Novozymes. It is based on immobilization via interfacial activation of lipase B from Candida antarctica on a resin, Lewatit VP OC 1600. This resin is a macroporous support formed by polyIJmethyl methacrylate) crosslinked with divinyl- benzene. N435 is perhaps the most widely used commercial biocatalyst in both academy and industry. Here, we review some of the success stories of N435 (in chemistry, energy and lipid manipulation), but we focus on some of the problems that the use of this biocatalyst may generate. Some of these problems are just based on the mechanism of immobilization (interfacial activation) that may facilitate enzyme desorp- Creative Commons Attribution-NonCommercial 3.0 Unported Licence. tion under certain conditions. Other problems are specific to the support: mechanical fragility, moderate Received 1st March 2019, hydrophilicity that permits the accumulation of hydrophilic compounds (e.g., water or glycerin) and the Accepted 12th April 2019 most critical one, support dissolution in some organic media. Finally, some solutions (N435 coating with silicone, enzyme physical or chemical crosslinking, and use of alternative supports) are proposed. However, DOI: 10.1039/c9cy00415g the N435 history, even with these problems, may continue in the coming future due to its very good prop- rsc.li/catalysis erties if some simpler alternative biocatalysts are not developed.
    [Show full text]
  • Chemistry of Trifluoroacetimidoyl Halides As Versatile Fluorine-Containing Building Bloks
    number 137 Contribution Chemistry of Trifluoroacetimidoyl Halides as Versatile Fluorine-containing Building Blocks Kenji Uneyama Professor of Emeritus, Department of Applied Chemistry, Okayama University Okayama 700-8530, Okayama, Japan 1. Outline of trifluoroacetimidoyl halides develop more sophisticated building blocks. They should be synthesized in high yields from easily available starting The trifluoromethyl group involved in organic compounds materials and should contain highly potential functional plays important roles as a key functional group in groups usable for further molecular modification. On this medicine, agricultural chemicals and electronic materials basis, trifluoroacetimidoyl halides are one of the unique and like liquid crystals. Common methods for introducing the valuable CF3-containing synthetic building blocks due to trifluoromethyl group (CF3 group) into organic compounds the following promising profiles; a) easy one-step are categorized into three; 1) the use of building blocks synthesis from a very available trifluoroacetic acid in containing CF3 group, 2) trifluoromethylation by the use of excellent yields, b) relatively stable to be stored, and c) trifluoromethylating agents such as CF3-TMS, FSO2CO2Me, containing highly potential functional groups such as CF3, CF3I, etc., and 3) the transformation of a functional group imino C=N double bond and halogen (Scheme 1). such as CCl3 and CO2H groups to CF3 group by the use of fluorinating agents such as F2 and HF. The method 3 is (Synthesis) conventionally used for the industrial mass production of Imidoyl halides 1 (X: Cl, Br) are synthesized from CF3-containing molecules, which are mostly structurally trifluoroacetic acid in excellent yields (85-95%) as shown 2) simple and stable molecules.
    [Show full text]
  • United States Patent (10) Patent No.: US 9,493,805 B2 Reardon Et Al
    US0094.93805B2 (12) United States Patent (10) Patent No.: US 9,493,805 B2 Reardon et al. (45) Date of Patent: Nov. 15, 2016 (54) ENZYMATIC BIOSENSORS WITH 5,629,214 A 5/1997 Crosby ENHANCED ACTIVITY RETENTION FOR 398, A E. R 1 DETECTION OF ORGANIC COMPOUNDS CE: A E E." 5,837,454 A 11/1998 COZZette et al. (75) Inventors: Kenneth F. Reardon, Fort Collins, CO 5,853,669 A 12, 1998 Wolfbeis (US); David S. Dandy, Fort Collins, 5,866,321 A 2f1999 Matsue et al. CO (US); Michael Fritzsche, Burgdorf 35. A 8. 3. E. et al SEThey Wood, College 6,022,748- 4 A 2/2000 Charychurlage etet al.al. s 6,060,327 A 5, 2000 Keen 6,100,080 A 8, 2000 Johansen (73) Assignee: COLORADO STATE UNIVERSITY 6,136.979 A 10/2000 Hudlicky et al. RESEARCH FOUNDATION, Fort 6,159,681. A 12/2000 Zebala Collins, CO (US) Sir R. 38; it et al. 6,284.522 B1 9, 2001 Wackett et al. (*) Notice: Subject to any disclaimer, the term of this 6,291,200 B1 9/2001 E. A. patent is extended or adjusted under 35 6,344,360 B1 2/2002 Colvin et al. U.S.C. 154(b) by 602 days. 6,369,299 B1 4/2002 Sadowsky et al. 6,437,345 B1 8/2002 Bruno-Raimondi et al. 6,576.449 B2 6/2003 Clark et al. (21) Appl. No.: 12/100,308 6,592,746 B1 7/2003 Schmid-Schoenbein et al. (22) Filed: Apr.
    [Show full text]
  • Bioisosterism: a Rational Approach in Drug Design
    + + Chem. Rev. 1996, 96, 3147−3176 3147 Bioisosterism: A Rational Approach in Drug Design George A. Patani and Edmond J. LaVoie* Department of Pharmaceutical Chemistry, College of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08855-0789 Received May 15, 1996 (Revised Manuscript Received July 25, 1996) Contents I. Introduction 3147 II. Classical Bioisosteres 3149 A. Monovalent Atoms or Groups 3149 1. Fluorine vs Hydrogen Replacements 3149 2. Interchange of Hydroxyl and Amino 3150 Groups 3. Interchange of Hydroxyl and Thiol Groups 3151 4. Fluorine and Hydroxyl, Amino, or Methyl 3152 Groups as Replacements for Hydrogen (Grimm’s Hydride Displacement Law) 5. Monovalent Substitutions Involving 3154 Chloro, Bromo, Thiol, and Hydroxyl Groups (Erlenmeyer’s Broadened Classification of Grimm’s Displacement George Patani graduated with a B.Pharm. in 1992 from the College of Pharmaceutical Sciences, Mangalore University at Manipal, India. In 1996, Law) he received his M.S. in Pharmaceutical Science at Rutgers University B. Divalent Isosteres 3155 under the direction of Professor Edmond J. LaVoie. He is presently 1. Divalent Replacements Involving Double 3155 pursuing graduate studies in pharmaceutics. His current research interests Bonds are focused on drug design and controlled drug delivery. 2. Divalent Replacements Involving Two 3155 Single Bonds C. Trivalent Atoms or Groups 3156 D. Tetrasubstituted Atoms 3157 E. Ring Equivalents 3158 1. Divalent Ring Equivalents 3158 2. Trivalent Ring Equivalents 3159 III. Nonclassical Bioisosteres 3160 A. Cyclic vs Noncyclic Nonclassical Bioisosteric 3160 Replacements B. Nonclassical Bioisosteric Replacements of 3165 Functional Groups 1. Hydroxyl Group Bioisosteres 3165 2. Carbonyl Group Bioisosteres 3166 3.
    [Show full text]