Fundamentals
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Arabic Alphabet - Wikipedia, the Free Encyclopedia Arabic Alphabet from Wikipedia, the Free Encyclopedia
2/14/13 Arabic alphabet - Wikipedia, the free encyclopedia Arabic alphabet From Wikipedia, the free encyclopedia َأﺑْ َﺠ ِﺪﯾﱠﺔ َﻋ َﺮﺑِﯿﱠﺔ :The Arabic alphabet (Arabic ’abjadiyyah ‘arabiyyah) or Arabic abjad is Arabic abjad the Arabic script as it is codified for writing the Arabic language. It is written from right to left, in a cursive style, and includes 28 letters. Because letters usually[1] stand for consonants, it is classified as an abjad. Type Abjad Languages Arabic Time 400 to the present period Parent Proto-Sinaitic systems Phoenician Aramaic Syriac Nabataean Arabic abjad Child N'Ko alphabet systems ISO 15924 Arab, 160 Direction Right-to-left Unicode Arabic alias Unicode U+0600 to U+06FF range (http://www.unicode.org/charts/PDF/U0600.pdf) U+0750 to U+077F (http://www.unicode.org/charts/PDF/U0750.pdf) U+08A0 to U+08FF (http://www.unicode.org/charts/PDF/U08A0.pdf) U+FB50 to U+FDFF (http://www.unicode.org/charts/PDF/UFB50.pdf) U+FE70 to U+FEFF (http://www.unicode.org/charts/PDF/UFE70.pdf) U+1EE00 to U+1EEFF (http://www.unicode.org/charts/PDF/U1EE00.pdf) Note: This page may contain IPA phonetic symbols. Arabic alphabet ا ب ت ث ج ح خ د ذ ر ز س ش ص ض ط ظ ع en.wikipedia.org/wiki/Arabic_alphabet 1/20 2/14/13 Arabic alphabet - Wikipedia, the free encyclopedia غ ف ق ك ل م ن ه و ي History · Transliteration ء Diacritics · Hamza Numerals · Numeration V · T · E (//en.wikipedia.org/w/index.php?title=Template:Arabic_alphabet&action=edit) Contents 1 Consonants 1.1 Alphabetical order 1.2 Letter forms 1.2.1 Table of basic letters 1.2.2 Further notes -
DRAFT Arabtex a System for Typesetting Arabic User Manual Version 4.00
DRAFT ArabTEX a System for Typesetting Arabic User Manual Version 4.00 12 Klaus Lagally May 25, 1999 1Report Nr. 1998/09, Universit¨at Stuttgart, Fakult¨at Informatik, Breitwiesenstraße 20–22, 70565 Stuttgart, Germany 2This Report supersedes Reports Nr. 1992/06 and 1993/11 Overview ArabTEX is a package extending the capabilities of TEX/LATEX to generate the Perso-Arabic writing from an ASCII transliteration for texts in several languages using the Arabic script. It consists of a TEX macro package and an Arabic font in several sizes, presently only available in the Naskhi style. ArabTEX will run with Plain TEXandalsowithLATEX2e. It is compatible with Babel, CJK, the EDMAC package, and PicTEX (with some restrictions); other additions to TEX have not been tried. ArabTEX is primarily intended for generating the Arabic writing, but the stan- dard scientific transliteration can also be easily produced. For languages other than Arabic that are customarily written in extensions of the Perso-Arabic script some limited support is available. ArabTEX defines its own input notation which is both machine, and human, readable, and suited for electronic transmission and E-Mail communication. However, texts in many of the Arabic standard encodings can also be processed. Starting with Version 3.02, ArabTEX also provides support for fully vowelized Hebrew, both in its private ASCII input notation and in several other popular encodings. ArabTEX is copyrighted, but free use for scientific, experimental and other strictly private, noncommercial purposes is granted. Offprints of scientific publi- cations using ArabTEX are welcome. Using ArabTEX otherwise requires a license agreement. There is no warranty of any kind, either expressed or implied. -
“Muda” System in Facilitating Writing Arabic Romanization in Word Processor; Standardization of Transliteration and Transcription
European Journal of Molecular & Clinical Medicine ISSN 2515-8260 Volume 8, Issue 2, 2021 “MUDA” SYSTEM IN FACILITATING WRITING ARABIC ROMANIZATION IN WORD PROCESSOR; STANDARDIZATION OF TRANSLITERATION AND TRANSCRIPTION Nurulasyikin “MUDA”, PhD1, Hazmi Dahlan2 1Pusat Penataran Ilmu dan Bahasa, Universiti Malaysia Sabah, Kampus Antarabangsa Labuan 2Fakulti Kewangan Antarabangsa Labuan, Universiti Malaysia Sabah, Kampus Antarabangsa Labuan Abstract This study aims to propose a new system in Arabic romanization to simplify the typing process by using the QWERTY keyboard. The proposed system will be named as “MUDA” as the researcher’s surname and the name itself is nearly similar to the word “MUDA”H in Malay which mean easy or simple that represent the concept of the system. This is to facilitate the needs of the writers, and to decrease the gap of ambiguity for the systems created previously with the one that can increase the product of academic writing when dealing with Arabic romanization. The data of this study is analysed by finding the similarity within the previous transliteration systems and the phonetic system in English. Both systems then will be analysed by comparing them with the characters on the typing keyboard in terms of similarity. This study found that there are 23 keys will be used in 3 ways as follow; (i) single character typing excluding shift; (ii) shift + character (T,S,D,Z,”); and (iii) combining character (th,sh,gh,kh,dz). This explains that no more complicated system of typing process will occur. Hence the speed of completing task in typing Arabic romanization will become faster. Key Words: Arabic Romanization, typing keyboard, word processing Introduction Arabic has its own character as what Japanese, Russian, Tamil and others do. -
Contents Origins Transliteration
Ayin , ע Ayin (also ayn or ain; transliterated ⟨ʿ⟩) is the sixteenth letter of the Semitic abjads, including Phoenician ʿayin , Hebrew ʿayin ← Samekh Ayin Pe → [where it is sixteenth in abjadi order only).[1) ع Aramaic ʿē , Syriac ʿē , and Arabic ʿayn Phoenician Hebrew Aramaic Syriac Arabic The letter represents or is used to represent a voiced pharyngeal fricative (/ʕ/) or a similarly articulated consonant. In some Semitic ع ע languages and dialects, the phonetic value of the letter has changed, or the phoneme has been lost altogether (thus, in Modern Hebrew it is reduced to a glottal stop or is omitted entirely). Phonemic ʕ The Phoenician letter is the origin of the Greek, Latin and Cyrillic letterO . representation Position in 16 alphabet Contents Numerical 70 value Origins (no numeric value in Transliteration Maltese) Unicode Alphabetic derivatives of the Arabic ʿayn Pronunciation Phoenician Hebrew Ayin Greek Latin Cyrillic Phonetic representation Ο O О Significance Character encodings References External links Origins The letter name is derived from Proto-Semitic *ʿayn- "eye", and the Phoenician letter had the shape of a circle or oval, clearly representing an eye, perhaps ultimately (via Proto-Sinaitic) derived from the ır͗ hieroglyph (Gardiner D4).[2] The Phoenician letter gave rise to theGreek Ο, Latin O, and Cyrillic О, all representing vowels. The sound represented by ayin is common to much of theAfroasiatic language family, such as in the Egyptian language, the Cushitic languages and the Semitic languages. Transliteration Depending on typography, this could look similar .( ﻋَ َﺮب In Semitic philology, there is a long-standing tradition of rendering Semitic ayin with Greek rough breathing the mark ̔〉 (e.g. -
Arabic in Romanization
Transliteration of Arabic 1/6 ARABIC Arabic script* DIN 31635 ISO 233 ISO/R 233 UN ALA-LC EI 1982(1.0) 1984(2.0) 1961(3.0) 1972(4.0) 1997(5.0) 1960(6.0) iso ini med !n Consonants! " 01 # $% &% ! " — (3.1)(3.2) — (4.1) — — 02 ' ( ) , * ! " #, $ (2.1) —, ’ (3.3) %, — (4.2) —, ’ (5.1) " 03 + , - . b b b b b b 04 / 0 1 2 t t t t t t 05 3 4 5 6 & & & th th th 06 7 8 9 : ' ' ' j j dj 07 ; < = > ( ( ( ) ( ( 08 ? @ * + + kh kh kh 09 A B d d d d d d 10 C D , , , dh dh dh 11 E F r r r r r r 12 G H I J z z z z z z 13 K L M N s s s s s s 14 O P Q R - - - sh sh sh 15 S T U V . / . 16 W X Y Z 0 0 0 d 1 0 0 17 [ \ ] ^ 2 2 2 3 2 2 18 _ ` a b 4 4 4 z 1 4 4 19 c d e f 5 5 5 6 6 5 20 g h i j 7 7 8 gh gh gh 21 k l m n f f f f f f 22 o p q r q q q q q 9 23 s t u v k k k k k k 24 w x y z l l l l l l 25 { | } ~ m m m m m m 26 • € • n n n n n n 27 h h h h h h 28 … " h, t (1.1) : ;, <(3.4) h, t (4.3) h, t (5.2) a, at (6.1) 29 w w w w w w 30 y y y y y y 31 ! = — y y ! • 32 s! l! la" l! l! l! l! 33 # al- (1.2) "#al (2.2) al- (3.5) al- (4.4) al- (5.3) al-, %l- (6.2) Thomas T. -
Languages of New York State Is Designed As a Resource for All Education Professionals, but with Particular Consideration to Those Who Work with Bilingual1 Students
TTHE LLANGUAGES OF NNEW YYORK SSTATE:: A CUNY-NYSIEB GUIDE FOR EDUCATORS LUISANGELYN MOLINA, GRADE 9 ALEXANDER FFUNK This guide was developed by CUNY-NYSIEB, a collaborative project of the Research Institute for the Study of Language in Urban Society (RISLUS) and the Ph.D. Program in Urban Education at the Graduate Center, The City University of New York, and funded by the New York State Education Department. The guide was written under the direction of CUNY-NYSIEB's Project Director, Nelson Flores, and the Principal Investigators of the project: Ricardo Otheguy, Ofelia García and Kate Menken. For more information about CUNY-NYSIEB, visit www.cuny-nysieb.org. Published in 2012 by CUNY-NYSIEB, The Graduate Center, The City University of New York, 365 Fifth Avenue, NY, NY 10016. [email protected]. ABOUT THE AUTHOR Alexander Funk has a Bachelor of Arts in music and English from Yale University, and is a doctoral student in linguistics at the CUNY Graduate Center, where his theoretical research focuses on the semantics and syntax of a phenomenon known as ‘non-intersective modification.’ He has taught for several years in the Department of English at Hunter College and the Department of Linguistics and Communications Disorders at Queens College, and has served on the research staff for the Long-Term English Language Learner Project headed by Kate Menken, as well as on the development team for CUNY’s nascent Institute for Language Education in Transcultural Context. Prior to his graduate studies, Mr. Funk worked for nearly a decade in education: as an ESL instructor and teacher trainer in New York City, and as a gym, math and English teacher in Barcelona. -
Romanization of Arabic 1 Romanization of Arabic
Romanization of Arabic 1 Romanization of Arabic Arabic alphabet ﺍ ﺏ ﺕ ﺙ ﺝ ﺡ ﺥ ﺩ ﺫ ﺭ ﺯ ﺱ ﺵ ﺹ ﺽ ﻁ ﻅ ﻉ ﻍ ﻑ ﻕ ﻙ ﻝ ﻡ ﻥ ﻩ ﻭ ﻱ • History • Transliteration • Diacritics (ء) Hamza • • Numerals • Numeration Different approaches and methods for the romanization of Arabic exist. They vary in the way that they address the inherent problems of rendering written and spoken Arabic in the Latin script. Examples of such problems are the symbols for Arabic phonemes that do not exist in English or other European languages; the means of representing the Arabic definite article, which is always spelled the same way in written Arabic but has numerous pronunciations in the spoken language depending on context; and the representation of short vowels (usually i u or e o, accounting for variations such as Muslim / Moslem or Mohammed / Muhammad / Mohamed ). Method Romanization is often termed "transliteration", but this is not technically correct. Transliteration is the direct representation of foreign letters using Latin symbols, while most systems for romanizing Arabic are actually transcription systems, which represent the sound of the language. As an example, the above rendering is a transcription, indicating the pronunciation; an ﺍﻟﻌﺮﺑﻴﺔ ﺍﻟﺤﺮﻭﻑ ﻣﻨﺎﻇﺮﺓ :munāẓarat al-ḥurūf al-ʻarabīyah of the Arabic example transliteration would be mnaẓrḧ alḥrwf alʻrbyḧ. Romanization standards and systems This list is sorted chronologically. Bold face indicates column headlines as they appear in the table below. • IPA: International Phonetic Alphabet (1886) • Deutsche Morgenländische Gesellschaft (1936): Adopted by the International Convention of Orientalist Scholars in Rome. It is the basis for the very influential Hans Wehr dictionary (ISBN 0-87950-003-4). -
Classifying Arabic Fonts Based on Design Characteristics: PANOSE-A
Classifying Arabic Fonts Based on Design Characteristics: PANOSE-A Jehan Janbi A Thesis In the Department of Computer Science & Software Engineering Presented in Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy (Computer Science) at Concordia University Montreal, Quebec, Canada July 2016 © Jehan Janbi, 2016 Abstract In desktop publishing, fonts are essential components in each document design. With the development of font design software and tools, there are thousands of digital fonts. Increasing the number of available fonts makes selecting an appropriate font, which best serves the objective of a design, not an intuitive issue. Designers can search for a font like any other file types by using general information such as name and file format. But for document design purposes, the design features or visual characteristics of fonts are more meaningful for designers than font file information. Therefore, representing fonts’ design features by searchable and comparable data would facilitate searching and selecting a desirable font. One solution is to represent a font’s design features by a code composed of several digits. This solution has been implemented as a computerized system called PANOSE-1 for Latin script fonts. PANOSE-1 is a system for classifying and matching typefaces based on design features. It is composed of 10 digits, where each digit represents a specific design feature. It is used within several font management tools as an option for ordering and searching fonts based on their design features. It is also used in font replacement processes when an application or an operating system detects a missing font in an immigrant document or website. -
The Secret of Letters: Chronograms in Urdu Literary Culture1
Edebiyˆat, 2003, Vol. 13, No. 2, pp. 147–158 The Secret of Letters: Chronograms in Urdu Literary Culture1 Mehr Afshan Farooqi University of Virginia Letters of the alphabet are more than symbols on a page. They provide an opening into new creative possibilities, new levels of understanding, and new worlds of experience. In mature literary traditions, the “literal meaning” of literal meaning can encompass a variety of arcane uses of letters, both in their mode as a graphemic entity and as a phonemic activity. Letters carry hidden meanings in literary languages at once assigned and intrinsic: the numeric and prophetic, the cryptic and esoteric, and the historic and commemoratory. In most literary traditions there appears to be at least a threefold value system assigned to letters: letters can be seen as phonetic signs, they have a semantic value, and they also have a numerical value. Each of the 28 letters of the Arabic alphabet can be used as a numeral. When used numerically, the letters of the alphabet have a special order, which is called the abjad or abujad. Abjad is an acronym referring to alif, be, j¯ım, d¯al, the first four letters in the numerical order which, in the system most widely used, runs from alif to ghain. The abjad order organizes the 28 characters of the Arabic alphabet into eight groups in a linear series: abjad, havvaz, hutt¯ı, kalaman, sa`fas, qarashat, sakhkha˙˙ z, zazzagh.2 In nearly every area where˙ ¨the¨ Arabic script ˙ was adopted, the abjad¨ ˙ ˙system gained popularity. Within the vast area in which the Arabic script was used, two abjad systems developed. -
Transliteration of Arabic 1/6 ARABIC Arabic Script*
Transliteration of Arabic 1/6 ARABIC Arabic script* DIN 31635 ISO 233 ISO/R 233 UN ALA-LC EI 1982(1.0) 1984(2.0) 1961(3.0) 1972(4.0) 1997(5.0) 1960(6.0) iso ini med !n Consonants! " 01 # $% &% ! " — (3.1)(3.2) — (4.1) — — 02 ' ( ) , * ! " #, $ (2.1) —, ’ (3.3) %, — (4.2) —, ’ (5.1) " 03 + , - . b b b b b b 04 / 0 1 2 t t t t t t 05 3 4 5 6 & & & th th th 06 7 8 9 : ' ' ' j j dj 07 ; < = > ( ( ( ) ( ( 08 ? @ * + + kh kh kh 09 A B d d d d d d 10 C D , , , dh dh dh 11 E F r r r r r r 12 G H I J z z z z z z 13 K L M N s s s s s s 14 O P Q R - - - sh sh sh 15 S T U V . / . 16 W X Y Z 0 0 0 d 1 0 0 17 [ \ ] ^ 2 2 2 3 2 2 18 _ ` a b 4 4 4 z 1 4 4 19 c d e f 5 5 5 6 6 5 20 g h i j 7 7 8 gh gh gh 21 k l m n f f f f f f 22 o p q r q q q q q 9 23 s t u v k k k k k k 24 w x y z l l l l l l 25 { | } ~ m m m m m m 26 • € • n n n n n n 27 h h h h h h 28 … " h, t (1.1) : ;, <(3.4) h, t (4.3) h, t (5.2) a, at (6.1) 29 w w w w w w 30 y y y y y y 31 ! = — y y ! • 32 s! l! la" l! l! l! l! 33 # al- (1.2) "#al (2.2) al- (3.5) al- (4.4) al- (5.3) al-, %l- (6.2) Thomas T. -
The Challenges and Pitfalls of Arabic Romanization and Arabization
The Challenges and Pitfalls of Arabic Romanization and Arabization Jack Halpern (春遍雀來) The CJK Dictionary Institute, Inc. (日中韓辭典研究所) 34-14, 2-chome, Tohoku, Niiza-shi, Saitama 352-0001, Japan [email protected] their native script directly into Arabic, something Abstract probably never attempted. These systems are part of our ongoing efforts to develop Arabic re- The high level of ambiguity of the Ara- sources for automatic transcription, machine bic script poses special challenges to translation and named entity extraction. developers of NLP tools in areas such as morphological analysis, named entity The following typographic conventions are used extraction and machine translation. in this paper: These difficulties are exacerbated by the lack of comprehensive lexical resources, 1. Phonemic transcriptions are indicated by . (/qaabuus/ < ﻗــــﺎﺑﻮس) such as proper noun databases, and the slashes multiplicity of ambiguous transcription 2. Phonetic transcriptions are indicated by . ([qɑːbuːs] < ﻗــــﺎﺑﻮس ) schemes. This paper focuses on some of square brackets the linguistic issues encountered in two subdisciplines that play an increasingly 3. Graphemic transliterations are indicated by . (\qAbws\ < ﻗــــﺎﺑﻮس ) important role in Arabic information back slashes processing: the romanization of Arabic 4. Popular transcriptions are indicated by italics .(Qaboos < ﻗــــﺎﺑﻮس ) -names and the arabization of non Arabic names. The basic premise is that linguistic knowledge in the form of lin- 2 Motivation and Previous Work guistic rules is essential for achieving Arabic transcription technology is playing an high accuracy. increasingly important role in a variety of practical applications such as named entity 1 Introduction recognition, machine translation, cross-language information retrieval and various security The process of automatically transcribing Arabic applications such as anti-money laundering and to a Roman script representation, called romani- terrorist watch lists. -
Arabic Alphabet Pdf
Arabic alphabet pdf Continue It is used by many to start any language by teaching it parts of speech; however, it is logically better to start our trip by teaching arabic alphabet (Arabic letters), as this is a reasonable starting point. Consider the lack of alphabets, then, how can we form words and/or sentences?! Pronunciation Of Transliteered Isolated Isolated َ د d'l دَال kh ﺧـ ـﺨـ ـﺦ As Ch in the name of Bach خ khā̛ َﺧﺎء h ﺣـ ـﺤـ ـﺢ hā̛ in pronunciation َﺣﺎء j ﺟـ ـﺠـ ـﺞ Sometimes as G in a Girl or, as J's Jar ج Jim ﺛـ ـﺜـ ـﺚ ِﺟﻴﻢ As Th in the theory of ث thā̛ ﺛَﺎء t ت ﺗـ ـﺘـ ـﺖ ـﺔ tā̛ ﺗَﺎء Like T in Tree ت tā̛ ﺗَﺎء b ﺑـ ـﺒـ ـﺐ bā̛ - As B in Baby ـﺎ ـﺎ ﺑَﺎء leff as in Apple̛ أﻟِﻒ Pronunciation Original Medial Final Transcription ﺿـ ـﻀـ ـﺾ as D in the dead still heavy in pronunciation ض d'd َﺿﺎد with ﺻـ ـﺼـ ـﺺ As S in the garden is still heavy in pronunciation ص garden َﺻﺎد sh ﺷـ ـﺸـ ـﺶ as w in she ِﺷﻴﻦ ش shins ﺳـ ـﺴـ ـﺲ sin - Like S in see ِﺳﻴﻦ z ز ـﺰ ـﺰ As in the zoo ز z'y َزاي r ـﺮ ـﺮ rā̛ - Like R in Rama and َراء z ذ ـﺬ ـﺬ Like The Th's ذ z'l ذَال d د ـﺪ ـﺪ as D's dad َ َ How F ف fā̛ ﻓَﺎء gh ﻏـ ـﻐـ ـﻎ As Gh in Gandhi غ ghain ﻋـ ـﻌـ ـﻊ ̛ع ﻏَﻴﻦ /aliﻋﻠﻲ /ع has no real equivalent sometimes they replace it sound with sound like, for example, Ali's name for ع ainﻋَﻴ ٍﻦ ع ẓ ﻇـ ـﻈـ ـﻆ As in zorro still heavy in pronunciation ظ ẓā̛ ﻇﺎء tons ﻃـ ـﻄـ ـﻂ As T in the table is still heavy in pronunciation ط tā̛ ﻃﺎء d <ﺻـ ـﺼـ ـﺺ <7 w'w'w' , Like the W in response to the وَاو h ﻫـ ـﻬـ ـﻪ Like the H in He ه ﻫـ hā̛ ﻫَﺎء n ﻧـ ـﻨـ ـﻦ nun - Like the