Breast Cancer Protein Is Finally Purified : Nature News

Total Page:16

File Type:pdf, Size:1020Kb

Breast Cancer Protein Is Finally Purified : Nature News Breast cancer protein is finally purified : Nature News Jump to main content Jump to navigation nature.com homepage Publications A-Z index Browse by subject Search This site Advanced search My account E-alert sign up RSS feed Subscribe Login nature news home news archive specials opinion features news blog events blog nature journal Published online 22 August 2010 | Nature | doi:10.1038/news.2010.422 News Breast cancer protein is finally purified Isolation of BRCA2 could help understanding of cancer risk and aid drug screening. Alla Katsnelson http://www.nature.com/news/2010/100822/full/news.2010.422.html[8/23/2010 10:17:13 AM] Breast cancer protein is finally purified : Nature News The purified BRCA2 protein will help scientists unravel how mutations in the gene encoding it cause cancer.CHASSENET / SCIENCE PHOTO LIBRARY After a decade and a half of effort, biochemists have succeeded in isolating a pure extract of the tumour suppressor protein BRCA2 from human cells. The feat, achieved independently by three labs, expands what is known about how the protein keeps tumours in check. It also opens the door to studying how mutations in the BRCA2 sequence cause cancer and to search for compounds that could block this destructive process. The findings are published online today in Nature1 and Nature Structural & Molecular Biology2,3. BRCA2 — breast cancer type 2 susceptibility protein — has a dubious claim to fame: some mutations in the gene coding for the protein lead to a dramatic increase in the chances that a person will develop breast, ovarian and other types of cancer. The BRCA2 gene was discovered in 1994. In tandem with other tumour suppressor proteins, including the related protein BRCA1, BRCA2 repairs damage to DNA that can occur as cells divide. Without it, strands of DNA are prone to break, causing mistakes in how genes are read and turned into protein. Researchers have isolated pure fractions of proteins that interact with BRCA2, but until now have had no success in doing the same for BRCA2 itself, instead deriving clues about its function by studying similar proteins in worms or bacteria or fragments of the human version. A major difficulty is the size of the protein — BRCA2 clocks in at 3,418 amino acids. "That is really huge," says Wolf-Dietrich Heyer, a biochemist at the University of California, Davis, and lead author on one of the papers2. "I'm not aware of any other proteins that size that have been purified to homogeneity." On top of that, says Stephen Kowalczykowski, also a biochemist at the University of California, Davis, and lead author of another of the papers1, BRCA2 is extremely unstable on its own, and commonly exists in complexes with other proteins. "People have got it partially purified, but the question has always been contamination," he says. "You really need to get it squeaky clean, and that has been the major stumbling block." The fixer Kowalczykowski and his group added a maltose-binding protein tag to one end of the BRCA2 protein, which helps to increase its solubility and promote proper protein folding, hence stabilizing it. This allowed the researchers to then fish out BRCA2 in pure form from cultured human epithelial kidney cells. Ryan Jensen, a postdoc in Kowalczykowski's lab and the first author on the Nature paper1, spent four years simply optimizing the purification process, Kowalczykowski says. “The significance is enormous.” Heyer and his team used a slightly different approach, expressing the protein in yeast2. In a third study3, led by Stephen West, a geneticist at Cancer Research UK in London, researchers inserted the BRCA2 gene into cultured human epithelial cancer cells as part of a bacterial construct. Both teams added tags to their proteins to help purify them. With the protein in hand, scientists can now "do all types of mechanistic experiments" that have so far eluded researchers, says Patrick Sung, a biochemist at Yale University in New Haven, who was not involved in the work. "The significance is enormous," he says, "not only in understanding how BRCA2 works, but also in providing a framework for working with other proteins known to interact with it." http://www.nature.com/news/2010/100822/full/news.2010.422.html[8/23/2010 10:17:13 AM] Breast cancer protein is finally purified : Nature News The three studies examined the interaction of the full-length BRCA2 protein with other proteins, primarily one called RAD51, which repairs DNA by assembling around breaks in the strands, and forming filaments through which nucleotides (components of DNA) are pulled in to fix the DNA gaps. By studying the interaction between BRCA2 and RAD51, all three teams confirmed that BRCA2 helps RAD51 to initiate filament growth. Biochemistry boon For the most part, the studies confirmed ideas about BRCA2 function. "But we also uncovered some aspects of protein function that you couldn't have known unless you did the biochemistry," Kowalczykowski says. For example, BRCA2 had been thought to assist in fixing one particular form of DNA damage, but by studying its interactions with DNA proteins, Kowalczykowski and his team concluded that it has a wider role. "The properties of BRCA2 place it as a being a general mediator of DNA break repair," he says. "I don't think there were major surprises" in the groups' findings, says Sung. "The major accomplishment comes from the fact that people have been working on this for so long." ADVERTISEMENT The ability to purify BRCA2 should allow structural biologists to solve the structure of the protein, which could provide more information about its function. "In principle the procedures are there for someone to do this," says Kowalczykowski, but so far, he says, the yields of the techniques used by the three groups are too small. More immediately, says Sung, the work provides "a system to look at tumour-associated mutations" in BRCA2 — researchers can introduce mutations into the BRCA2 sequence, and then purify the resultant protein to understand the effects of the mutations on the protein's function. Additionally, says Kowalczykowski, "having a protein and knowing how it behaves means you can use chemical biology screening tools" to look for chemical compounds, and eventually drugs, that can stop mutant versions from wreaking havoc in cells. References 1. Jensen, R. B., Carreira, A. & Kowalczykowski, S. C. Nature advance online publication doi:10.1038/nature09399 (2010). 2. Liu, J., Doty, T., Gibson, B. & Heyer, W.-D. Nature Struct. Molec. Biol. advance online publication doi:10.1038/nsmb.1904 (2010). 3. Thorslund, T. et al. Nature Struct. Molec. Biol. advance online publication doi:10.1038/nsmb.1905 (2010). Comments If you find something abusive or inappropriate or which does not otherwise comply with our Terms or Community Guidelines, please select the relevant 'Report this comment' link. Comments on this thread are vetted after posting. There are currently no comments. Add your own comment This is a public forum. Please keep to our Community Guidelines. You can be controversial, but please don't get personal or offensive and do keep it brief. Remember our threads are for feedback and discussion - not for publishing papers, press releases or advertisements. You need to be registered with Nature to leave a comment. Please log in or register as a new user. You will be re-directed back to this http://www.nature.com/news/2010/100822/full/news.2010.422.html[8/23/2010 10:17:13 AM] Breast cancer protein is finally purified : Nature News page. Log in / register comments on this story Stories by subject Cell and molecular biology Biotechnology Health and medicine Genetics Stories by keywords BRCA2 Breast cancer Ovarian cancer DNA repair This article elsewhere Blogs linking to this article Add to Connotea Add to Digg Add to Furl Add to Newsvine Add to Del.icio.us Add to Twitter Recent activity most recent stories Australia's electorate sends climate-change message 23 August 2010 Breast cancer protein is finally purified 22 August 2010 Solar System older than previously thought 22 August 2010 Pakistan faces long-term damage to irrigation system 20 August 2010 Extent of lingering Gulf oil plume revealed 19 August 2010 commented stories Physicists get political over Higgs 27 comments 04 August 2010 A solar salamander 14 comments 30 July 2010 An easy way to boost a paper's citations 13 comments 13 August 2010 Pakistan's floods: is the worst still to come? 10 comments 13 August 2010 News briefing: 30 July–5 August 2010 9 comments 04 August 2010 Related stories Breast cancer gene patents judged invalid30 March 2010 Translational research: Talking up translation27 January 2010 Lawsuit rekindles gene-patent debate26 January 2010 Gene-testing firms face legal battle25 June 2008 Genes alone raise breast-cancer risk24 October 2003 nature jobs http://www.nature.com/news/2010/100822/full/news.2010.422.html[8/23/2010 10:17:13 AM] Breast cancer protein is finally purified : Nature News Epidemiologist King Abdullah International Medical Research Center Riyadh City Junior Fellowships CIFAR Canada More science jobs Post a job for free Resources Send to a Friend Reprints & Permissions RSS Feeds elsewhere on nature.com Stephen Kowalczykowski Wolf-Dietrich Heyer Stephen West Patrick Sung Top Nature ISSN: 0028-0836 EISSN: 1476-4687 About NPG Contact NPG RSS web feeds Help Privacy policy Legal notice Accessibility statement Terms Nature News Nature jobs Nature Asia Nature Education About Nature News Nature News Sitemap Search: © 2010 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. partner of AGORA, HINARI, OARE, INASP, CrossRef and COUNTER http://www.nature.com/news/2010/100822/full/news.2010.422.html[8/23/2010 10:17:13 AM].
Recommended publications
  • Regulation of Recombination and Genomic Maintenance
    Downloaded from http://cshperspectives.cshlp.org/ on September 27, 2021 - Published by Cold Spring Harbor Laboratory Press Regulation of Recombination and Genomic Maintenance Wolf-Dietrich Heyer1,2 1Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California 95616-8665 2Department of Molecular and Cellular Biology, University of California, Davis, Davis, California 95616-8665 Correspondence: [email protected] Recombination is a central process to stably maintain and transmit a genome through somatic cell divisions and to new generations. Hence, recombination needs to be coordi- nated with other events occurring on the DNA template, such as DNA replication, transcrip- tion, and the specialized chromosomal functions at centromeres and telomeres. Moreover, regulation with respect to the cell-cycle stage is required as much as spatiotemporal coor- dination within the nuclear volume. These regulatory mechanisms impinge on the DNA substrate through modifications of the chromatin and directly on recombination proteins through a myriad of posttranslational modifications (PTMs) and additional mechanisms. Although recombination is primarily appreciated to maintain genomic stability, the process also contributes to gross chromosomal arrangements and copy-number changes. Hence, the recombination process itself requires quality control to ensure high fidelity and avoid genomic instability. Evidently, recombination and its regulatory processes have significant impact on human disease, specifically cancer and, possibly,
    [Show full text]
  • Daniel Griffith Anderson
    DAVID H. KOCH INSTITUTE FOR INTEGRATIVE DANIEL G. ANDERSON CANCER RESEARCH MASSACHUSETTS INSTITUTE OF TECHNOLOGY [email protected] 500 MAIN STREET, BUILDING 76 ROOM 653 CAMBRIDGE, MA 02139 (617) 258-6843 EDUCATION Ph.D. Molecular Genetics. University of California at Davis, CA, December 1997 Dissertation: Biochemical characterization of the initiation of homologous recombination in Escherichia coli. Advisor: Prof. Stephen Kowalczykowski. MS Molecular Genetics. University of California at Davis, CA, June 1995 B.A. Math and Biology double major, University of California at Santa Cruz, September 1992 COLLEGE HONORS Graduate Jastro-Shields Fellowship National Institute of Health Biotechnology Fellowship National Science Foundation Honors University of California at Davis Graduate Fellowship Sigma Xi Biology Honors Society Membership Undergraduate College Honors Highest Honors, Biology Honors in the Senior Requirement in Biology PROFESSIONAL EXPERIENCE Associate Professor, Chemical Engineering, Health Science Technology, David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 2010- Associate Member, Ragon Institute 2015- Associate Member, Broad Institute 2011- Adjunct Investigator, Joslin Institute 2010- Associate Scientific Staff Member, Department of Anesthesiology, Children’s Hospital, Harvard, Boston, MA 2007- Goldblith Associate Professor, 2012-2015 Research Associate. David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 2006 – 2010 Research Associate. Prof. Robert Langer, Mentor. Department of Chemical Engineering, MIT, Cambridge, MA 2003 - 2006 Postdoctoral Fellow. Prof. Robert Langer, Mentor. Department of Chemical Engineering, MIT, Cambridge, MA 1999 - 2003 Postdoctoral Researcher. Prof. Stephen Kowalczykowski, Mentor. Department of Microbiology, UCD, Davis, CA. 1998-1999 Graduate Student. Prof. Stephen Kowalczykowski, Mentor. Department of Microbiology, UCD, Davis, CA. 1992-1997. Undergraduate Researcher. Prof. Jerry Feldman, Mentor.
    [Show full text]
  • Biochemistry of Recombinational DNA Repair
    BiochemistryBiochemistry ofof RecombinationalRecombinational DNADNA Repair:Repair: CommonCommon ThemesThemes StephenStephen KowalczykowskiKowalczykowski UniversityUniversity ofof California,California, DavisDavis •Overview of genetic recombination and its function. •Biochemical mechanism of recombination in Eukaryotes. •Universal features: steps common to all organisms. HomologousHomologous RecombinationRecombination AB ab+ Ab aB+ Genesis:Genesis: ScienceScience andand thethe BeginningBeginning ofof TimeTime How does recombination occur? And why? DNADNA ReplicationReplication CanCan ProduceProduce dsDNAdsDNA BreaksBreaks andand ssDNAssDNA GapsGaps RepairRepair ofof DNADNA BreaksBreaks Non-Homologous Homologous End-Joining (NHEJ) Recombination (HR) (error-prone) (error-free) dsDNA Break-Repair Synthesis-Dependent ssDNA Annealing (DSBR) Strand-Annealing (SSA) (SDSA) DoubleDouble--StrandStrand DNADNA BreakBreak RepairRepair 5' 3' 3' 5' + 3' 5' 5' 3' Initiation 1 5' 3' Helicase and/or 3' 5' nuclease 2 5' 3' 3' 3' 3' 5' Homologous Pairing & DNA Strand 3 Exchange 3' 5' 5' 3' RecA-like protein 5' 3' Accessory proteins 3' 3' 5' 4 3' 5' 5' 3' 5' 3' 3' 5' DNA Heteroduplex 5 Branch migration Extension proteins 3' 5' 5' 3' 5' 3' 3' 5' Resolution 6 Resolvase Spliced Patched ProteinsProteins InvolvedInvolved inin RecombinationalRecombinational DNADNA RepairRepair E. coli Archaea S. cerevisiae Human Initiation RecBCD -- -- -- SbcCD Mre11/Rad50 Mre11/Rad50/Xrs2 Mre11/Rad50/Nbs1 RecQ Sgs1(?) Sgs1(?) RecQ1/4/5 LM/WRN(?) RecJ -- ExoI ExoI UvrD -- Srs2 -- Homologous Pairing RecA RadA Rad51 Rad51 & DNA Strand SSB SSB/RPA RPA RPA Exchange RecF(R) RadB/B2/B3(?) Rad55/57 Rad51B/C/D/Xrcc2/3 RecO -- Rad52 Rad52 -- -- Rad59 -- -- Rad54 Rad54/Rdh54 Rad54/54B Brca2 DNA Heteroduplex RuvAB Rad54 Rad54 Rad54 Extension RecG -- -- RecQ Sgs1(?) RecQL/4/5 LM/WRN(?) Resolution RuvC Hjc/Hje -- -- -- -- Mus81/Mms4 Mus81/Mms4 ProteinsProteins InvolvedInvolved inin RecombinationalRecombinational DNADNA RepairRepair 5' 3' E.
    [Show full text]
  • How DNA Finds Its Match
    7/3/13 4:47 PM Web address: http://www.sciencedaily.com/releases/2012/02/ 120208132309.htm How DNA Finds Its Match Feb. 8, 2012 — It's been more than 50 years since James Watson and enlarge Francis Crick showed that DNA is a double helix of two strands that complement each other. But how does a short piece of DNA find its match, out of the millions of "letters" in even a small genome? New work by researchers at the University of California, Davis, handling and observing single molecules of DNA, shows how it's done. The results are published online Feb. 8 by the journal Nature. Defects in DNA repair and copying are strongly linked to cancer, birth Part of DNA matchup. (Credit: Image courtesy of defects and other problems. University of California - Davis) "This is a real breakthrough," said Stephen Kowalczykowski, professor of microbiology and co-author of the paper with postdoctoral researcher Anthony Forget. "This is an issue that has been outstanding in the field for more than 30 years." "It's the solution of one of the greatest needle-in-the-haystack problems in biology," said Professor Wolf-Dietrich Heyer, a UC Davis molecular biologist who also studies DNA repair but was not involved in this research. "How can one double-stranded DNA break find its match in an entire genome, five billion base pairs in humans? Now we know the fundamental mechanism," Heyer said. Forget and Kowalczykowski used technology developed in Kowalczykowski's lab over the past 20 years to trap lengths of DNA and watch, in real time, as the proteins involved in copying and repairing DNA do their work.
    [Show full text]
  • Biochemical Basis of SOS-Induced Mutagenesis In
    Proc. Natl. Acad. Sci. USA Vol. 95, pp. 9755–9760, August 1998 Biochemistry Biochemical basis of SOS-induced mutagenesis in Escherichia coli: Reconstitution of in vitro lesion bypass dependent on the UmuD2*C mutagenic complex and RecA protein i MENGJIA TANG†,IRINA BRUCK†‡,RAMON ERITJA§,JENNIFER TURNER¶,EKATERINA G. FRANK , i ROGER WOODGATE ,MIKE O’DONNELL¶, AND MYRON F. GOODMAN†** †Department of Biological Sciences, Hedco Molecular Biology Laboratories, University of Southern California, Los Angeles, CA 90089-1340; §European Molecular Biology Organization, Heidelberg 69012, Germany; ¶Rockefeller University and Howard Hughes Medical Institute, New York, NY 10021; and iSection on DNA Replication, Repair and Mutagenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2725 Communicated by I. Robert Lehman, Stanford University School of Medicine, Stanford, CA, June 26, 1998 (received for review May 12, 1998) ABSTRACT Damage-induced SOS mutagenesis requir- that together with UmuD9 and RecA*, DNA pol III was able ing the UmuD*C proteins occurs as part of the cells’ global to facilitate limited translesion DNA synthesis of a synthetic response to DNA damage. In vitro studies on the biochemical abasic site (16). We recently have succeeded in purifying the 9 basis of SOS mutagenesis have been hampered by difficulties native UmuD2C complex directly, in soluble form (17). We in obtaining biologically active UmuC protein, which, when showed that this complex binds cooperatively to single- overproduced, is insoluble in aqueous solution. We have stranded DNA (17), having similar affinities to damaged and * circumvented this problem by purifying the UmuD2C complex undamaged DNA, and effectively blocks recombinational in soluble form and have used it to reconstitute an SOS lesion strand exchange in vitro (W.
    [Show full text]
  • Sources of DNA Double-Strand Breaks and Models of Recombinational DNA Repair
    Downloaded from http://cshperspectives.cshlp.org/ on September 25, 2021 - Published by Cold Spring Harbor Laboratory Press Sources of DNA Double-Strand Breaks and Models of Recombinational DNA Repair Anuja Mehta and James E. Haber Rosenstiel Basic Medical Sciences Research Center, MS029 Rosenstiel Center, Brandeis University, Waltham, Massachusetts 02454-9110 Correspondence: [email protected] DNA is subject to many endogenous and exogenous insults that impair DNA replication and proper chromosome segregation. DNA double-strand breaks (DSBs) are one of the most toxic of these lesions and must be repaired to preserve chromosomal integrity. Eukaryotes are equipped with several different, but related, repair mechanisms involving homologous re- combination, including single-strand annealing, gene conversion, and break-induced rep- lication. In this review, we highlight the chief sources of DSBs and crucial requirements for each of these repair processes, as well as the methods to identify and study intermediate steps in DSB repair by homologous recombination. EXOGENOUS AND ENDOGENOUS Some well-known exogenous DNA damag- SOURCES OF DNA DOUBLE-STRAND ing agents (clastogens) are anticancer chemo- BREAKS therapeutic drugs and ionizing radiation (IR). Chemotherapeutic drugs include DNA-alkyl- NA damage can occur as a result of en- ating agents such as methyl methanosulfo- Ddogenous metabolic reactions and replica- nate and temozolomide, cross-linking agents tion stress or from exogenous sources like radi- such as mitomycin C and cisplatin, and radio- ation and chemotherapeutics. Damage comes mimetic compounds such as bleomycin or in several different varieties: base lesions, intra- phleomycin (Chen and Stubbe 2005; Wyrobek and interstrand cross-links, DNA-protein cross- et al.
    [Show full text]
  • 2013 Faseb Science Research Conferences Advisory Committee Meeting
    Proposal #: 15-12 2013 FASEB SCIENCE RESEARCH CONFERENCES ADVISORY COMMITTEE MEETING TOPIC FOR CONSIDERATION TOPIC NAME: HELICASES AND NUCLEIC-ACID BASED MACHINES: FROM MECHANISM TO INSIGHT INTO DISEASE PREVIOUS TITLE: Helicases & Nucleic Acid Translocases: Structure, Mehcanism, Function, and Roles in Human Diseases SUBMITTED BY: Maria Spies, University of Iowa Karsten Weis, University of California - Berkeley YEAR REQUESTED FOR 2015 SCHEDULING: SITE REQUESTS: 1. Steamboat Springs, CO 2. Snowmass, CO 3. Keystone, CO DATE REQUESTS: 1. July 26-31, 2015 2. July 12-17, 2015 3. July 19-24, 2015 YEAR(S) CONFERENCE 2001, 2003, 2007, 2011 HAS BEEN HELD: NOTES: FASEB SRC on “Genetic Recombination and Genome Rearrangements”. The equivalent meeting was held back-to-back with our meeting in 2011, which was a great success. We have been in communication with Dr. Michale Lichten, the organizer, to coordinate date requests. If possible, we would like to request that the Recombination meeting either directly precedes or follows our meeting. Dear Colleague, We invite you to submit a proposal for a future FASEB Science Research Conference Series (SRC). Since 1982, FASEB has worked hand-in-hand with scientists to organize conferences for experimental biologists. The Conferences are divided up into small groups, who meet intimately and without distractions to explore new approaches to research areas undergoing rapid scientific change. FASEB supports over 35 SRCs each year. Site preferences for 2015, 2016, and 2017 are Big Sky, MT, Chicago, IL, Saxtons River, VT, Snowmass, CO, Steamboat Springs, CO, Nassau, Bahamas, Keystone, CO, Liverpool, England, Palm Beach, FL Palm Springs, CA, Reno/Las Vegas, NV, and Lisbon, Portugal Site preference selection will be prioritized by site availability, history of conference success and registration fee factors.
    [Show full text]
  • 22416 CPLC Conference Bags 2014-D
    3RD MIDWEST SINGLE MOLECULE WORKSHOP UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN AUGUST 4 - 5, 2014 University of Illinois – Physics Department – 320 Loomis Lab, 1110 W. Green Street – Urbana-Champaign, Illinois 61801 – 217-333-3393 CONTENTS ORGANIZERS Program – 2 Prof. Yann R. Chemla – University of Illinois Oral presentation abstracts – 5 Dr. Jaya Yodh – University of Illinois Poster list – 17 Poster presentation abstracts – 20 Management team: Participants – 45 Angala Meharry – University of Illinois Maps – 49 Sandra Patterson – University of Illinois Contact: VENUE [email protected] Alice Campbell Alumni Center http://cplc.illinois.edu/workshops/MWSMW2014 601 South Lincoln Avenue Urbana, IL 61801 http://www.uiaa.org/alumnicenter/contact.html SPONSORED BY 1 PROGRAM MONDAY, AUGUST 4, 2014 ALICE CAMPBELL ALUMNI CENTER 8:00 a.m. - 8:45 a.m. Registration & refreshments Welcome 8:45 a.m. - 9:00 a.m. Yann Chemla – University of Illinois at Urbana-Champaign Keynote lecture: Stephen Kowalczykowski – University of California, Davis 9:00 a.m. - 10:00 a.m. “Single-Molecule Visualization of Protein-DNA Complexes: Understanding the Physics and Chemistry of Biology, One Molecule at a Time” 10:00 a.m. - 10:20 a.m. Coffee break SESSION I: “Single-Molecule Interactions” Chair: Yann Chemla – University of Illinois at Urbana-Champaign Talk 1: Sanjeevi Sivasankar – Iowa State University 10:20 a.m. - 10:40 a.m. “Conformational Switching in Single Prion Proteins Promotes Oligomerization” Talk 2: Charles Schroeder – University of Illinois at Urbana-Champaign 10:40 a.m. - 11:00 a.m. “Direct Observations of TALE Protein Search Dynamics Along DNA” Talk 3: Yi Luo – The Ohio State University 11:00 a.m.
    [Show full text]
  • CHEMISTRY NEWS UNIVERSITY of OREGON • COLLEGE of ARTS and SCIENCES • DEPARTMENT of CHEMISTRY • 1996 from the DEPARTMENT HEAD the Past Year Was an Exhilarat- Didates
    CHEMISTRY NEWS UNIVERSITY OF OREGON COLLEGE OF ARTS AND SCIENCES DEPARTMENT OF CHEMISTRY 1996 FROM THE DEPARTMENT HEAD The past year was an exhilarat- didates. We did something un- ing one for the Department of heard offor Oregon anywaywe Chemistry. Among many exciting requested permission to hire both things that happened, we hired candidates. To our mild surprise, two new faculty members, our the deans office and the Graduate Achievement Endowment Fund School agreed this was an opportu- continues to grow, we honored nity we should not miss. We hired three distinguished alumni with both Andy Marcus and Mark achievement awards, members of Lonergan. Im sure it is obvious our faculty were recognized with that the administration wouldnt national and local awards, and we do this for just any department. It graduated thirty-eight enthusiastic is a sign of our departments undergraduate and graduate stu- strength and quality that we were dents. Let me briefly recount these permitted to hire two new faculty events and achievements. members. Last fall we ran a search for a One of the reasons our depart- physical chemist to replace Warner ment remains optimistic about the Peticolas, who retired. We inter- future is that we have generous viewed four candidates and found alumni who contribute to our © JACK LIU ourselves having to decide be- growing Achievement Endowment tween two absolutely superb can- continued on page 2 Chemistry Commencement Gets Personal Remember when the only and friends. In a new twist this graduation event was a large gath- year, students wrote a humorous ering on a football field? Times script, Our Seniors Top Ten List have changed.
    [Show full text]
  • Nuclease Activity of Saccharomyces Cerevisiae Dna2 Inhibits Its Potent DNA Helicase Activity
    Nuclease activity of Saccharomyces cerevisiae Dna2 inhibits its potent DNA helicase activity Maryna Levikovaa, Daniel Klaueb, Ralf Seidelb,c, and Petr Cejkaa,1 aInstitute of Molecular Cancer Research, University of Zurich, 8057 Zurich, Switzerland; bBiotechnology Center, Technische Universität Dresden, 01307 Dresden, Germany; and cInstitute for Molecular Cell Biology, University of Münster, 48149 Münster, Germany Edited* by Stephen C. Kowalczykowski, University of California, Davis, CA, and approved April 23, 2013 (received for review January 8, 2013) Dna2 is a nuclease-helicase involved in several key pathways of cells) downstream of the Mre11-Rad50-Xrs2 (MRX) complex (9– eukaryotic DNA metabolism. The potent nuclease activity of Saccha- 14). MRX first recognizes dsDNA breaks and is likely involved in romyces cerevisiae Dna2wasreportedtoberequiredforallitsin their initial processing, and subsequently helps recruit Sgs1 and vivo functions tested to date. In contrast, its helicase activity was Dna2. Sgs1 helicase then unwinds the DNA from the break and shown to be weak, and its inactivation affected only a subset of the ssDNA is coated by RPA, which stimulates the 5′–3′ nuclease Dna2 functions. We describe here a complex interplay of the two activity of Dna2. The specific degradation of the 5′ end of the enzymatic activities. We show that the nuclease of Dna2 inhibits its unwound DNA ensures the correct polarity of resection, which is helicase by cleaving 5′ flaps that are required by the helicase do- required for homologous recombination (12, 13). However, the main for loading onto its substrate. Mutational inactivation of Dna2 roles of Dna2 are not limited to Okazaki fragment and dsDNA nuclease unleashes unexpectedly vigorous DNA unwinding activity, break processing.
    [Show full text]
  • Biotechnology Training Retreat
    Seventeenth Annual Biotechnology Training Retreat Saturday, March 29, 2008 Christian Brothers Retreat & Conference Center Napa, CA Seventeenth Annual Biotechnology Training Retreat Saturday, March 29, 2008 Christian Brothers Retreat & Conference Center Napa, CA Co-sponsored by: NIH Training Program in Biomolecular Technology (NIH-1-T32-GM08799) UC Davis Designated Emphasis in Biotechnology Graduate Program (DEB) UC Davis Biotechnology Program Table of Contents Welcome 2 NIH Training Program in Biomolecular Technology 4 Designated Emphasis in Biotechnology, UC Davis 5 UC Davis Biotechnology Program 6 Retreat Agenda 7 2008 Poster Titles 8 Oral Presentation Abstracts 12 Bioethics 30 Poster Abstracts 37 Company Affiliates 68 Training Retreat Participants 2008 80 Mission of UC Davis Biotechnology Program 85 NIH Training Grant Information 86 NIH Training Grant Faculty 88 NIH Training Program in Biomolecular Technology 90 Goals and Mission of Designated Emphasis in Biotechnology Program 91 DEB Program Students as of March 2008 97 DEB Faculty Trainers 103 The Value of Internships 108 2008 Welcome On behalf of the UC Davis Biotechnology Program, the executive committees of the Designated Emphasis in Biotechnology (DEB) and the NIH Training Grant in Biomolecular Technology, we thank you for joining us as we honor our 2007-08 fellows and their preceptors, as well as our industry affiliates. It is hard to believe that we have been holding this retreat for the past 17 years. This year, we would like to welcome the faculty and trainees affiliated with the newly funded NSF CREATE-IGERT Training Program (directed by Karen McDonald). They will be joining this annual event, since they are also linked to the DEB.
    [Show full text]
  • DNA-Pairing and Annealing Processes in Homologous Recombination and Homology-Directed Repair
    Downloaded from http://cshperspectives.cshlp.org/ on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press DNA-Pairing and Annealing Processes in Homologous Recombination and Homology-Directed Repair Scott W. Morrical Department of Biochemistry, University of Vermont College of Medicine, Burlington, Vermont 05405 Correspondence: [email protected] The formation of heteroduplex DNA is a central step in the exchange of DNA sequences via homologous recombination, and in the accurate repair of broken chromosomes via homol- ogy-directed repair pathways. In cells, heteroduplex DNA largelyarises through the activities of recombination proteins that promote DNA-pairing and annealing reactions. Classes of proteins involved in pairing and annealing include RecA-family DNA-pairing proteins, single-stranded DNA (ssDNA)-binding proteins, recombination mediator proteins, anneal- ing proteins, and nucleases. This review explores the properties of these pairing and anneal- ing proteins, and highlights their roles in complex recombination processes including the double Holliday junction (DhJ) formation, synthesis-dependent strand annealing, and single- strand annealing pathways—DNA transactions that are critical both for genome stability in individual organisms and for the evolution of species. central step in the process of homologous The ability to form heteroduplex DNA us- Arecombination is the formation of hetero- ing strands from two different parental DNA duplex DNA. In this article, heteroduplex DNA molecules lies at the heart of fundamental bio- is defined as double-stranded DNA that arose logical processes that control genome stability from recombination, in which the two strands in individual organisms, inheritance of genetic are derived from different parental DNA mole- information by their progeny, and genetic di- cules or regions.
    [Show full text]