Noether's Theorems Applications in Mechanics and Field Theory Atlantis Studies in Variational Geometry

Total Page:16

File Type:pdf, Size:1020Kb

Noether's Theorems Applications in Mechanics and Field Theory Atlantis Studies in Variational Geometry Atlantis Studies in Variational Geometry Series Editors: Demeter Krupka · Huafei Sun Gennadi Sardanashvily Noether's Theorems Applications in Mechanics and Field Theory Atlantis Studies in Variational Geometry Volume 3 Series editors Demeter Krupka, University of Hradec Kralove, Hradec Kralove, Czech Republic Huafei Sun, Beijing Institute of Technology, Beijing, China More information about this series at http://www.atlantis-press.com Gennadi Sardanashvily Noether’s Theorems Applications in Mechanics and Field Theory Gennadi Sardanashvily Moscow State University Moscow Russia ISSN 2214-0700 ISSN 2214-0719 (electronic) Atlantis Studies in Variational Geometry ISBN 978-94-6239-170-3 ISBN 978-94-6239-171-0 (eBook) DOI 10.2991/978-94-6239-171-0 Library of Congress Control Number: 2016932506 © Atlantis Press and the author(s) 2016 This book, or any parts thereof, may not be reproduced for commercial purposes in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system known or to be invented, without prior permission from the Publisher. Printed on acid-free paper To my wife Aida Karamysheva Professor, molecule biologist Preface Noether’s first and second theorems are formulated in a very general setting of reducible degenerate Grassmann-graded Lagrangian theory of even and odd vari- ables on graded bundles. Lagrangian theory generally is characterized by a hierarchy of nontrivial Noether and higher-stage Noether identities and the corresponding gauge and higher-stage gauge symmetries which characterize the degeneracy of a Lagrangian system. By analogy with Noether identities of differential operators, they are described in the homology terms. In these terms, Noether’s inverse and direct second theorems associate to the Koszul–Tate graded chain complex of Noether and higher-stage Noether identities the gauge cochain sequence whose ascent gauge operator pro- vides gauge and higher-stage gauge symmetries of Grassmann-graded Lagrangian theory. If these symmetries are algebraically closed, an ascent gauge operator is generalized to a nilpotent BRST operator which brings a gauge cochain sequence into a BRST complex and provides the BRST extension of original Lagrangian theory. In the present book, the calculus of variations and Lagrangian formalism are phrased in algebraic terms of a variational bicomplex on an infinite order jet manifold that enables one to extend this formalism to Grassmann-graded Lagrangian systems of even and odd variables on graded bundles. Cohomology of a graded variational bicomplex provides the global solutions of the direct and inverse problems of the calculus of variations. In this framework, Noether’s direct first theorem is formulated as a straight- forward corollary of the global variational formula. It associates to any Lagrangian symmetry the conserved symmetry current whose total differential vanishes on-shell. Proved in a very general setting, so-called Noether’s third theorem states that a conserved symmetry current along any gauge symmetry is reduced to a superpotential, i.e., it is a total differential on-shell. This also is the case of covariant Hamiltonian formalism on smooth fibre bundles seen as the particular Lagrangian one on phase Legendre bundles. vii viii Preface Lagrangian formalism on smooth fibre bundles and graded bundles provides the comprehensive formulations both of classical field theory and nonrelativistic mechanics. Non-autonomous nonrelativistic mechanics is adequately formulated as partic- ular Lagrangian and Hamiltonian theory on a configuration bundle over the time axis. Conserved symmetry currents of Noether’s first theorem in mechanics are integrals of motion, but the converse need not be true. In Hamiltonian mechanics, Noether’s inverse first theorem states that all integrals of motion come from symmetries. In particular, this is the case of energy functions with respect to dif- ferent reference frames. The book presents a number of physically relevant models: superintegrable Hamiltonian systems, the global Kepler problem, Yang–Mills gauge theory on principal bundles, SUSY gauge theory, gauge gravitation theory on natural bundles, topological Chern–Simons field theory and topological BF theory, exemplifying a reducible degenerate Lagrangian system. Our book addresses to a wide audience of theoreticians, mathematical physicists and mathematicians. With respect to mathematical prerequisites, the reader is expected to be familiar with the basics of differential geometry of fibre bundles. We have tried to give the necessary mathematical background, thus making our exposition self-contained. For the sake of convenience of the reader, a number of relevant mathematical topics are compiled in appendixes. Moscow Gennadi Sardanashvily October 2015 Contents 1 Calculus of Variations on Fibre Bundles .................... 1 1.1 Infinite Order Jet Formalism . 1 1.2 Variational Bicomplex . 7 1.2.1 Cohomology of the Variational Bicomplex . 9 1.3 Lagrangian Formalism . 12 2 Noether’s First Theorem ............................... 17 2.1 Lagrangian Symmetries. 17 2.2 Gauge Symmetries: Noether’s Direct Second Theorem . 20 2.3 Noether’s First Theorem: Conservation Laws. 23 3 Lagrangian and Hamiltonian Field Theories ................. 27 3.1 First Order Lagrangian Formalism . 27 3.2 Cartan and Hamilton–De Donder Equations. 30 3.3 Noether’s First Theorem: Energy-Momentum Currents . 32 3.4 Conservation Laws in the Presence of a Background Field . 34 3.5 Covariant Hamiltonian Formalism . 36 3.6 Associated Lagrangian and Hamiltonian Systems . 41 3.7 Noether’s First Theorem: Hamiltonian Conservation Laws. 47 3.8 Quadratic Lagrangian and Hamiltonian Systems . 49 4 Lagrangian and Hamiltonian Nonrelativistic Mechanics......... 59 4.1 Geometry of Fibre Bundles over R..................... 60 4.2 Lagrangian Mechanics. Integrals of Motion . 63 4.3 Noether’s First Theorem: Energy Conservation Laws . 67 4.4 Gauge Symmetries: Noether’s Second and Third Theorems . 71 4.5 Non-autonomous Hamiltonian Mechanics . 73 4.6 Hamiltonian Conservation Laws: Noether’s Inverse First Theorem . 80 4.7 Completely Integrable Hamiltonian Systems . 84 ix x Contents 5 Global Kepler Problem................................. 93 6 Calculus of Variations on Graded Bundles .................. 103 6.1 Grassmann-Graded Algebraic Calculus . 103 6.2 Grassmann-Graded Differential Calculus . 106 6.3 Differential Calculus on Graded Bundles . 109 6.4 Grassmann-Graded Variational Bicomplex. 121 6.5 Grassmann-Graded Lagrangian Theory . 127 6.6 Noether’s First Theorem: Supersymmetries . 129 7 Noether’s Second Theorems ............................. 135 7.1 Noether Identities: Reducible Degenerate Lagrangian Systems . 136 7.2 Noether’s Inverse Second Theorem . 145 7.3 Gauge Supersymmetries: Noether’s Direct Second Theorem . 148 7.4 Noether’s Third Theorem: Superpotential . 152 7.5 Lagrangian BRST Theory . 155 8 Yang–Mills Gauge Theory on Principal Bundles .............. 163 8.1 Geometry of Principal Bundles . 163 8.2 Principal Gauge Symmetries . 171 8.3 Noether’s Direct Second Theorem: Yang–Mills Lagrangian . 173 8.4 Noether’s First Theorem: Conservation Laws. 175 8.5 Hamiltonian Gauge Theory . 177 8.6 Noether’s Inverse Second Theorem: BRST Extension . 179 9 SUSY Gauge Theory on Principal Graded Bundles ............ 183 10 Gauge Gravitation Theory on Natural Bundles ............... 189 10.1 Relativity Principle: Natural Bundles . 189 10.2 Equivalence Principle: Lorentz Reduced Structure . 191 10.3 Metric-Affine Gauge Gravitation Theory . 194 10.4 Energy-Momentum Gauge Conservation Law . 197 10.5 BRST Gravitation Theory . 199 11 Chern–Simons Topological Field Theory .................... 201 12 Topological BF Theory................................. 207 Glossary ............................................... 211 Appendix A: Differential Calculus over Commutative Rings ......... 213 Appendix B: Differential Calculus on Fibre Bundles............... 227 Contents xi Appendix C: Calculus on Sheaves ............................ 259 Appendix D: Noether Identities of Differential Operators ........... 271 References ............................................. 281 Index ................................................. 287 Introduction Noether’s theorems are well known to treat symmetries of Lagrangian systems. Noether’s first theorem associates to a Lagrangian symmetry the conserved sym- metry current whose total differential vanishes on-shell. The second ones provide the correspondence between Noether identities and gauge symmetries of a Lagrangian system. We refer the reader to the brilliant book of Yvette Kosmann-Schwarzbach [84] for the history and references on this subject. Our book aims to present Noether’s theorems in a very general setting of reducible degenerate Grassmann-graded Lagrangian theory of even and odd vari- ables on graded bundles. We however start with even Lagrangian formalism on smooth fibre bundles (Chap. 2), and focus ourselves especially on first-order Lagrangian theory (Chap. 3) because the most physically relevant models (nonrelativistic mechanics, gauge field theory, gravitation theory, etc.) are of this type. Lagrangian theory of even (commutative) variables on an n-dimensional smooth manifold X conventionally is formulated in terms of fibre bundles over X and jet manifolds of their sections [15, 53, 108, 133, 143], and it lies in the framework of general technique of nonlinear differential equations and operators [25, 53, 85]. This formulation is based on the categorial
Recommended publications
  • Abstract Book
    14th International Geometry Symposium 25-28 May 2016 ABSTRACT BOOK Pamukkale University Denizli - TURKEY 1 14th International Geometry Symposium Pamukkale University Denizli/TURKEY 25-28 May 2016 14th International Geometry Symposium ABSTRACT BOOK 1 14th International Geometry Symposium Pamukkale University Denizli/TURKEY 25-28 May 2016 Proceedings of the 14th International Geometry Symposium Edited By: Dr. Şevket CİVELEK Dr. Cansel YORMAZ E-Published By: Pamukkale University Department of Mathematics Denizli, TURKEY All rights reserved. No part of this publication may be reproduced in any material form (including photocopying or storing in any medium by electronic means or whether or not transiently or incidentally to some other use of this publication) without the written permission of the copyright holder. Authors of papers in these proceedings are authorized to use their own material freely. Applications for the copyright holder’s written permission to reproduce any part of this publication should be addressed to: Assoc. Prof. Dr. Şevket CİVELEK Pamukkale University Department of Mathematics Denizli, TURKEY Email: [email protected] 2 14th International Geometry Symposium Pamukkale University Denizli/TURKEY 25-28 May 2016 Proceedings of the 14th International Geometry Symposium May 25-28, 2016 Denizli, Turkey. Jointly Organized by Pamukkale University Department of Mathematics Denizli, Turkey 3 14th International Geometry Symposium Pamukkale University Denizli/TURKEY 25-28 May 2016 PREFACE This volume comprises the abstracts of contributed papers presented at the 14th International Geometry Symposium, 14IGS 2016 held on May 25-28, 2016, in Denizli, Turkey. 14IGS 2016 is jointly organized by Department of Mathematics, Pamukkale University, Denizli, Turkey. The sysposium is aimed to provide a platform for Geometry and its applications.
    [Show full text]
  • Covariant Momentum Map for Non-Abelian Topological BF Field
    Covariant momentum map for non-Abelian topological BF field theory Alberto Molgado1,2 and Angel´ Rodr´ıguez–L´opez1 1 Facultad de Ciencias, Universidad Autonoma de San Luis Potosi Campus Pedregal, Av. Parque Chapultepec 1610, Col. Privadas del Pedregal, San Luis Potosi, SLP, 78217, Mexico 2 Dual CP Institute of High Energy Physics, Colima, Col, 28045, Mexico E-mail: [email protected], [email protected] Abstract. We analyze the inherent symmetries associated to the non-Abelian topological BF theory from the geometric and covariant perspectives of the Lagrangian and the multisymplectic formalisms. At the Lagrangian level, we classify the symmetries of the theory as natural and Noether symmetries and construct the associated Noether currents, while at the multisymplectic level the symmetries of the theory arise as covariant canonical transformations. These transformations allowed us to build within the multisymplectic approach, in a complete covariant way, the momentum maps which are analogous to the conserved Noether currents. The covariant momentum maps are fundamental to recover, after the space plus time decomposition of the background manifold, not only the extended Hamiltonian of the BF theory but also the generators of the gauge transformations which arise in the instantaneous Dirac-Hamiltonian analysis of the first-class constraint structure that characterizes the BF model under study. To the best of our knowledge, this is the first non-trivial physical model associated to General Relativity for which both natural and Noether symmetries have been analyzed at the multisymplectic level. Our study shed some light on the understanding of the manner in which the generators of gauge transformations may be recovered from the multisymplectic formalism for field theory.
    [Show full text]
  • Lagrangian–Hamiltonian Unified Formalism for Field Theory
    JOURNAL OF MATHEMATICAL PHYSICS VOLUME 45, NUMBER 1 JANUARY 2004 Lagrangian–Hamiltonian unified formalism for field theory Arturo Echeverrı´a-Enrı´quez Departamento de Matema´tica Aplicada IV, Edificio C-3, Campus Norte UPC, C/Jordi Girona 1, E-08034 Barcelona, Spain Carlos Lo´peza) Departamento de Matema´ticas, Campus Universitario. Fac. Ciencias, 28871 Alcala´ de Henares, Spain Jesu´s Marı´n-Solanob) Departamento de Matema´tica Econo´mica, Financiera y Actuarial, UB Avenida Diagonal 690, E-08034 Barcelona, Spain Miguel C. Mun˜oz-Lecandac) and Narciso Roma´n-Royd) Departamento de Matema´tica Aplicada IV, Edificio C-3, Campus Norte UPC, C/Jordi Girona 1, E-08034 Barcelona, Spain ͑Received 27 November 2002; accepted 15 September 2003͒ The Rusk–Skinner formalism was developed in order to give a geometrical unified formalism for describing mechanical systems. It incorporates all the characteristics of Lagrangian and Hamiltonian descriptions of these systems ͑including dynamical equations and solutions, constraints, Legendre map, evolution operators, equiva- lence, etc.͒. In this work we extend this unified framework to first-order classical field theories, and show how this description comprises the main features of the Lagrangian and Hamiltonian formalisms, both for the regular and singular cases. This formulation is a first step toward further applications in optimal control theory for partial differential equations. © 2004 American Institute of Physics. ͓DOI: 10.1063/1.1628384͔ I. INTRODUCTION In ordinary autonomous classical theories in mechanics there is a unified formulation of Lagrangian and Hamiltonian formalisms,1 which is based on the use of the Whitney sum of the ϭ ϵ ϫ ͑ tangent and cotangent bundles W TQ T*Q TQ QT*Q the velocity and momentum phase spaces of the system͒.
    [Show full text]
  • Ivanenko. Biography
    The People of Physics Faculty Selected papers of the Journal “Soviet Physicist” 1998-2006 Dmitri Ivanenko. Scientific Biography 226 Dmitri Ivanenko (29.07.1904 - 30.12.1994), professor of Moscow State University (since 1943) , was one of the great theoreticians of XX century. He made the fundamental contribution to many areas of nuclear physics, field theory and gravitation theory. His outstanding achievements include: • The Fock - Ivanenko coefficients of parallel displacement of spinors in a curved space-time (1929) 1 . Nobel laureate Abdus Salam called it the first gauge theory. • The Ambartsumian - Ivanenko hypothesis of creation of massive particles which is a corner stone of contemporary quantum field theory (1930) 2 . • The proton-neutron model of atomic nuclei (1932) 3 . • The first shell model of nuclei (in collaboration with E. Gapon) (1932) 4 . • The first model of exchange nuclear forces by means of massive particles (in collaboration with I. Tamm) (1934) 5 . Based on this model, Nobel laureate H. Yukawa developed his meson theory. • The prediction of synchrotron radiation (in collaboration with I. Pomeranchuk) (1944) 6 and its classical theory (in collaboration with A. Sokolov). • Theory of hypernucleus (1956) 7 . • The hypothesis of quark stars (in collaboration with D. Kurdgelaidze) (1965) 8 . • The gauge gravitation theory (in collaboration with G. Sardanashvily), where gravity is treated as a Higgs field responsible for spontaneous breaking of space- 9 time symmetries (1983) . References 1. Fock V., Iwanenko D., Géometrie quantique linéaire et déplacement paralléle, Compt. Rend. Acad Sci. Paris 188 (1929) 1470. 2. Ambarzumian V., Iwanenko D., Les électrons inobservables et les rayons, Compt.
    [Show full text]
  • Lectures on Classical Mechanics
    Lectures on Classical Mechanics John C. Baez Derek K. Wise (version of September 7, 2019) i c 2017 John C. Baez & Derek K. Wise ii iii Preface These are notes for a mathematics graduate course on classical mechanics at U.C. River- side. I've taught this course three times recently. Twice I focused on the Hamiltonian approach. In 2005 I started with the Lagrangian approach, with a heavy emphasis on action principles, and derived the Hamiltonian approach from that. This approach seems more coherent. Derek Wise took beautiful handwritten notes on the 2005 course, which can be found on my website: http://math.ucr.edu/home/baez/classical/ Later, Blair Smith from Louisiana State University miraculously appeared and volun- teered to turn the notes into LATEX . While not yet the book I'd eventually like to write, the result may already be helpful for people interested in the mathematics of classical mechanics. The chapters in this LATEX version are in the same order as the weekly lectures, but I've merged weeks together, and sometimes split them over chapter, to obtain a more textbook feel to these notes. For reference, the weekly lectures are outlined here. Week 1: (Mar. 28, 30, Apr. 1)|The Lagrangian approach to classical mechanics: deriving F = ma from the requirement that the particle's path be a critical point of the action. The prehistory of the Lagrangian approach: D'Alembert's \principle of least energy" in statics, Fermat's \principle of least time" in optics, and how D'Alembert generalized his principle from statics to dynamics using the concept of \inertia force".
    [Show full text]
  • Geometric Justification of the Fundamental Interaction Fields For
    S S symmetry Article Geometric Justification of the Fundamental Interaction Fields for the Classical Long-Range Forces Vesselin G. Gueorguiev 1,2,* and Andre Maeder 3 1 Institute for Advanced Physical Studies, Sofia 1784, Bulgaria 2 Ronin Institute for Independent Scholarship, 127 Haddon Pl., Montclair, NJ 07043, USA 3 Geneva Observatory, University of Geneva, Chemin des Maillettes 51, CH-1290 Sauverny, Switzerland; [email protected] * Correspondence: [email protected] Abstract: Based on the principle of reparametrization invariance, the general structure of physically relevant classical matter systems is illuminated within the Lagrangian framework. In a straight- forward way, the matter Lagrangian contains background interaction fields, such as a 1-form field analogous to the electromagnetic vector potential and symmetric tensor for gravity. The geometric justification of the interaction field Lagrangians for the electromagnetic and gravitational interactions are emphasized. The generalization to E-dimensional extended objects (p-branes) embedded in a bulk space M is also discussed within the light of some familiar examples. The concept of fictitious accelerations due to un-proper time parametrization is introduced, and its implications are discussed. The framework naturally suggests new classical interaction fields beyond electromagnetism and gravity. The simplest model with such fields is analyzed and its relevance to dark matter and dark energy phenomena on large/cosmological scales is inferred. Unusual pathological behavior in the Newtonian limit is suggested to be a precursor of quantum effects and of inflation-like processes at microscopic scales. Citation: Gueorguiev, V.G.; Maeder, A. Geometric Justification of Keywords: diffeomorphism invariant systems; reparametrization-invariant matter systems; matter the Fundamental Interaction Fields lagrangian; homogeneous singular lagrangians; relativistic particle; string theory; extended objects; for the Classical Long-Range Forces.
    [Show full text]
  • Lagrangian Dynamics of Submanifolds. Relativistic Mechanics
    JOURNAL OF GEOMETRIC MECHANICS doi:10.3934/jgm.2012.4.99 c American Institute of Mathematical Sciences Volume 4, Number 1, March 2012 pp. 99{110 LAGRANGIAN DYNAMICS OF SUBMANIFOLDS. RELATIVISTIC MECHANICS Gennadi Sardanashvily Department of Theoretical Physics Moscow State University Moscow, Russia (Communicated by Manuel de Le´on) Abstract. Geometric formulation of Lagrangian relativistic mechanics in the terms of jets of one-dimensional submanifolds is generalized to Lagrangian theory of submanifolds of arbitrary dimension. 1. Introduction. Classical non-relativistic mechanics is adequately formulated as Lagrangian and Hamiltonian theory on a fibre bundle Q ! R over the time axis R, where R is provided with the Cartesian coordinate t possessing transition functions t0 = t+const. [1,5,7,8, 11]. A velocity space of non-relativistic mechanics is a first order jet manifold J 1Q of sections of Q ! R. Lagrangians of non-relativistic mechanics are defined as densities on J 1Q. This formulation is extended to time- reparametrized non-relativistic mechanics subject to time-dependent transforma- tions which are bundle automorphisms of Q ! R [5,8]. Thus, one can think of non-relativistic mechanics as being particular classical field theory on fibre bundles over X = R. However, an essential difference between non-relativistic mechanics and field theory on fibre bundles Y ! X, dim X > 1, lies in the fact that connections on Q ! R always are flat. Therefore, they fail to be dynamic variables, but characterize non-relativistic reference frames. In comparison with non-relativistic mechanics, relativistic mechanics admits trans- formations of the time depending on other variables, e.g., Lorentz transformations in Special Relativity on a Minkowski space Q = R4.
    [Show full text]
  • Mathematical Structures in Physics
    Mathematical Structures in Physics Kolleg Studienstiftung Christoph Schweigert Hamburg University Department of Mathematics Section Algebra and Number Theory and Center for Mathematical Physics (as of 12.03.2016) Contents 0 Introduction 1 1 Newtonian mechanics 2 1.1 Galilei space, equations of motion . 2 1.2 Dynamics of Newtonian systems . 8 1.3 Examples . 10 2 Lagrangian mechanics 14 2.1 Variational calculus . 14 2.2 Systems with constraints . 24 2.3 Lagrangian systems: jet bundles as the kinematical setup . 28 2.4 Lagrangian dynamics . 43 2.5 Symmetries and Noether identities . 48 2.6 Natural geometry . 57 3 Classical field theories 61 3.1 Maxwell's equations . 61 3.2 Special relativity . 69 3.4 Electrodynamics as a gauge theory . 77 3.5 General relativity . 85 4 Hamiltonian mechanics 89 4.1 (Pre-) symplectic manifolds . 89 4.2 Poisson manifolds and Hamiltonian systems . 99 4.3 Time dependent Hamiltonian dynamics . 105 4.4 The Legendre transform . 108 i 5 Quantum mechanics 115 5.1 Deformations . 115 5.2 Kinematical framework for quantum mechanics: C∗-algebras and states . 119 5.3 Composite systems and Bell's inequality . 130 5.4 Dynamics of quantum mechanical systems . 132 5.5 Quantization . 141 5.6 Symmetries in quantum mechanics . 150 5.7 Examples of quantum mechanical systems . 159 5.8 Quantum statistical mechanics and KMS states . 168 5.9 Perturbation theory . 170 5.10 Path integral methods . 170 6 A glimpse to quantum field theory 171 A Differentiable Manifolds 174 A.1 Definition of differentiable manifolds . 174 A.2 Tangent vectors and differentiation .
    [Show full text]
  • Background Geometry in Gauge Gravitation Theory
    BACKGROUND GEOMETRY IN GAUGE GRAVITATION THEORY Gennadi Sardanashvily Department of Theoretical Physics, Moscow State University, 117234 Moscow, Russia E-mail: [email protected] Abstract Dirac fermion fields are responsible for spontaneous symmetry breaking in gauge grav- itation theory because the spin structure associated with a tetrad field is not preserved under general covariant transformations. Two solutions of this problem can be suggested. (i) There exists the universal spin structure S → X such that any spin structure Sh → X associated with a tetrad field h is a subbundle of the bundle S → X. In this model, gravitational fields correspond to different tetrad (or metric) fields. (ii) A background tetrad field h and the associated spin structure Sh are fixed, while gravitational fields are λ λ λ µ identified with additional tensor fields q µ describing deviations ha = q µha of h. One can think of h as being effective tetrad fields. We show that theree exist gauge trans- formations whiche keep the background tetrad field h and act on the effective fields by the general covariant transformation law. We come to Logunov’s Relativistic Theory of Gravity generalized to dynamic connections and fermion fields. arXiv:gr-qc/9709054v1 21 Sep 1997 1 Introduction Existence of Dirac fermion fields implies that, if a world manifold X is non-compact in order to satisfy causility conditions, it is parallelizable, that is, the tangent bundle TX is trivial and the principal bundle LX of oriented frames in TX admits a global section [1]. Dirac spinors are defined as follows [2, 3]. Let M be the Minkowski space with the metric η = diag(1, −1, −1, −1), a written with respect to a basis {e }.
    [Show full text]
  • Noether's Theorem and Symmetry
    Noether’s Theorem and Symmetry Edited by P.G.L. Leach and Andronikos Paliathanasis Printed Edition of the Special Issue Published in Symmetry www.mdpi.com/journal/symmetry Noether’s Theorem and Symmetry Noether’s Theorem and Symmetry Special Issue Editors P.G.L. Leach Andronikos Paliathanasis MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade Special Issue Editors P.G.L. Leach Andronikos Paliathanasis University of Kwazulu Natal & Durban University of Technology Durban University of Technology Republic of South Arica Cyprus Editorial Office MDPI St. Alban-Anlage 66 4052 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Symmetry (ISSN 2073-8994) from 2018 to 2019 (available at: https://www.mdpi.com/journal/symmetry/ special issues/Noethers Theorem Symmetry). For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number, Page Range. ISBN 978-3-03928-234-0 (Pbk) ISBN 978-3-03928-235-7 (PDF) Cover image courtesy of Andronikos Paliathanasis. c 2020 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons license CC BY-NC-ND.
    [Show full text]
  • Symmetries and Gauge Symmetries in Multisymplectic First and Second
    SYMMETRIES AND GAUGE SYMMETRIES IN MULTISYMPLECTIC FIRST AND SECOND-ORDER LAGRANGIAN FIELD THEORIES: ELECTROMAGNETIC AND GRAVITATIONAL FIELDS 1JORDI GASET *, 2NARCISO ROMAN´ -ROY † 1Department of Physics, Universitat Autonoma` de Barcelona, Bellaterra, Spain. 2Department of Mathematics, Universitat Politecnica` de Catalunya, Barcelona, Spain. July 20, 2021 Abstract Symmetries and, in particular, Cartan (Noether) symmetries and conserved quantities (conser- vation laws) are studied for the multisymplectic formulation of first and second order Lagrangian classical field theories. Noether-type theorems are stated in this geometric framework. The concept of gauge symmetry and its geometrical meaning are also discussed in this formulation. The results are applied to study Noether and gauge symmetries for the multisymplectic description of the elec- tromagnetic and the gravitational theory; in particular, the Einstein–Hilbert and the Einstein–Palatini approaches. Key words: 1st and 2nd-order Lagrangian field theories, Higher-order jet bundles, Multisymplectic forms, symmetries, gauge symmetries, conservation laws, Noether theorem, Hilbert-Einstein action, Einstein-Palatini approach. MSC 2020 codes: Primary: 53D42, 70S05, 83C05; Secondary: 35Q75, 35Q76, 53Z05, 70H50, 83C99. arXiv:2107.08846v1 [math-ph] 19 Jul 2021 Contents 1 Introduction 2 2 Lagrangian field theories in jet bundles 3 2.1 Higher-order jet bundles. Multivector fields in jet bundles...................... 3 2.2 First andsecond-orderLagrangianfieldtheories . ..................... 4 3 Symmetries, conservation laws and gauge symmetries 6 3.1 Symmetries and conserved quantities for Lagrangian fieldtheories ................. 6 3.2 Gauge symmetries, gauge vector fields and gauge equivalence ................... 9 4 Electromagnetic field 12 5 Gravitational field (General Relativity) 13 5.1 TheHilbert-Einsteinaction . ............... 13 5.2 The Einstein-Palatini action (metric-affine model) .
    [Show full text]
  • The Title of the Dissertation
    UNIVERSITY OF CALIFORNIA, SAN DIEGO Philosophical Implications of Inflationary Cosmology A Dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Philosophy by Casey David McCoy Committee in charge: Professor Craig Callender, Chair Professor Nancy Cartwright Professor Brian Keating Professor Kerry McKenzie Professor David Meyer 2016 Copyright Casey David McCoy, 2016 All rights reserved. The Dissertation of Casey David McCoy is approved, and it is acceptable in quality and form for publication on microfilm and electronically: Chair University of California, San Diego 2016 iii DEDICATION I dedicate this dissertation to the inquiring minds of St. John's College, who revealed to me a beautiful life of thought. iv EPIGRAPH The edge of evening...the long curve of people all wishing on the first star.... Always remember those men and women along the thousands of miles of land and sea. The true moment of shadow is the moment in which you see the point of light in the sky. The single point, and the Shadow that has just gathered you in its sweep... |T. Pynchon, Gravity's Rainbow v TABLE OF CONTENTS Signature Page................................... iii Dedication...................................... iv Epigraph......................................v Table of Contents.................................. vi Acknowledgements................................. viii Vita......................................... xi Abstract of the Dissertation............................ xii Introduction.....................................1 Chapter 1 Relativistic Cosmology....................... 15 1.1 Introduction.......................... 15 1.2 Cosmological Models..................... 17 1.2.1 Relativistic Spacetimes................ 19 1.2.2 Universe or Multiverse................ 23 1.2.3 Ranges of Applicability................ 27 1.3 Geometry of the Standard Big Bang Model......... 30 1.3.1 Symmetry Assumptions in Cosmology........ 31 1.3.2 Friedman-Robertson-Walker Spacetimes......
    [Show full text]