Abstract Book
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Trends of Graduate Theses with the Subject of Education and Training Conducted on Creativity
http://wje.sciedupress.com World Journal of Education Vol. 10, No. 5; 2020 Trends of Graduate Theses with the Subject of Education and Training Conducted on Creativity Mustafa Dolmaz1,*& Genç Osman İlhan2 1Police Department, Sivas, Turkey 2Social Studies Education, Faculty of Education, Yildiz Technical University, İstanbul, Turkey *Correspondence: Police Department, Sivas, Turkey. E-mail: [email protected] Received: July 11, 2020 Accepted: September 8, 2020 Online Published: October 14, 2020 doi:10.5430/wje.v10n5p61 URL: https://doi.org/10.5430/wje.v10n5p61 Abstract The aim of this research is to examine the trends of the studies that address the education-training dimension of creativity in Turkey. The research was conducted using a qualitative research pattern. The data was collected and analyzed through document analysis. In the analysis of the data, the thesis analysis form developed by the researchers was used. One hundred and forty-five graduate theses studied between 2005 and 2019 in the field of education, which were allowed access by their authors, constitute the study group of this research. 114 of these works consist of graduate theses and 31 of them consist of doctoral theses. The graduate theses in the Council of Higher Education database were examined under a total of 10 titles according to their distribution over the years-educational levels, university distributions, institute distributions, branch distributions, methods and sub-methods, data collection tools, sampling/study groups, sampling methods, education level of the study group and thesis titles. As a result of the research, it was observed that although studies addressing the educational-educational dimension of creativity have increased at a certain level over the years, they are not at the desired point and have not been studied adequately. -
Covariant Momentum Map for Non-Abelian Topological BF Field
Covariant momentum map for non-Abelian topological BF field theory Alberto Molgado1,2 and Angel´ Rodr´ıguez–L´opez1 1 Facultad de Ciencias, Universidad Autonoma de San Luis Potosi Campus Pedregal, Av. Parque Chapultepec 1610, Col. Privadas del Pedregal, San Luis Potosi, SLP, 78217, Mexico 2 Dual CP Institute of High Energy Physics, Colima, Col, 28045, Mexico E-mail: [email protected], [email protected] Abstract. We analyze the inherent symmetries associated to the non-Abelian topological BF theory from the geometric and covariant perspectives of the Lagrangian and the multisymplectic formalisms. At the Lagrangian level, we classify the symmetries of the theory as natural and Noether symmetries and construct the associated Noether currents, while at the multisymplectic level the symmetries of the theory arise as covariant canonical transformations. These transformations allowed us to build within the multisymplectic approach, in a complete covariant way, the momentum maps which are analogous to the conserved Noether currents. The covariant momentum maps are fundamental to recover, after the space plus time decomposition of the background manifold, not only the extended Hamiltonian of the BF theory but also the generators of the gauge transformations which arise in the instantaneous Dirac-Hamiltonian analysis of the first-class constraint structure that characterizes the BF model under study. To the best of our knowledge, this is the first non-trivial physical model associated to General Relativity for which both natural and Noether symmetries have been analyzed at the multisymplectic level. Our study shed some light on the understanding of the manner in which the generators of gauge transformations may be recovered from the multisymplectic formalism for field theory. -
The 6Th Intraders International Conference on International Trade
The 6th InTraders International Conference on International Trade Proceeding Book EDITORIAL BOARD Assoc. Prof. Dr. Leena Jenefa Mamoona Rasheed Kürşat Çapraz InTraders Academic Platform www.intraders.org Publisher Kürşat ÇAPRAZ e-ISBN: 978-605-69427-6-1 Editorial Board Assoc. Prof. Dr. Leena Jenefa, India Mamoona Rasheed, Pakistan Kürşat ÇAPRAZ, Turkey e-ISBN: 978-605-69427-6-1 Edition: First Edition 21 December 2020 Sakarya, Turkey Language: English © All rights reserved. The copyright of this book belongs to Kürşat ÇAPRAZ, who published the book according to the provisions of Turkish Law No. 5846. Not sold with money. It cannot be reproduced or copied by any electronic or mechanical recording system or photocopy without the permission of the publisher. However, short citation can be made by showing the source. University Libraries and similar public institutions may add books to databases provided that they are open and free access without permission. Publisher Kürşat ÇAPRAZ InTraders Academic Platform Sakarya University Faculty of Political Sciences. Serdivan Sakarya, Turkey www.intraders.org [email protected] The 6th InTraders International Conference on International Trade Proceeding Book 5-9 October 2020 (e-conference) https://www.intraders.org/october e-ISBN: 978-605-69427-6-1 1 Regultory Board Kürşat ÇAPRAZ Sakarya University Turkey Assoc. Prof. Dr. Ekrem ERDOĞAN Sakarya University Turkey Prof.Dr. ADRIANA SCHIOPOIU University of Craiova Romania BURLEA Ph.D. Faculty Member Mustafa YILMAZ Sakarya University of Applied Turkey Sciences Prof. Dr. Georgeta Soava University of Craiova Romania Dr. Laurentiu Stelian MIHAI University of Craiova Romania Ph.D. Faculty Member Catalin Aurelian University of Craiova Romania Rosculete Lect. -
J.M. Sullivan, TU Berlin A: Curves Diff Geom I, SS 2019 This Course Is an Introduction to the Geometry of Smooth Curves and Surf
J.M. Sullivan, TU Berlin A: Curves Diff Geom I, SS 2019 This course is an introduction to the geometry of smooth if the velocity never vanishes). Then the speed is a (smooth) curves and surfaces in Euclidean space Rn (in particular for positive function of t. (The cusped curve β above is not regular n = 2; 3). The local shape of a curve or surface is described at t = 0; the other examples given are regular.) in terms of its curvatures. Many of the big theorems in the DE The lengthR [ : Länge] of a smooth curve α is defined as subject – such as the Gauss–Bonnet theorem, a highlight at the j j len(α) = I α˙(t) dt. (For a closed curve, of course, we should end of the semester – deal with integrals of curvature. Some integrate from 0 to T instead of over the whole real line.) For of these integrals are topological constants, unchanged under any subinterval [a; b] ⊂ I, we see that deformation of the original curve or surface. Z b Z b We will usually describe particular curves and surfaces jα˙(t)j dt ≥ α˙(t) dt = α(b) − α(a) : locally via parametrizations, rather than, say, as level sets. a a Whereas in algebraic geometry, the unit circle is typically be described as the level set x2 + y2 = 1, we might instead This simply means that the length of any curve is at least the parametrize it as (cos t; sin t). straight-line distance between its endpoints. Of course, by Euclidean space [DE: euklidischer Raum] The length of an arbitrary curve can be defined (following n we mean the vector space R 3 x = (x1;:::; xn), equipped Jordan) as its total variation: with with the standard inner product or scalar product [DE: P Xn Skalarproduktp ] ha; bi = a · b := aibi and its associated norm len(α):= TV(α):= sup α(ti) − α(ti−1) : jaj := ha; ai. -
Lagrangian–Hamiltonian Unified Formalism for Field Theory
JOURNAL OF MATHEMATICAL PHYSICS VOLUME 45, NUMBER 1 JANUARY 2004 Lagrangian–Hamiltonian unified formalism for field theory Arturo Echeverrı´a-Enrı´quez Departamento de Matema´tica Aplicada IV, Edificio C-3, Campus Norte UPC, C/Jordi Girona 1, E-08034 Barcelona, Spain Carlos Lo´peza) Departamento de Matema´ticas, Campus Universitario. Fac. Ciencias, 28871 Alcala´ de Henares, Spain Jesu´s Marı´n-Solanob) Departamento de Matema´tica Econo´mica, Financiera y Actuarial, UB Avenida Diagonal 690, E-08034 Barcelona, Spain Miguel C. Mun˜oz-Lecandac) and Narciso Roma´n-Royd) Departamento de Matema´tica Aplicada IV, Edificio C-3, Campus Norte UPC, C/Jordi Girona 1, E-08034 Barcelona, Spain ͑Received 27 November 2002; accepted 15 September 2003͒ The Rusk–Skinner formalism was developed in order to give a geometrical unified formalism for describing mechanical systems. It incorporates all the characteristics of Lagrangian and Hamiltonian descriptions of these systems ͑including dynamical equations and solutions, constraints, Legendre map, evolution operators, equiva- lence, etc.͒. In this work we extend this unified framework to first-order classical field theories, and show how this description comprises the main features of the Lagrangian and Hamiltonian formalisms, both for the regular and singular cases. This formulation is a first step toward further applications in optimal control theory for partial differential equations. © 2004 American Institute of Physics. ͓DOI: 10.1063/1.1628384͔ I. INTRODUCTION In ordinary autonomous classical theories in mechanics there is a unified formulation of Lagrangian and Hamiltonian formalisms,1 which is based on the use of the Whitney sum of the ϭ ϵ ϫ ͑ tangent and cotangent bundles W TQ T*Q TQ QT*Q the velocity and momentum phase spaces of the system͒. -
Ivanenko. Biography
The People of Physics Faculty Selected papers of the Journal “Soviet Physicist” 1998-2006 Dmitri Ivanenko. Scientific Biography 226 Dmitri Ivanenko (29.07.1904 - 30.12.1994), professor of Moscow State University (since 1943) , was one of the great theoreticians of XX century. He made the fundamental contribution to many areas of nuclear physics, field theory and gravitation theory. His outstanding achievements include: • The Fock - Ivanenko coefficients of parallel displacement of spinors in a curved space-time (1929) 1 . Nobel laureate Abdus Salam called it the first gauge theory. • The Ambartsumian - Ivanenko hypothesis of creation of massive particles which is a corner stone of contemporary quantum field theory (1930) 2 . • The proton-neutron model of atomic nuclei (1932) 3 . • The first shell model of nuclei (in collaboration with E. Gapon) (1932) 4 . • The first model of exchange nuclear forces by means of massive particles (in collaboration with I. Tamm) (1934) 5 . Based on this model, Nobel laureate H. Yukawa developed his meson theory. • The prediction of synchrotron radiation (in collaboration with I. Pomeranchuk) (1944) 6 and its classical theory (in collaboration with A. Sokolov). • Theory of hypernucleus (1956) 7 . • The hypothesis of quark stars (in collaboration with D. Kurdgelaidze) (1965) 8 . • The gauge gravitation theory (in collaboration with G. Sardanashvily), where gravity is treated as a Higgs field responsible for spontaneous breaking of space- 9 time symmetries (1983) . References 1. Fock V., Iwanenko D., Géometrie quantique linéaire et déplacement paralléle, Compt. Rend. Acad Sci. Paris 188 (1929) 1470. 2. Ambarzumian V., Iwanenko D., Les électrons inobservables et les rayons, Compt. -
AN INTRODUCTION to the CURVATURE of SURFACES by PHILIP ANTHONY BARILE a Thesis Submitted to the Graduate School-Camden Rutgers
AN INTRODUCTION TO THE CURVATURE OF SURFACES By PHILIP ANTHONY BARILE A thesis submitted to the Graduate School-Camden Rutgers, The State University Of New Jersey in partial fulfillment of the requirements for the degree of Master of Science Graduate Program in Mathematics written under the direction of Haydee Herrera and approved by Camden, NJ January 2009 ABSTRACT OF THE THESIS An Introduction to the Curvature of Surfaces by PHILIP ANTHONY BARILE Thesis Director: Haydee Herrera Curvature is fundamental to the study of differential geometry. It describes different geometrical and topological properties of a surface in R3. Two types of curvature are discussed in this paper: intrinsic and extrinsic. Numerous examples are given which motivate definitions, properties and theorems concerning curvature. ii 1 1 Introduction For surfaces in R3, there are several different ways to measure curvature. Some curvature, like normal curvature, has the property such that it depends on how we embed the surface in R3. Normal curvature is extrinsic; that is, it could not be measured by being on the surface. On the other hand, another measurement of curvature, namely Gauss curvature, does not depend on how we embed the surface in R3. Gauss curvature is intrinsic; that is, it can be measured from on the surface. In order to engage in a discussion about curvature of surfaces, we must introduce some important concepts such as regular surfaces, the tangent plane, the first and second fundamental form, and the Gauss Map. Sections 2,3 and 4 introduce these preliminaries, however, their importance should not be understated as they lay the groundwork for more subtle and advanced topics in differential geometry. -
Lectures on Classical Mechanics
Lectures on Classical Mechanics John C. Baez Derek K. Wise (version of September 7, 2019) i c 2017 John C. Baez & Derek K. Wise ii iii Preface These are notes for a mathematics graduate course on classical mechanics at U.C. River- side. I've taught this course three times recently. Twice I focused on the Hamiltonian approach. In 2005 I started with the Lagrangian approach, with a heavy emphasis on action principles, and derived the Hamiltonian approach from that. This approach seems more coherent. Derek Wise took beautiful handwritten notes on the 2005 course, which can be found on my website: http://math.ucr.edu/home/baez/classical/ Later, Blair Smith from Louisiana State University miraculously appeared and volun- teered to turn the notes into LATEX . While not yet the book I'd eventually like to write, the result may already be helpful for people interested in the mathematics of classical mechanics. The chapters in this LATEX version are in the same order as the weekly lectures, but I've merged weeks together, and sometimes split them over chapter, to obtain a more textbook feel to these notes. For reference, the weekly lectures are outlined here. Week 1: (Mar. 28, 30, Apr. 1)|The Lagrangian approach to classical mechanics: deriving F = ma from the requirement that the particle's path be a critical point of the action. The prehistory of the Lagrangian approach: D'Alembert's \principle of least energy" in statics, Fermat's \principle of least time" in optics, and how D'Alembert generalized his principle from statics to dynamics using the concept of \inertia force". -
Geometric Justification of the Fundamental Interaction Fields For
S S symmetry Article Geometric Justification of the Fundamental Interaction Fields for the Classical Long-Range Forces Vesselin G. Gueorguiev 1,2,* and Andre Maeder 3 1 Institute for Advanced Physical Studies, Sofia 1784, Bulgaria 2 Ronin Institute for Independent Scholarship, 127 Haddon Pl., Montclair, NJ 07043, USA 3 Geneva Observatory, University of Geneva, Chemin des Maillettes 51, CH-1290 Sauverny, Switzerland; [email protected] * Correspondence: [email protected] Abstract: Based on the principle of reparametrization invariance, the general structure of physically relevant classical matter systems is illuminated within the Lagrangian framework. In a straight- forward way, the matter Lagrangian contains background interaction fields, such as a 1-form field analogous to the electromagnetic vector potential and symmetric tensor for gravity. The geometric justification of the interaction field Lagrangians for the electromagnetic and gravitational interactions are emphasized. The generalization to E-dimensional extended objects (p-branes) embedded in a bulk space M is also discussed within the light of some familiar examples. The concept of fictitious accelerations due to un-proper time parametrization is introduced, and its implications are discussed. The framework naturally suggests new classical interaction fields beyond electromagnetism and gravity. The simplest model with such fields is analyzed and its relevance to dark matter and dark energy phenomena on large/cosmological scales is inferred. Unusual pathological behavior in the Newtonian limit is suggested to be a precursor of quantum effects and of inflation-like processes at microscopic scales. Citation: Gueorguiev, V.G.; Maeder, A. Geometric Justification of Keywords: diffeomorphism invariant systems; reparametrization-invariant matter systems; matter the Fundamental Interaction Fields lagrangian; homogeneous singular lagrangians; relativistic particle; string theory; extended objects; for the Classical Long-Range Forces. -
J.M. Sullivan, TU Berlin A: Curves Diff Geom I, SS 2015 This Course Is an Introduction to the Geometry of Smooth Curves and Surf
J.M. Sullivan, TU Berlin A: Curves Diff Geom I, SS 2015 This course is an introduction to the geometry of smooth The length of an arbitrary curve can be defined (Jordan) as curves and surfaces in Euclidean space (usually R3). The lo- total variation: cal shape of a curve or surface is described in terms of its Xn curvatures. Many of the big theorems in the subject – such len(α) = TV(α) = sup α(ti) − α(ti−1) . as the Gauss–Bonnet theorem, a highlight at the end of the ··· ∈ t0< <tn I i=1 semester – deal with integrals of curvature. Some of these in- tegrals are topological constants, unchanged under deforma- This is the supremal length of inscribed polygons. (One can tion of the original curve or surface. show this length is finite over finite intervals if and only if α Usually not as level sets (like x2 + y2 = 1) as in algebraic has a Lipschitz reparametrization (e.g., by arclength). Lips- geometry, but parametrized (like (cos t, sin t)). chitz curves have velocity defined a.e., and our integral for- Of course, by Euclidean space [DE: euklidischer Raum] we mulas for length work fine.) n mean the vector space R 3 x = (x1,..., xn) with the stan- If J is another interval and ϕ: J → I is an orientation- dard scalar product [DE: Skalarprodukt] (also called an in- preserving homeomorphism, i.e., a strictly increasing surjec- P n ner product√ ) ha, bi = a · b = aibi and its associated norm tion, then α◦ϕ: J → R is a parametrized curve with the same |a| = ha, ai). -
Lagrangian Dynamics of Submanifolds. Relativistic Mechanics
JOURNAL OF GEOMETRIC MECHANICS doi:10.3934/jgm.2012.4.99 c American Institute of Mathematical Sciences Volume 4, Number 1, March 2012 pp. 99{110 LAGRANGIAN DYNAMICS OF SUBMANIFOLDS. RELATIVISTIC MECHANICS Gennadi Sardanashvily Department of Theoretical Physics Moscow State University Moscow, Russia (Communicated by Manuel de Le´on) Abstract. Geometric formulation of Lagrangian relativistic mechanics in the terms of jets of one-dimensional submanifolds is generalized to Lagrangian theory of submanifolds of arbitrary dimension. 1. Introduction. Classical non-relativistic mechanics is adequately formulated as Lagrangian and Hamiltonian theory on a fibre bundle Q ! R over the time axis R, where R is provided with the Cartesian coordinate t possessing transition functions t0 = t+const. [1,5,7,8, 11]. A velocity space of non-relativistic mechanics is a first order jet manifold J 1Q of sections of Q ! R. Lagrangians of non-relativistic mechanics are defined as densities on J 1Q. This formulation is extended to time- reparametrized non-relativistic mechanics subject to time-dependent transforma- tions which are bundle automorphisms of Q ! R [5,8]. Thus, one can think of non-relativistic mechanics as being particular classical field theory on fibre bundles over X = R. However, an essential difference between non-relativistic mechanics and field theory on fibre bundles Y ! X, dim X > 1, lies in the fact that connections on Q ! R always are flat. Therefore, they fail to be dynamic variables, but characterize non-relativistic reference frames. In comparison with non-relativistic mechanics, relativistic mechanics admits trans- formations of the time depending on other variables, e.g., Lorentz transformations in Special Relativity on a Minkowski space Q = R4. -
Investigation of the History Education Researches in Turkey in Terms of Some Variables (Master's Theses And
Universal Journal of Educational Research 5(9): 1529-1534, 2017 http://www.hrpub.org DOI: 10.13189/ujer.2017.050910 Investigation of the History Education Researches in Turkey in Terms of Some Variables (Master's Theses and Dissertations Sample) Mehmet Elban Department of Social Sciences Education, Faculty of Education, Bayburt University, Turkey Copyright©2017 by authors, all rights reserved. Authors agree that this article remains permanently open access under the terms of the Creative Commons Attribution License 4.0 International License Abstract The purpose of this research study is to of the national identity crisis experienced in this period. examine the master’s theses and dissertations carried out After the 1900s, the search in history education continued about history education research in Turkey in terms of and with the foundation of Turkish Republic, history certain variables. The study is a qualitative research and it education took shape in line with the philosophy of the used documentary research design as a research method. The foundation of the Republic [1]. In-between these two periods, population of the research study is the master’s theses and Ziya Gökalp, like E. Durkheim, evaluated history as two dissertations done in the field of history education in Turkey. types: scientific and national history [2]. According to Ziya No sampling was used in the study but 176 master’s theses Gökalp, one of the leading intellectuals in the philosophy of and dissertations obtained from YOK National Theses the foundation of the Turkish Republic, one of them is real Centre data base with open access were included in the study history which discusses events in a cause and effect by 18 June, 2016.