PRESERVATION and METHODOLOGY Amber Ant Fossils

Total Page:16

File Type:pdf, Size:1020Kb

PRESERVATION and METHODOLOGY Amber Ant Fossils EN58CH30-LaPolla ARI 28 November 2012 16:49 PRESERVATION AND METHODOLOGY Amber Ant Fossils Fossilized ant bodies come in two forms: as inclusions entombed in amber (the polymerized form of fossil tree resin) (Supplemental Figure 3) or as imprints in rock (Supplemental Figure 4). Burial conditions differ between the two kinds of fossils, and both have inherent biases as to what Table 1 List of major ant fossil deposits from the Mesozoic and Cenozoic Major Mesozoic ant deposits Brief Percentage of geological insect fossils that Deposit name Location details Age are ants Ant taxa known Burmese amber Northern Myanmar Inclusions in Early Cenomanian 0.2% (44) Haidomyrmex, coniferous (98.79 ± 0.62 Sphecomyrmodes fossil resin mya) (93, 102) (Sphecomyrminae), (Burmite) Myanmyrma (uncertain subfamily), Burmomyrma (possibly Aneuretinae) (22, 118) Charentese Charente-Maritime, Inclusions in Late Albian to 1.2% (85) Gerontoformica amber France coniferous Early (uncertain subfamily), fossil resin Cenomanian Haidomyrmodes, (99–100 mya) (77) Sphecomyrmodes (Sphecomyrminae) (77, 84) Ethiopian Wenchit River, Inclusions in Late Cenomanian 3% (96) A fossil taxon yet amber central Ethiopia coniferous (93–95 mya) (96) undescribed in fossil resin Dolichoderinae Raritan (New Several localities in Inclusions in Turonian (92 mya) 0.05% (46) Sphecomyrma, Baikuris Jersey) amber the Atlantic coniferous (46) (Sphecomyrminae), Coastal Plain fossil resin Brownimecia (Brownimeciinae), Kyromyrma (Formicinae) by University of California - Davis on 01/15/13. For personal use only. (40, 41, 45, 46) Orapa Orapa, Botswana Imprints in Turonian (91 mya) 0.6% (28) Afropone (Ponerinae, but Annu. Rev. Entomol. 2013.58:609-630. Downloaded from www.annualreviews.org mudstone (28) see text), Afromyrma (Myrmicinae, but see text) (26) Kzyl-Zhar Kzyl-Orda Region, Imprints in Turonian (90 mya) N/A Cretopone, Petropone Kazakhstan mudstone (28) (poneromorphs, lenses in incertae sedis) (28) fluvial deposits Yantardakh East Taimyr Inclusions in Santonian 0.001% (18) Cretomyrma, Dlusskyidris Peninsula, North coniferous (85 mya) (36) (Sphecomyrminae) (18) Siberia, Russia fossil resin (retinite) (Continued) 612 LaPolla · Dlussky · Perrichot.
Recommended publications
  • Borowiec Et Al-2020 Ants – Phylogeny and Classification
    A Ants: Phylogeny and 1758 when the Swedish botanist Carl von Linné Classification published the tenth edition of his catalog of all plant and animal species known at the time. Marek L. Borowiec1, Corrie S. Moreau2 and Among the approximately 4,200 animals that he Christian Rabeling3 included were 17 species of ants. The succeeding 1University of Idaho, Moscow, ID, USA two and a half centuries have seen tremendous 2Departments of Entomology and Ecology & progress in the theory and practice of biological Evolutionary Biology, Cornell University, Ithaca, classification. Here we provide a summary of the NY, USA current state of phylogenetic and systematic 3Social Insect Research Group, Arizona State research on the ants. University, Tempe, AZ, USA Ants Within the Hymenoptera Tree of Ants are the most ubiquitous and ecologically Life dominant insects on the face of our Earth. This is believed to be due in large part to the cooperation Ants belong to the order Hymenoptera, which also allowed by their sociality. At the time of writing, includes wasps and bees. ▶ Eusociality, or true about 13,500 ant species are described and sociality, evolved multiple times within the named, classified into 334 genera that make up order, with ants as by far the most widespread, 17 subfamilies (Fig. 1). This diversity makes the abundant, and species-rich lineage of eusocial ants the world’s by far the most speciose group of animals. Within the Hymenoptera, ants are part eusocial insects, but ants are not only diverse in of the ▶ Aculeata, the clade in which the ovipos- terms of numbers of species.
    [Show full text]
  • Ants and the Fossil Record
    EN58CH30-LaPolla ARI 28 November 2012 16:49 Ants and the Fossil Record John S. LaPolla,1,∗ Gennady M. Dlussky,2 and Vincent Perrichot3 1Department of Biological Sciences, Towson University, Towson, Maryland 21252; email: [email protected] 2Department of Evolution, Biological Faculty, M.V. Lomonosov Moscow State University, Vorobjovy gory, 119992, Moscow, Russia; email: [email protected] 3Laboratoire Geosciences´ & Observatoire des Sciences de l’Univers de Rennes, Universite´ Rennes 1, 35042 Rennes, France; email: [email protected] Annu. Rev. Entomol. 2013. 58:609–30 Keywords by University of Barcelona on 09/10/13. For personal use only. The Annual Review of Entomology is online at Armaniidae, Cretaceous, Eusocial, Formicidae, Insect, Sphecomyrminae ento.annualreviews.org This article’s doi: Abstract Annu. Rev. Entomol. 2013.58:609-630. Downloaded from www.annualreviews.org 10.1146/annurev-ento-120710-100600 The dominance of ants in the terrestrial biosphere has few equals among Copyright c 2013 by Annual Reviews. animals today, but this was not always the case. The oldest ants appear in the All rights reserved fossil record 100 million years ago, but given the scarcity of their fossils, it ∗ Corresponding author is presumed they were relatively minor components of Mesozoic insect life. The ant fossil record consists of two primary types of fossils, each with inher- ent biases: as imprints in rock and as inclusions in fossilized resins (amber). New imaging technology allows ancient ant fossils to be examined in ways never before possible. This is particularly helpful because it can be difficult to distinguish true ants from non-ants in Mesozoic fossils.
    [Show full text]
  • Perrichot, V. 2014. a New Species of the Cretaceous Ant Zigrasimecia
    Myrmecological News 19 165-169 Vienna, January 2014 A new species of the Cretaceous ant Zigrasimecia based on the worker caste reveals placement of the genus in the Sphecomyrminae (Hymenoptera: Formicidae) Vincent PERRICHOT Abstract Zigrasimecia ferox sp.n. is described and illustrated based on workers fossilized in 99 million-year-old Burmese amber. The new specimens allow the confident assignment of Zigrasimecia BARDEN & GRIMALDI, 2013, a genus recently described based upon a gyne from the same amber deposit, to the extinct subfamily Sphecomyrminae, and more specifically to the tribe Sphecomyrmini. Key words: Stem-group ants, Formicidae, Sphecomyrmini, amber, Myanmar, Cenomanian. Myrmecol. News 19: 165-169 ISSN 1994-4136 (print), ISSN 1997-3500 (online) Received 16 July 2013; revision received 10 October 2013; accepted 24 October 2013 Subject Editor: Herbert Zettel Vincent Perrichot, Géosciences Rennes & OSUR, UMR CNRS 6118, Université de Rennes 1, Campus de Beaulieu bat. 15, 263 avenue du Général Leclerc, 35042 Rennes cedex, France. E-mail: [email protected] Introduction Ants are a rare component of the Cretaceous paleoentomo- caste. Owing to the few occurrences of Cretaceous ants, this fauna. Since the first description of Sphecomyrma, from is a very rare case of concurrent and synchronous research 92 million-year-old (Myo) New Jersey amber, 46 years ago work based on material from the same fossil deposit. I pro- by WILSON & al. (1967), only a few other Cretaceous ants vide herein the supplemental description and illustration have been discovered totalling no more than 28 species of the worker caste of Zigrasimecia, with the description described in 22 genera (LAPOLLA & al.
    [Show full text]
  • Fossil Ants (Hymenoptera: Formicidae): Ancient Diversity and the Rise of Modern Lineages
    Myrmecological News 24 1-30 Vienna, March 2017 Fossil ants (Hymenoptera: Formicidae): ancient diversity and the rise of modern lineages Phillip BARDEN Abstract The ant fossil record is summarized with special reference to the earliest ants, first occurrences of modern lineages, and the utility of paleontological data in reconstructing evolutionary history. During the Cretaceous, from approximately 100 to 78 million years ago, only two species are definitively assignable to extant subfamilies – all putative crown group ants from this period are discussed. Among the earliest ants known are unexpectedly diverse and highly social stem- group lineages, however these stem ants do not persist into the Cenozoic. Following the Cretaceous-Paleogene boun- dary, all well preserved ants are assignable to crown Formicidae; the appearance of crown ants in the fossil record is summarized at the subfamilial and generic level. Generally, the taxonomic composition of Cenozoic ant fossil communi- ties mirrors Recent ecosystems with the "big four" subfamilies Dolichoderinae, Formicinae, Myrmicinae, and Ponerinae comprising most faunal abundance. As reviewed by other authors, ants increase in abundance dramatically from the Eocene through the Miocene. Proximate drivers relating to the "rise of the ants" are discussed, as the majority of this increase is due to a handful of highly dominant species. In addition, instances of congruence and conflict with molecular- based divergence estimates are noted, and distinct "ghost" lineages are interpreted. The ant fossil record is a valuable resource comparable to other groups with extensive fossil species: There are approximately as many described fossil ant species as there are fossil dinosaurs. The incorporation of paleontological data into neontological inquiries can only seek to improve the accuracy and scale of generated hypotheses.
    [Show full text]
  • Burmese Amber Taxa
    Burmese (Myanmar) amber taxa, on-line checklist v.2017.3 Andrew J. Ross 02/10/2017 Principal Curator of Palaeobiology Department of Natural Sciences National Museums Scotland Chambers St. Edinburgh EH1 1JF E-mail: [email protected] http://www.nms.ac.uk/collections-research/collections-departments/natural-sciences/palaeobiology/dr- andrew-ross/ This taxonomic list is based on Ross et al (2010) plus non-arthropod taxa and published papers up to the end of September 2017. It does not contain unpublished records or records from papers in press (including on-line proofs) or unsubstantiated on-line records. Often the final versions of papers were published on-line the year before they appeared in print, so the on-line published year is accepted and referred to accordingly. Note, the authorship of species does not necessarily correspond to the full authorship of papers where they were described. The latest high level classification is used where possible though in some cases conflicts were encountered, usually due to cladistic studies, so in these cases an older classification was adopted for convenience. The classification for Hexapoda follows Nicholson et al. (2015), plus subsequent papers. † denotes extinct orders and families. New additions or taxonomic changes to the previous list (v.2017.2) are marked in blue, corrections are marked in red. The list now comprises 34 classes (or similar rank), 91 orders (or similar rank), 412 families, 639 genera and 819 species. This includes 6 classes, 57 orders, 373 families, 584 genera and 757 species of arthropods. Some previously recorded families have since been synonymised or relegated to subfamily level- these are included in parentheses in the main list below.
    [Show full text]
  • Description of a New Genus of Primitive Ants from Canadian Amber
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Center for Systematic Entomology, Gainesville, Insecta Mundi Florida 8-11-2017 Description of a new genus of primitive ants from Canadian amber, with the study of relationships between stem- and crown-group ants (Hymenoptera: Formicidae) Leonid H. Borysenko Canadian National Collection of Insects, Arachnids and Nematodes, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/insectamundi Part of the Ecology and Evolutionary Biology Commons, and the Entomology Commons Borysenko, Leonid H., "Description of a new genus of primitive ants from Canadian amber, with the study of relationships between stem- and crown-group ants (Hymenoptera: Formicidae)" (2017). Insecta Mundi. 1067. http://digitalcommons.unl.edu/insectamundi/1067 This Article is brought to you for free and open access by the Center for Systematic Entomology, Gainesville, Florida at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Insecta Mundi by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. INSECTA MUNDI A Journal of World Insect Systematics 0570 Description of a new genus of primitive ants from Canadian amber, with the study of relationships between stem- and crown-group ants (Hymenoptera: Formicidae) Leonid H. Borysenko Canadian National Collection of Insects, Arachnids and Nematodes AAFC, K.W. Neatby Building 960 Carling Ave., Ottawa, K1A 0C6, Canada Date of Issue: August 11, 2017 CENTER FOR SYSTEMATIC ENTOMOLOGY, INC., Gainesville, FL Leonid H. Borysenko Description of a new genus of primitive ants from Canadian amber, with the study of relationships between stem- and crown-group ants (Hymenoptera: Formicidae) Insecta Mundi 0570: 1–57 ZooBank Registered: urn:lsid:zoobank.org:pub:C6CCDDD5-9D09-4E8B-B056-A8095AA1367D Published in 2017 by Center for Systematic Entomology, Inc.
    [Show full text]
  • Evolution of the Insects
    CY501-C11[407-467].qxd 3/2/05 12:56 PM Page 407 quark11 Quark11:Desktop Folder:CY501-Grimaldi:Quark_files: But, for the point of wisdom, I would choose to Know the mind that stirs Between the wings of Bees and building wasps. –George Eliot, The Spanish Gypsy 11HHymenoptera:ymenoptera: Ants, Bees, and Ants,Other Wasps Bees, and The order Hymenoptera comprises one of the four “hyperdi- various times between the Late Permian and Early Triassic. verse” insectO lineages;ther the others – Diptera, Lepidoptera, Wasps and, Thus, unlike some of the basal holometabolan orders, the of course, Coleoptera – are also holometabolous. Among Hymenoptera have a relatively recent origin, first appearing holometabolans, Hymenoptera is perhaps the most difficult in the Late Triassic. Since the Triassic, the Hymenoptera have to place in a phylogenetic framework, excepting the enig- truly come into their own, having radiated extensively in the matic twisted-wings, order Strepsiptera. Hymenoptera are Jurassic, again in the Cretaceous, and again (within certain morphologically isolated among orders of Holometabola, family-level lineages) during the Tertiary. The hymenopteran consisting of a complex mixture of primitive traits and bauplan, in both structure and function, has been tremen- numerous autapomorphies, leaving little evidence to which dously successful. group they are most closely related. Present evidence indi- While the beetles today boast the largest number of cates that the Holometabola can be organized into two major species among all orders, Hymenoptera may eventually rival lineages: the Coleoptera ϩ Neuropterida and the Panorpida. or even surpass the diversity of coleopterans (Kristensen, It is to the Panorpida that the Hymenoptera appear to be 1999a; Grissell, 1999).
    [Show full text]
  • Burmese Amber Taxa
    Burmese (Myanmar) amber taxa, on-line checklist v.2017.1 Andrew J. Ross 28/02/2017 Principal Curator of Palaeobiology Department of Natural Sciences National Museums Scotland Chambers St. Edinburgh EH1 1JF E-mail: [email protected] http://www.nms.ac.uk/collections-research/collections-departments/natural-sciences/palaeobiology/dr- andrew-ross/ This taxonomic list is based on Ross et al (2010) plus non-arthropod taxa and published papers up to the end of 2016. It does not contain unpublished records or records from papers in press (including on-line proofs) or unsubstantiated on-line records. Often the final versions of papers were published on-line the year before they appeared in print, so the on-line published year is accepted and referred to accordingly. Note, the authorship of species does not necessarily correspond to the full authorship of papers where they were described. The latest high level classification is used where possible though in some cases conflicts were encountered, usually due to cladistic studies, so in these cases an older classification was adopted for convenience. The classification for Hexapoda follows Nicholson et al. (2015), plus subsequent papers. † denotes extinct orders and families. The list comprises 31 classes (or similar rank), 85 orders (or similar rank), 375 families, 530 genera and 643 species. This includes 6 classes, 54 orders, 342 families, 482 genera and 591 species of arthropods. Some previously recorded families have since been synonymised or relegated to subfamily level- these are included in
    [Show full text]
  • Burmese Amber Taxa
    Burmese (Myanmar) amber taxa, on-line checklist v.2018.1 Andrew J. Ross 15/05/2018 Principal Curator of Palaeobiology Department of Natural Sciences National Museums Scotland Chambers St. Edinburgh EH1 1JF E-mail: [email protected] http://www.nms.ac.uk/collections-research/collections-departments/natural-sciences/palaeobiology/dr- andrew-ross/ This taxonomic list is based on Ross et al (2010) plus non-arthropod taxa and published papers up to the end of April 2018. It does not contain unpublished records or records from papers in press (including on- line proofs) or unsubstantiated on-line records. Often the final versions of papers were published on-line the year before they appeared in print, so the on-line published year is accepted and referred to accordingly. Note, the authorship of species does not necessarily correspond to the full authorship of papers where they were described. The latest high level classification is used where possible though in some cases conflicts were encountered, usually due to cladistic studies, so in these cases an older classification was adopted for convenience. The classification for Hexapoda follows Nicholson et al. (2015), plus subsequent papers. † denotes extinct orders and families. New additions or taxonomic changes to the previous list (v.2017.4) are marked in blue, corrections are marked in red. The list comprises 37 classes (or similar rank), 99 orders (or similar rank), 510 families, 713 genera and 916 species. This includes 8 classes, 64 orders, 467 families, 656 genera and 849 species of arthropods. 1 Some previously recorded families have since been synonymised or relegated to subfamily level- these are included in parentheses in the main list below.
    [Show full text]
  • Hymenoptera: Formicidae)
    Zootaxa 3681 (4): 405–412 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2013 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3681.4.5 http://zoobank.org/urn:lsid:zoobank.org:pub:F68AE86E-29A9-47D3-89F6-2B98FD90B68A A New Genus of Highly Specialized Ants in Cretaceous Burmese Amber (Hymenoptera: Formicidae) PHILLIP BARDEN & DAVID GRIMALDI Division of Invertebrate Zoology and Richard Gilder Graduate School, American Museum of Natural History, New York, New York 10024-5192. E-mail: [email protected], [email protected] Abstract A new genus of ants, Zigrasimecia Barden and Grimaldi, is described for a new and uniquely specialized species, Z. ton- sora Barden and Grimaldi n.sp., preserved in Cretaceous amber from Myanmar. The amber is radiometrically dated at 99 myo. Zigrasimecia is closely related to another basal genus of ants known only in Burmese and French Cretaceous amber, Sphecomyrmodes Engel and Grimaldi, based in part on the shared possession of a comb of pegs on the clypeal margin, as well as mandible structure. Highly specialized features of Zigrasimecia include extensive development of the clypeal comb, a thick brush of setae on the oral surface of the mandibles and on the labrum, and a head that is broad, flattened, and which bears a crown of blackened, rugose cuticle. Mouthparts are hypothesized to have functioned in a unique man- ner, showing no clear signs of dentition representative of “chewing” or otherwise processing solid food. Although all ants in Burmese amber are basal, stem-group taxa, there is an unexpected diversity of mouthpart morphologies and probable feeding modes.
    [Show full text]
  • The Rise of the Ants: a Phylogenetic and Ecological Explanation
    PERSPECTIVE The rise of the ants: A phylogenetic and ecological explanation Edward O. Wilson*† and Bert Ho¨ lldobler‡§ *Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138-2902; ‡School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501; and §Theodor-Boveri-Institut fu¨r Biowissenschaften (Biozentrum) der Universita¨t, Am Hubland, D-97074 Wu¨rzburg, Germany Contributed by Edward O. Wilson, March 18, 2005 In the past two decades, studies of anatomy, behavior, and, most recently, DNA sequences have clarified the phylogeny of the ants at the subfamily and generic levels. In addition, a rich new harvest of Cretaceous and Paleogene fossils has helped to date the major evolutionary radiations. We collate this information and then add data from the natural history of the modern fauna to sketch a his- tory of major ecological adaptations at the subfamily level. The key events appear to have been, first, a mid-Cretaceous initial radia- tion in forest ground litter and soil coincident with the rise of the angiosperms (flowering plants), then a Paleogene advance to eco- logical dominance in concert with that of the angiosperms in tropical forests, and, finally, an expansion of some of the lineages, aided by changes in diet away from dependence on predation, upward into the canopy, and outward into more xeric environments. ecology ͉ evolution ͉ phylogeny ͉ sociobiology umanity lives in a world recently divided (4), comprising the myrmine and more derivative traits. The largely filled by prokaryotes, abundant and diverse Ponerinae and Burmese amber (10), containing spheco- fungi, flowering plants, nem- five other less prominent subfamilies.
    [Show full text]
  • The Oldest Ant in the Lower Cretaceous Amber of Charente-Maritime (SW France) (Insecta: Hymenoptera: Formicidae)
    Geologica Acta, Vol.2, Nº1, 2004, 23-29 Available online at www.geologica-acta.com The oldest ant in the Lower Cretaceous amber of Charente-Maritime (SW France) (Insecta: Hymenoptera: Formicidae) A. NEL 1 G. PERRAULT 2 V. PERRICHOT 3 and D. NÉRAUDEAU 3 1 Laboratoire d’Entomologie and CNRS UMR8569, Muséum National d’Histoire Naturelle 45 Rue Buffon, F-75005 Paris, France. E-mail: [email protected] 2 4 allée des Sophoras, F-92330 Sceaux, France. E-mail: [email protected] 3 Géosciences Rennes I Campus de Beaulieu, bâtiment 15, 263 Avenue du Général Leclerc, F-35042 Rennes Cedex, France. Perrichot E-mail: [email protected] and Néraudeau E-mail: Didier.Né[email protected] ABSTRACT Gerontoformica cretacica n. gen., n. sp., until now the oldest known ant, is described after a putative worker specimen, from the Uppermost Albian amber of France. Although its characters are those of modern ants, it does not fit in any recent ant subfamilies. KEYWORDS Insecta. Hymenoptera. Formicidae. n. gen., n. sp. Lower Cretaceous amber. France. INTRODUCTION and the fossil subfamily Sphecomyrminae (Dlussky, 1999a; Grimaldi and Agosti, 2000a). Ants are very rare in the Cretaceous. Until now the oldest known ants are a male specimen attributed to the Nevertheless, Poinar et al. (1999, 2000) put in doubt Formicinae or Dolichoderinae from the Lower Ceno- the attribution to ants of the Cretaceous genera Sphe- manian of France (amber of the Île d’Aix, Charente comyrma WILSON, CARPENTER and BROWN 1967 and Bron- Maritime) (Lacau et al., submitted) and undescribed wnimecia GRIMALDI, AGOSTI and CARPENTER 1997 and ‘primitive ants (Formicidae: Ponerinae n.
    [Show full text]