BlekingeInstituteofTechnology SchoolofElectricalEngineering,Karlskrona,Sweden Thesis Number: MEE09:76 Master’sThesisinElectricalEngineeringwithemphasison Internetsystems SIGNALING OVER PROTOCOLS GATEWAYS IN NEXT-GENERATION NETWORKS By AKINWANDEGBENGASEGUN gsak06@ student.bth.se August2009 Supervisor : GunnarRåhlem Departmentof&InternetSystems BlekingeInstituteofTechnology,Sweden. Examiner : GunnarRåhlem DepartmentofTelecommunication&InternetSystems BlekingeInstituteofTechnology,Sweden. ABSTRACT SignallingoverProtocolGatewaysareimportantelementsinthecurrentgenerationand next-generation networks. Signalling and protocol gateways provide interconnectivity among the various methods of signalling transport networks, like the TDM systems (E1/T1/J1), ATM systems (STM-1/OC3) and IP (SIGTRAN). The signalling and ProtocolgatewaysenableTDMA/ATM-basednetworknodestoconnecttoanIP-based application such as soft IP-switches andapplication servers. The gatewayadopts IETF SIGTRAN protocols, therebyallowinginteroperabilitywith third-partyequipment. This gatewayis usedinbuildingwireless andintelligent networkingsystems andto widening SS7 bandwidthonexitingnetworks. The gatewayitself uses SIGTRAN StreamControl TransmissionProtocol(SCTP)andM3UAadaptationlayertotransportsignallingtraffic throughIPnetworksremoteapplicationsorbetweengateways. The invention of software products such as Ulticom’s Signalware SS7 and SBC-915X provides a high performance, cost effective single slot solution for any signalling requirement supportingSS7, ATMandSIGTRAN protocols for 2G and3G networks. TheseproductssupportsMobility,Location,Payment,SwitchingandMessagingservices in wireless, IP andwirednetworks. Theyfurther provide interface options such as IP- basedM2PAlinks,M3UAconnectivity,SIPandtraditionalSS7links.Theyarealsoenable theplatformfordeveloperstocreateanddeployservicesintraditional,Next-Generation andconvergednetworks. Theseproductswithappropriatesoftwaremodulesmakesprovisionforasinglesolution that supports all protocols for narrow, broadband and IP signalling across T1/E1/J1, OC3/STM-1andEthernetinterfaces.SignallingcapabilitiessuchasSCTP,M2PA,M2UA, M3UA and SUA allowvoice, video and data networks to converge, thereby enabling carriers to increasinglyuse the opportunityprovidedbythe all-packet network. Typical applications are found in Base Station Controllers; Radio Network Controllers; Mobile SwitchingCentres;HLR/VLRS;SignallingGatewaysandSoft-switches.Othersarevoice over IP (VoIP), Media Gateways; GatewayGPRS Support Node (GGSN) andServing GPRSSupportNodes(SGSN)nodesforGPRSand3G;IntelligentNetworks;andBilling Mediation.

- ii-

ACKNOWLEDGEMENT First and foremost, I give thanks to Jehovah – the omnipotent, omniscient and omnipresent God for his guidance, protection, divine provision and making this educationalsojournareality. Mysincere gratitude to mylate father - PaAmos Akinwande. I also give thanks tomy motherforhersteadfastnessandprayerinmakingthisstruggleasuccess.Tomydearest, theloveofmylife–MaryAkinwande,thissuccessisalsoyours.ManythankstoMr.B.A Akinwande(late),Mr.KolawoleAkinwande,Mr.JuliusAkinwande,MrIsaacAkinwande, MrsToyinOyewole(NeeAkinwande),MrE.OFatoyinboandMr.A.A.Akintolafortheir financialassistanceandencouragement. I will not forget Mr Gunnar Råhlemfor his useful suggestions andcontributions while assessingthiswork.MyregardstotheLenaMagnussonandtheentirestaffofschoolof ElectricalEngineering.Iwillliketosaythankyoutomynumerousfriends,amongwhoare: PaulAyeme,StephenOkeke,OludeleOgundele,OlumideAjiboye,SolomonOsagie,Bah Abdul,AdebisiOlorunsinwaandSolomonOnoabhagbe.

- iii - TABLE OF CONTENTS ABSTRACT...... ii ACKNOWLEDGEMENT...... iii TABLEOFCONTENT……………………………………………………………………….iv CHAPTERONE 1.0INTRODUCTIONTOSIGNALINGOVERPROTOCOLSGATEWAYS……………...1 CHAPTERTWO 2.0SS7ANDATMSIGNALING...... 3 2.1INTRODUCTIONTOSS7...... 3 2.2SS7SIGNALINGLINKTYPES………………………………………………………...... 4 2.3ATMSIGNALING………………………………………………………………………....4 2.4MTPLAYERS...... 5 2.5SCCP...... 6 2.6TCAP...... 7 2.7ISUP...... 7 2.8SS7PERFORMANCEREQUIREMENTS...... 7 CHAPTER3 3.0SIGTRAN...... 9 3.1WHYSIGTRANINTHEFIRSTPLACE?...... 10 3.1.1UDP...... 10 3.1.2TCP...... 10 3.2SIGTRANARCHITECTURE...... 12 3.3SCTP...... 12 3.3.1MULTI-HOMING...... 14 3.3.2MULTI-STREAMING...... 15 3.3.3OTHERSCTPTRAITS...... 16 3.4USERADAPTATIONLAYERS...... 16 3.4.1IUA……………………………………………………………………………………....16 3.4.2M2PA...... 17 3.4.3M2UA...... 18 3.4.4M3UA...... 19 3.4.5SUA...... 20 3.5SECURITY...... 21 3.6INTEROPERABILITYTESTS...... 21 3.7COMMERCIALIMPLEMENTATIONS...... 22 CHAPTERFOUR 4.0DISCRETEEVENTSIMULATIONOFUMTSNETWORK…………………...... 24 4.1INTRODUCTIONANDGENERALMODELDESCRIPTION………………………..24 4.2UMTSPROTOCOLBACKGROUND…………………………………………………...25 4.3MODELARCHITECTURE……………………………………………………………....26 4.3.1UENODEMODELARCHITECTURE………………………………………………..26 4.3.2NODE-BMODELARCHITECTURE……………………………………………….....27 4.3.3RNCMODELARCHITECTURE……………………………………………………....29 4.3.4CNMODELARCHITECTURE………………………………………………………..30 4.3.5UMTSMODELARCHITECTURE…………………………………………………...... 33 4.4SCHEDULINGALGORITHMS…………………………………………………...... 34 4.4.1MACSCHEDULER…………………………………………………………………...... 35 4.4.2WEIGHTEDFAIRQUEUING(WFQ)………………………………………………...35

- iv - 4.4.3MODIFIEDDEFICITROUNDROBIN(MDRR)MODULE………………………....37 4.5INTEGRATIONWITHOPNETMODELER14.5……………………………………....38 4.5.1ESSENTIALSPARTSOFOPNET……………………………………………………..38 4.6SIMULATIONMODEL……………………………………………………………...... 38 4.6.1SIGNALFLOWS………………………………………………………………………..39 4.6.2PDPCONTEXTACTIVITATIONANDRABASSIGNMENT…………………...... 40 4.6.3RABASSIGNMENTWITHPRIORPDPACTIVATION………………………...... 42 4.6.4PDPCONTEXTMODIFICATIONWITHRABMODIFICATION………………….44 4.7NODESCONFIGURATION…………………………………………………………….47 4.8PERFORMANCEMETRICSFORSCHEDULERS……………………………………...49 4.8.1ANALYSISBASEDONQoSTRAFFIC…………………………………………...... 49 4.9SIMULATIONRESULTS………………………………………………………...... 50 4.9.1RESULTOFTHROUGHPUTINBOTHMDRRANDWFQ……………………...... 50 CHAPTERFIVE 5.0CONCLUSIONANDRECOMMENDATIONS……………………………………...... 54 5.1THESISSUMMARY……………………………………………………………………....54 5.2THESISCONTRIBUTION………………………………………………………………54 5.3RECOMMENDATION…………………………………………………………………..55 REFERENCES………………………………………………………………………………..56

- v- Chapter One 1.0 Introduction to Signalling and Protocol Gateways The Public Switched Telephone Network (PSTN) and other circuit/packet switched networkscompriseofasignallingnetworkandatrafficnetwork.Thesignallingnetwork takes responsibility of control of information required for the supervision and managementofcallstomanagethenetwork.Therearebasicallythreetypesofsignalling end points in a telephone network, these are: Service Control Point (SCP), Service SwitchingPoint(SSP)andSignalTransferPoint(STP)asshowninfigure1. Thehighdemandsforquick,portableandrobustmeansofcommunicationhas brought about asharpincrease in the amount of mobile users, which has consequently leadstoanincreaseinthedemandonsignallingnetworks.Real-timeapplicationsuchas Voice over IP (VoIP), Video Telephony, Teleconferencingandmanyother multimedia applications in today’s triple-playcommunication are services offeredbyIP, which has beenprovedtobethemostpromisingnetworkprotocolthatrendersimprovedresource utilizationwithlowmaintenanceandoperationalcosts[3]. TheSignalingTransportation(SIGTRAN)workinggroupbranchofInternetEngineering TaskForce(IETF)decidedtodevelopadifferentprotocolsuitefortransportingsignalling messageoverIPasresultofthefactthatSignalSystem7(SS7)inatraditionalPSTNisnot scalableinanIPnetworksduetohighexpenseinexpansion.Thechallengeishowtobring aboutcompatibilityinall-IPnetworkalsoknownastheNextGenerationNetwork(NGN) and traditional SS7 networks. This challenge led to the emergence of SIGTRAN. Consequently, the Scream Control Transmission Protocol (SCTP) was developed. The SIGTRANprotocolsuitecomprisesofSCTPandotherupperlayeradaptationprotocols likeSUA,M2PA,M2UAandM3UAwhichcancommunicatedirectlywithSS7protocols. SS7networkssupporthighperformanceofcallsduetoitslowlossandlowdelay,which arenotobtainableintraditionalIPprotocolssuchasTCPandUDP.TherebymakingTCP andUDPunacceptable,andSCTPbecomesachoiceoverthem. TheSCTPemploysamulti-homingfeaturewhichenablesittobecompatibleforsignalling toothertransportprotocol(TCPandUDP).Figure1SS7signallingpoints

Figure1SS7SignalingPoints:CourtesyofPerformanceTechnologies

-- 1- - The invention of software products such as Ulticom’s Signalware SS7 and SBC-915X provides a high performance, cost effective single slot solution for any signalling requirement, supportingSS7, ATMandSIGTRAN protocols for 2G and3G networks. TheseproductssupportsMobility,Location,Payment,SwitchingandMessagingservices in wireless, IP andwirednetworks. Theyfurther provide interface options such as IP- basedM2PAlinks,M3UAconnectivity,SIPandtraditionalSS7links.Theyalsoprovide theplatformfordeveloperstocreateanddeployservicesintraditional,Next-Generation andconvergednetworks.[1,2]. Sincethisconceptisanimportantcomponentintoday’sTriple-playcommunication,this thesisisaimedathavingabroadviewonSignallinginTraditionalandNextGenerations Networks with focus on SIGTRAN. It will be segmented into four parts, with introductiontoSignallingandProtocolGatewaysinchapterone.Chaptertwowilllookat the various SS7 signalling. SIGTRAN will be treated in chapter three. Signal flowin a typicalnewgenerationnetworkwillbeexaminedbycarryingoutdiscreteeventsimulation ofUMTSnetworkusingOPNETmodeller14.5,whichwillformchapterfour.Precisely,I willbelookingatthroughputasanimportantQoSmeasureontheUMTSnetworkwithin WFQandMDRRschedulingschemes.Theconclusionandsuggestionwillbeinchapter five.

-- 2- - Chapter Two 2.0 SS7 and ATM Signaling Common Channel Signaling System No. 7 (i.e. SS7 or C7) is a global standard for definedbyITU-T which defines the procedures andprotocol that networkcomponents in the PSTN relaymessage viadigital signallingnetworkto effect wirelessandwirelinecallsetup,routingandcontrol. TheSS7networkandprotocolareusedfor: • Basiccallsetup,management,andteardown • Wireless services such as personal communications services (PCS), wireless roaming,andmobilesubscriberauthentication • Localnumberportability(LNP) • Toll-free(800/888)andtoll(900)wirelineservices • Enhancedcallfeaturessuchascallforwarding,callingpartyname/numberdisplay, andthree-waycalling • Efficientandsecureworldwidetelecommunications • LearnaboutourSS7/IPsignalingproducts. 2.1 Introduction to SS7 Generally, in telecommunication networks signalling does occur in a network that is differentfromthepathwherevoiceistransmitted.Signalingmessagecontrolsphonecalls andalsoaffordsend-userswithserviceslikecall-setup,addressingand calltermination,andalsoprovidesinformationlikedialtoneandbusytone.Havingaccess to data bases initiates Intelligent Network (IN) with services like toll free 800/888 numbers,callingcards,callerID,andthree-waycalling. SS7doesnotapplicableonlyinthewirednetwork,butalsoapplicableforGSM,GPRS, EDGE,3GandVoIPthatrequiresignallingformanagementofmobilephoneservices; precisely, the simplest wireless call may need as much as six (6) times more of SS7 messages than does a wired call. SS7 does have the capacity of transporting Short MessagesServices(SMS)onthesignallinglinksthatthusresultsinalargevolumeoftraffic dueofthepopularityofthisservice. Basically,SS7networkisknowntobecircuit-switchedsystemwith56or64Kbit/slinks, andthisdoeslimitthetransmissioncapacitywhencomparedtoIPthatdoesnottiedto conventional telephone bandwidths. With the growing demandin the telecoms market today,theSS7networksmustbeheavilyloadedandneedmoreexpansion.Withthehigh demandforscalablesystemsandcheapinfrastructure,coupledwiththereasonthatalmost alltelecomssolutionsarenowbasedondatagramtraffichasIPaperfectsolution.Now, thefocusisbringingthesetwonetworksmethodstogether,andthelinkthatbindsthemis aSignalingGateway(SGW),thisembracesSS7andSIGTRANprotocolsandinterworking functionsthattranslatebetweenthesetwo.WheneverSS7isusedoverIP,atleast,oneor moreoftheunderlyingSS7layersareswitchedoverforSIGTRANlayers[4].TheseSS7

-- 3- - layers willbedefinedbrieflyin2.4, afterwhich the SIGTRANapproachis goingtobe describedindetails. 2.2 SS7 Signaling Link Types SS7 information are exchanged among network components via 56 or 64 kbps bi- directionalchannelsknownas signaling links .Signalingalwaysexistsas out-of-band on dedicated channels rather than in-band on voice channels. The SS7 protocol allows retransmission and error correction capabilities that provide continuous service in the eventofsignalinglinkorpointfailures.Thesignalinggatewaysareconfiguredeitheras STPorSEP(SignalingEndPoint).TheSignalinglinksarelogicallyorganizedbylinktype ("A" through "F") according to their use in the SS7 signaling network. There are six logicallylinktypeslabeled“A”,“B”,“C”,“D”,“E”,“F”withrespecttotheirusageinSS7 signalingnetwork.Figure2showsthevariousSS7signallinktypes.

Figure2SS7SignalingLinkTypes:CourtesyofPerformanceTechnologies An“A”(access)linkconnectsasignalendpointsuchasSSPorSCPtoanSTP.The“B” (bridge)linkconnectsanSTPtoanotherSTPsuchasSTPsfromonenetworktotheSTPs of another network. The difference between the "B" link and the "D" link is rather arbitrary, therefore these links can also be called "B/D" links The "C" (cross) link connects STPs that performs similar operations into a mated pair . The "C" link is employedwhenevertheSTPhasnoanyavailableroutetothedestinationsignallingpoint arisingfromlinkfailures.The"D"(diagonal)linkconnectssecondarysuchasregionalSTP pairtoaprimarySTPpairlikeaninter-networkgatewayinaquad-linkconfiguration.The differencebetweenthe"B"linkandthe"D"linkisratherarbitrary;thereforetheselinks canalsobecalled"B/D"links.An"E"(extended)linkconnectsanSSPtoanalternate STP. The "E" links offer an alternate signalling route incase an SSP's "home" STP is unreachableoveran"A"link.The"F"(fullyassociated)linkdoesconnecttwosignalling endpointssuchasSCPsandSSPs.The"F"linksdonotoftenbeenusedinnetworkswith STPs[5]. 2.3 ATM Signalling ATMmeta-signallingprovidesdynamicconnections,whicharemadeondemandandare released when transmission is totallycomplete. In ATMmeta-signalling, point-to-point

-- 4- - andpoint-to-multipointconfigurationsaresupported.Atpointofinstallation,apermanent connection which is alternative to dynamic connections is established. The permanent connectionisjustthat;itremainsconnectedallofthetime,unlessthereisafailure.Thisis analogoustopermanentvirtualcircuits. The signalling messages that are employed in establishing, maintaining, and releasing connectionsattheUNI aredefinedbyQ.2931.ThePSTNdoesnotemployQ.2931;it rather employs SS7 instead of Q.2931. SS7 protocol is compatible with Q.2931 at the Broadband ISUP protocol (BISUP). The Q2931 itself was developed from the ISDN signallingprotocol,Q.931. The ATMsignallingrequires highcomplexitythancurrent signalling. Asanexample, in situationthatacallerlaunchesavoicecall,therewillbeasignallingmessagethatwillbe launched, which will establish a connection for the voice. Supposing the caller further activates a camera for the purpose of videoconferencing, a separate connection is establishedforthevideopurposeofthecall.Thetwoconnectionsmustsatisfycorrelation andsynchronizationgoals. With broadcast signalling virtual channels connection establishment for applications supportofwhichsimilardataareforwardedtomultipledestinations.Thetwotypesare generalandselective.Ingeneral,signallingisallowedtobroadcasttoeveryendpointinthe user interface only, and not just every endpoint within the network. In selective, the network sends signalling to endpoints that fulfil a particular service requirement. This showsinessencethatATMmayplaceahighdemandonthecurrentavailableSS7network usedwithintheNNI.BISUPisaprotocoldevelopedtosupportATMservices,anditis also responsible for the expansion of SS7 links capacity beyond the available 64kb/s, moreoverSS7supportsmoredatabaseuses. SomeATMadvocatesmightsuggestthatSS7isnotneededagainbutmanyoftheRBOCs are continuously carrying out planning expansions to their SS7 networks due to the increasingdemandonSS7services.SS7networkoffersbeyondconnectionestablishment asinPSTN,itdoesprovideintelligentnetworkservicesandenhancedatabaseaccessto telephoneswitches.Otherusesarecellularapplicationsandlocalnumberportability.

ThereisnodoubtthatSS7willcontinuoustobemysteryinthedatacommunicationdue tothefactthatitisregardedasamurkytelephonecompanysolution.Inspiteoftheabove, itisobviousthat SS7isnotgoingintoextinctionandATMsignallingcannevertakeover the position of SS7 signalling. The purpose requirement of ATMsignalling is to fulfil signallingneedsattheUNIbutwillneveroffertheservicesneedoftheNNI[6].

2.4 MTP Layers The messages in SS7 signallingare basedon the Message Transfer Part (MTP), it is a reliable and connectionless link layer service in conventional SS7 networks which comprisesofthreelayerswhichequivalenttothethreelowestlayersoftheOSImodeli.e physicaldatalinkandthenetworklayers.TheMessageTransferPart(MTP)isseparated into three layers. The lowest layer is called MTP Level 1, this correspond to the OSI PhysicalLayer.MTPLevel1addressesthephysical,electrical,andfunctionalbehaviours ofthedigitalsignallinglink.PhysicalinterfacesdefinedincludeE-1(2048kb/s;3264kb/s channels),DS-1(1544kb/s;2464kb/schannels),V.35(64kb/s),DS-0(64kbps),andDS- 0A(56kbps).

-- 5- - MTPLevel2enablespreciseend-to-endmessagetransmissionviaasignallinglink.MTP Level2executeserrorcheckingflowcontrolandmessagesequencevalidation.Whenan erroroccursonasignallinglink,themessage(or setofmessages)isretransmitted.MTP Level2isequivalenttotheOSIDataLinklayer. MTP3 provides message routing between signalling points in the SS7 network. Every networkelementwhichhasMTP3areenabledwithanumericSS7addressknownaspoint codethatcanbeusedinroutingprocessasinIPaddresses.MTPLevel3re-routestraffic awayfromfailedlinksandsignallingpointsandcontrolstrafficwhencongestionoccurs. MTPLevel3isequivalenttotheOSINetworkLayer .Figure3showstheOSIreference modelandSS7protocolstack[7].

Figure3:TheOSIReferenceModelandtheSS7protocolstack.CourtesyofPerformance Technologies

2.5 SCCP The Signaling Connection Control Part (SCCP) offers both connectionless and connection-orientednetworkservicesaboveMTPLevel3.AsMTP3allowspointcodes whichenablesmessagesaddressingtoprecisesignalingpoints,SCCPoffers sub-systems numbersthatenablemessagesaddressingtoparticularapplicationsknownassub-systems atthesesignalingpoints.SCCPfunctionsasthetransportlayerforTCAP-basedservices likecallingcard,roaming,localnumberportability,personalcommunicationsservicesand free-phone(800/888)personalcommunicationsservices(PCS). TheSCCPisanintegralpartofthenetworklayeralongwithMTP3andbooststheMTP protocol with two distinguished elements: subsystem number (SSN) and Global Title Translation(GTT)thatareusedwhenrequired.SCCPdoesmakeprovisionforhowan STP exhibits translation (GTT), this an approach wherebythe destination signalingpointandsubsystemnumber(SSN)isknownfromdigitssuchasthe global title available in the signaling message. Since MTP was developed before SCCP, this responsible for its lack of some desirable functions like expanded addressing and connection oriented message transfer. The SSN allows the detection of some special softwareapplicationswithinthephysicalnode.TheMTPprotocolisnotsuitabletoroute messageswithglobaltitlessuchasTCAPmessages;thereforeSCCPisusedintransporting thesemessages[8].

-- 6- - 2.6 TCAP The TCAP (Transaction Capabilities Application Part) is known to be connectionless protocolwhichrunsaboveSCCP.Itperformsoperationsatremotenodesandtheresults areobtainedsuchasdatabasequeries.InformationreceivedaremadeusedofbyaTCAP applicationasinCustomizedApplicationsforMobileNetworkEnhanced Logic(CAMEL)orMobileApplicationPart(MAP)thatareknownasApplication Service Elements (ASEs). Both are integral parts of the SS7 stack and they have application in the extension of conventional Intelligent Network services applicable in wirelinetelephonenetworksintowirelessnetworkssuchastheGSMnetwork. TCAP allows the deployment of enhanced intelligent network solutions bysupporting non-circuitrelatedmessagesexchangeamongthesignalingpointsbyapplyingtheSCCP connectionless service. SSP makes use of TCAP in querying an SCP in knowing the routingnumber(s)attachedwithadialed800,888,or900numbers.AnSCPmakeuseof TCAP in returningthe response that contains the routingnumber or reject component backtotheSSP.TCAPqueryandresponsemessagesarealsousedtovalidatecallingcard calls.Whenamobilesubscriberroamsintoanewmobileswitchingcenter(MSC)area,the integrated visitor location register asks for the service profile information from the subscriber's home location register (HLR) by using mobile application part (MAP) informationcarriedwithinTCAPmessages AnapplicationusesTCAPtoqueryinformationatanothernodeortoreturnthe response.Thequeriescanprovideauserwithinformationsuchastheroutablenumberof an800numberorobtainingabillingnumberfromatelephonecallingcard.Inacellular network, when a mobile subscriber roams into a new MSC area, the Visitor Location Register(VLR)requestsinformationaboutthesubscriberinitsHLRusingMAP,andthe informationistransportedwithinTCAPmessages.TCAPmessagesareembeddedinthe SCCP fieldof anMSU.The TCAP informationconsists of atransactionportionanda componentportion[9]. 2.7 ISUP TheISDNUserPart(ISUP)isusedtodefinetheprotocolandproceduresusedinsetting- up,managing,andreleasingtrunkcircuitswhichtransportvoiceanddatamessagesover thepublicswitchedtelephonenetwork(PSTN).ISUPisapplicableinbothISDNandnon- ISDN services. Calls that originate andterminate on the same switch do not use ISUP signalling. Itreservestrunkcircuitsbetweenthecommunicatingsignalingpointsandlater releasesthemwhenoneoftheusersterminatesthecall.ISUPasaprotocolenablesISDN solutionsinthePSTN,andisalsoapplicablefornon-ISDNservices.TheISUPsignaling messagesusethetransportservicesofMTP3,whiletheSCCPinterfaceisusedforsome othersextraservices. Another SS7 protocol usedin circuit-switchednetwork is Telephone User Part (TUP). ThisprotocolofferssimilarservicesasthenewerprotocolISUP.Inmostcountries,ISUP hasreplacedTUP,butInsomepartsoftheworldsuchChina,theTUPstillsupportsbasic callprocessingandhandlesanalogcircuitsonly;whiledigitalcircuitsanddatatransmission capabilitiesareofferedbytheDataUserPart[4]. 2.8 SS7 performance requirements

-- 7- - Telephony,beingarealtimeservicemustperformexcellentlyforend-userssatisfaction.As amatteroffact,theITU-TrecommendationQ.706containsthesefollowingperformance requirements: Nomorethanonein10messagescanbelostduetofailureinthenetwork. Nomorethanonein10messagesmaybedeliveredunorderedorduplicated. NopartofaSS7networkshouldbeoutofservicemorethan10minutesperyear. Abovethis,theTCAPandISUParecharacterizewiththeirowntimingrequirementson responsetimesandprocessingtimeswhicharenotstatedinanyITU-Trecommendation. Though,SS7networksarelonginexistenceandhavebeenmodifiedandimprovedupon tomeasure-upwiththehighperformanceexpectationoflowlossandlowdelayexpected ofatelephonecall.Inordertomeasureupwiththeabovestatedrequirements,allnodesin thesignallingnetworkknownasSignalingPoints(SPs)areconnectedbyupto16linksto formalinkset.Theseareusedforloadsharingandforredundancyintheeventoflink failure[10].

-- 8- - CHAPTER THREE 3.0 SIGTRAN Nowwith lowcost, reliable, high bandwidth IP networks available for distribution of signallingequipment,theSS7SignalingGatewayofferstheopportunityofbridgingtheSS7 networkfromthetraditionalPSTNandMobileTDMinterconnectstoIP.TheInternet Engineering Task Force (IETF) working group on Signaling Transport (SIGTRAN) developednewrangeofprotocolsfortransportingSS7signallinginformationoverIP. These protocols comprise of various transport andadaptation protocols andwere later standardized, which are described in various RFCs on the IETF homepage. The deployment of the SIGTRAN protocols is the first major measure of merging SS7 networkswithIPnetworks.OnemajorobjectiveforusingIPismainlytorelieve-ofthe highlyloadedSS7networkspreparethemscalabilityfortherisinginnumbersoftelephone andmobilesubscribers. The SIGTRAN protocolarrayenablesforthebackhaulofSS7signallingoverIPwiththe IETF standards,whichenablesSVI_SGSS7SIGTRANGatewaycomplianceandreadily interconnecting with any SIGTRAN compliance environment. SS7 signalling gateway offersfullarrayofSIGTRANuseradaptionlayerssuchas M2UA, M2PA , M3UA and SUA therebyenabling various layers of the SS7 protocol to be presented into the IP environmentdependingontheinfrastructurerequirement. SIGTRAN solution is also applicable in interconnectivity of isolated islands of SS7 networksthatwouldhaveentailedexpensiveSS7infrastructure.Today,serviceproviders are migratingto all-IPnetworks usingsoft-IP switches to increase their market portfolio sincethevoicemarketcannotgeneratethemenoughrevenuetoremaincompetitiveinthe industry.Butthemainchallengeisperhapshowtoco-existthesesystemstoenhancethe servicestheyprovide[11].

Figure3a:AtypicalSS7toIPDeploymentwheretheSVI_SGSS7signallinggatewaycan be deployedto replace expensive dedicatedlong-haul SS7 links bybackhaulingthe SS7 signallingoverIP.CourtesyofSquireTechnologies[27] .

-- 9- -

Figure3b:AtypicalDistributedNetworkdeployedinadistributednetworkarchitecture delivering the SS7 signalling to a centralised soft-switch / media gateway controller. CourtesyofSquireTechnologies

3.1 WHY SIGTAN IN THE FIRST PLACE?

Inansweringtheabovequestion,weexaminethedesiredcharacteristicsofsignalling transportation,whichare: • Lowlossanddelay • Redundancyforthecaseoflinkfailure • Orderedandreliabletransfer • SecurityagainstDenialofService(DoS)

Generally,TransmissionControlProtocol(TCP)andUserDatagramProtocol(UDP) areusedformessagedeliveryacrossIPontheinternet,buttheseprotocolshavesome limitationswhichmake themunsuitableforreal-timesignalling/communication.The limitations TCP and UDP led the development of a new transport protocol by SIGTRAN-StreamControlTransmissionProtocol(SCTP)[4] . 3.1.1 UDP

The User Datagram Protocol (UDP) -RFC 768 is developedpurposelyto provide a datagrammodeofpacket-switchedcomputercommunicationintheenvironment of an interconnected set of computer networks. Thisprotocolpresumes thatthe Internet Protocol (IP) is offered as the underlying protocol. It makes provision for application programs in transporting messages to other programs with a minimum of protocol mechanism. The protocol is transaction oriented, and deliveryand duplicate protection are not guaranteed. All applications that require orderedreliable deliveryof streams of dataopt for the Transmission Control Protocol (TCP). The User Datagram Protocol is known to be connectionless transport protocol and does not intrinsically employacknowledgment(ACK)messagestoguaranteereliableandorderedtransportation. TheUDPismostlyhelpfulinsituationswherehightransmissionratesarerequired,but mustnotnecessarilyfulfiltheotherperformanceconditionsofsignallingmessages[12]. 3.1.2 TCP

TheTransmissionControlProtocol(TCP)-RFC793isamongthecentralprotocolsofthe Internet Protocol Suite. The centralityof TCP makes the entire suite to be most often referred to as "TCP/IP". While IP is responsible for lower-level transmissions from computertocomputerasainformationistransmittedacrosstheInternet,TCPhandles

-- 10 - - messages on higher level, primarilyconcerned with the two endsystems , such as aWeb serverandWebbrowser.Precisely,TCPoffersreliableandordereddeliveryofstreamof bytes from one program on one computer to another program on another computer. Among other common applications of TCP are file transfer, e-mail, secure shell and streamingmediaapplications.PartofTCPmanagementtasksarecontrollingmessagesize, messagesexchangeratesandnetworktrafficcongestion. TheTransmissionControlProtocolisknowntobebyteorientedtransportprotocolwhich offersastreamofbytesandguaranteeingitsordereddelivery.Thisisnecessaryparticularly duringtransmissionofhugevolumesofdataasapplicableinemailsapplicationandfiles transfer,butthestrictlyin-order-deliveryisresponsibleforitsunsuitabilityforsignalling messages.TCPishighlysensitivetodelayvariancearisenfromthepacketlossandmay thereforeledtoretransmissions.Whilewaitingforlostpacketforacknowledgement,the remaining packets will be delayed, known as head-of-line blocking. This usuallyled to unnecessarydelays for the remainingpackets; therefore TCP is unsuitable for real-time applications,suchasVoiceoverIP(VoIP). OneotherdisadvantageofTCPisitsvulnerabilitytoDoSattacks.InestablishingaTCP connection,theclientmustsendaSYNmessagetotheserverwhichisrepliedwithaSYN ACK.ThentheserverwillholdonforthecorrespondingACKfromtheclient,thelast stepinthethree-wayhandshakeintheTCPconnectionsetting.However,thisprocedure maybesusceptibletosometypeDoSattackknownasSYNattack,originatedfromthe numerousSYNmessagesthataresenttotheserverofwhichtheyutilizedsomememory resourcesandmaysubsequentlyenduptocollapsetheserverandlegitimateuserwillbe deniedofobtainingtheavailableservice.ThisscenarioisnottoleratedinSS7networkof whichtelephoneservicesareexpectedtobealwaysreadilyavailable[13]. TheTCPheadercomprisesof11fields,where10areneeded.The11thfieldisoptional (seethepinkbackgroundinTable3.1)andaptlylabeled"options". Table3.1 TCP Header Bits Bit offset 4–7 8–15 16–31 0–3 Destination 0 Sourceport port 32 Sequencenumber 64 Acknowledgmentnumber Data Window 96 Reserved CWR ECE URG ACK PSH RST SYN FIN offset Size Urgent 128 Checksum pointer 160 Options(optional) 160/192+ Data

-- 11 - - 3.2 SIGTRAN ARCHITECTURE TheSIGTRANprotocolsuitecomprisesofthetransportprotocolSCTP,alongsidewith various user adaptation (UA) layer protocols that are applicable in transportingof SS7 informationoverIP.TheSIGTRANarchitectureismadeupofthreelayers: • IPlayer, • Transportlayer(SCTP),and • Useradaptationlayer(e.g.M2PA,M2UA,M3UA,andSUA). InFigure3.2,thelowerthreelayersintheprotocolstackshowsthenewSIGTRAN Protocols, which substitutes the lower layers of the SS7 stack (MTP1 andMTP2), and thereby allowing transportation over IP. The Scream Control Transmission Protocol (SCTP)isatransportprotocollikeTCP,butwithsomechangestosuitSS7signalling.The useradaptationprotocolenablesitsSS7user(TCAP,SCCP,MTP3,ISUPetc.)nottobe awarethattheoriginallowerSS7layersarealreadysubstituted.Basedoneachtelephone networkcharacteristicfeatures,differentuseradaptationprotocolsmaybeemployed.

Fig3.2:SIGTRANProtocolsuite.CourtesyofSquireTechnologies Figure 3.2 above shows the SS7signallinggatewayprovidingafull range of SIGTRAN useradaptionlayers( M2UA, M2PA , M3UA and SUA )allowingfordifferentlayersofthe SS7 protocol to be presentedinto the IP environment dependingon the infrastructure requirement[4] .

Figure3.2b:TheMTP1andMTP2layersinthetraditionalSS7stack(left)aresubstituted bySIGTRANprotocols(right)thatallowssignallingoverIP. 3.3 SCTP Incomputersolutions,theStreamControlTransmissionProtocol(SCTP)isatransport layerprotocolperformingsimilarfunctionlikeotherprominentprotocolslikeUDPand TCP.Inaddition,itoffersmoreofthesimilarservicetraitsofboth,reliable,in-sequence transporting of messages with congestion control. Whenever there is no native SCTP

-- 12 - - supportinoperatingsystems,itisverylikelytotunnelSCTPoverUDP,andmappingTCP APIcallstoSCPones. IntransportingdataoveraconnectioninIP-networks,mostlyTCPorUDPisemployed. But,SS7signallingmessagesisknownofhavingverystringentlossanddelayrequirements, therefore TCP is not a reliable choice; since the delays are too long. Meanwhile, UDP cannot offer sufficient reliability. The SCTP protocol isveryequivalentto TCP sinceit offers both flow and congestion control mechanisms, although it has some major disparities,suchmulti-homingandmulti-streaming The StreamControl Transmission Protocol (SCTP) is developedto transportingPSTN signalling data via IP networks, and is competent of broader operations. SCTP is an applicationleveldatagramtransferprotocolthatoperatesontopofanunreliabledatagram solutionlikeUDP.Itoffersthefollowingservicestoitsusers

• Multi-homingassistance,itimpliesthatoneorbothendpointsofaconnectionmay have more than one IP address, thereby allowing transparent fail-over among redundantnetworkpaths. • ItDeliverdatainchunksbetweenseparatestreamstherebyeliminatingunnecessary head-of-lineblocking,asopposedtoTCPbyte-streamdelivery. • It enhances Path Selection and Monitoring, by selecting a primary data transmission path and subsequently performs testing the connectivity of the transmissionpath. • It also carries out Validation and Acknowledgment mechanisms by Protecting against flooding attacks and enabling notification of lost and duplicated data chunks. • It enhances the Improvement of error detection suitable for jumbo ethernet frames.

The developers of SCTP initial aimwas to transport telephony(SS7) over IP with the objectivetoduplicatereliabilityfeaturesofsignalingsystem7signalinginIP.Thisproposal from IETF is called SIGTRAN. Table 3.1 shows the comparison between various transportprotocols

SCTP is designed with appropriate congestion avoidance behaviour and resistance to floodingandmasqueradeattacks.AnSCTPdatagramiscomposedofacommonheader andchunks.Thechunkscontaineithercontrolinformationoruserdata[14,15].Figure3.3 showstheformatoftheSCTPheader: 2bytes 2bytes SourcePortNumber DestinationPortNumber VerificationTag Adler32Checksum

Figure3.3a:SCTPheaderformat.

-- 13 - - Feature Name UDP TCP SCTP DCCP

Connectionoriented No Yes Yes Yes

Reliabletransport No Yes Yes No

Unreliabletransport Yes No Yes Yes

Preservemessageboundary Yes No Yes Yes

Ordereddelivery No Yes Yes No

Unordereddelivery Yes No Yes Yes

Datachecksum Yes Yes Yes Unsure

Checksumsize(bits) 16 16 32 Unsure

PathMTU No Yes Yes Yes

Congestioncontrol No Yes Yes Yes

Multiplestreams No No Yes No

Multi-homingsupport No No Yes Unsure

Bundling/Nagle No Yes Yes No

Table3.3:Comparisonbetweentransportlayers 3.3.1 Multi-homing AnodewithseveralIPaddresseswhereeachIPaddresspairbetweentwonodesknownas path is calleda multi-homednode. In an SCTP connection (in SCTP this is calledan “association”),eachnodechoosesaprimarypath.Incaseoffailureoccurrencealongthis path, retransmissions are transported via a substitute possible path. Every path is characterized with heartbeat data that shows an active or inactive mode. After some numbersofretransmissions,apathisassumedto be inactiveandanewpathisselected, andifpathactive,thenitgainsthestatusof new primary path.Themulti-homing concept

-- 14 - - allowsnetworktoreroutedatatootherIPaddresses, andthereby thenetworkismore tolerant of physical link failures. In typical SS7 network there are always at least two physicallyseparatelinksoverdataaretransmitted . MostperhapsthatSIGTRANmust offer IP-solutionwiththequalityoftheSS7network;themulti-homingfeaturemaybe embracedtoobtainthesamelevelofredundancy. 3.3.2 Multi-streaming

The concept of multi-streamingis employedto protect against head-of-line blocking, a commonoccurrenceinTCP.WhenasignallingpacketislostinaTCP-stream,thewhole connection is blocked when waiting for a retransmission, which leads to head-of-line blocking. The delay for recovering the lost data may take some seconds, this not acceptableforphonecall.ThusinSCTP,anassociationbetweentwonodesmaycomprise anumberofstreams,witheachallocatedtoaspecificapplication,hencethesestreamsdo notblockeachotherineventofpacketdelays.CreationofmultiplestreamswithTCPis muchachievable,butitinvolvesopeningmanyTCPconnectionsforeachtofunctionasa stream All the connection initiates a Transport Control Block (TCB) at the server end that accommodatesalltheessentialdataabouttheconnection.TheTCBsgulpmemory,andits numbersarenumerousforabusysignallingpointwithseveralclients,thusmultipleTCP connectionsisnotapopularsubstitute.MeanwhiletheuseofonlyoneSCTPassociation withstreamsinsteadofseveralTCPconnectionspreventstheavoidanceofunnecessary setuptimes[14]. Figure3.3b:Multi-Streamingconcepttoovercome head-of-lineblocking

-- 15 - - Figure3.3c:Themulti-streamingfeatureavoidshead-of-lineblocking 3.3.3 Other SCP Traits MessageBoundaryPreservation:AsTCPisknowntobebyteorientedprotocol,SCTP isclassifiedasmessageorientedprotocolwhichsetsoneormultiplefullsignallingdata intoanSCTPmessage.Ingeneral,anSCTPmessagecomprisesofacommonheader andseveralchunks.Thechunksenclosetheuserdataofdifferentspans. OutofOrderTransmission:WhileTCPnodeacceptspacketsinchronological Order,SCTPontheotherhandcansendSCTPpacketseitherinorderoroutoforder, basedontheapplicationpreference.But,whenitcomestosignalling,thesequentialorder withineverystreamorcallisimperative,butnotbetweentheseparatestreams. Cookies: SCTP and TCP both undergo a handshake before setting up an end-to-end connection.WhileTCPemploysathree-wayhandshake,SCTPontheotherhandemploys afour-wayhandshakethatconsistsofcookiestoshieldtheconnectionfromDoSattacks. DenialofService(DoS)attackstakesplacewheneveranattackerdeniesaservicefroma rightful user. An SCTP handshake is launched by an INIT message which comprises variousbasicassociationparametervalues,suchasinitialTransmissionSequence[4]. 3.4 USERS ADAPTATION LAYERS 3.4.1 IUA

ThearchitecturethathasbeendefinedforSCNsignallingtransportoverIPusesmultiple components,includinganIPtransportprotocol,asignallingcommontransportprotocol andanadaptationmoduletosupporttheservicesexpectedbyaparticularSCNsignalling protocol from its underlying protocol layer. IUA defines an adaptation module that is suitableforthetransportofISDNQ.921-UserAdaptationLayer(e.g.,Q.931)messages. TheIUAlayerperformsthefunctionsasfollows: • Mapping OnefunctionoftheIUAlayerisupholdingamappingoftheInterfaceIdentifier to a physical interface on the Signaling Gateway. Typical examples of physical interfaceareT1line,E1lineorADSLline,andmayincorporatetheTDMtimeslot. Thus, for a specified interface the Signaling Gateway(SG) could recognize the connectedsignallingchannel.Hence,IUAlayersonbothMGCandSGareableto maintainthepositionofTEIsandSAPIs. • StatusofASPs TheIUAlayerontheSignalingGatewayupholdsthestatusoftheASPsbeing supported.ThechangesinthestatusanASPisduetothereceptionofpeer-to- peermessagesorreceptionofindicationsfromthelocalSCTPassociation.

-- 16 - - • SCTPStreamManagement SCTPenablesuserstoindicatethenumberofstreamswhichcouldbeopenedat initialization.Thepropermanagementofthesestreamsisresponsibleforbythe IUAlayer.Duetotheunidirectionalnatureofstreams,theIUAlayerisunawareof thenumberofstreamtoInterfaceIdentifiermappingofitspeerIUAlayerrather theInterfaceIdentifierislocatedintheIUAmessageheader. • SeamlessNetworkManagementInterworking Also,theIUAlayerontheSGconveyswarningofunavailabilityoftheIUA-User (Q.931)tothelocalLayerManagement,wheneverthepresentlyactiveASP changesfromtheACTIVEstatus.TheLayerManagementmayrequestQ.921of takingappropriateaction,wheneveritdeemsnecessary. • CongestionManagement WhenevertheIUAlayeriscongested,readingfromtheSCTPassociationtoflow controlfromthepeerIUAmightstop 3.4.2 M2PA (MTP2-User Peer-to-Peer Adaptation Layer) MTP2-userPeer-to-peerAdaptationlayer(M2PA)isaSIGTRANprotocolthat transportsSS7MTPsignallingmessagesoverIPusingSCTP.TheM2PAprotocolalso supportsthetransportofSignalingSystemNumber7(SS7)MessageTransferPart(MTP) Level3signallingmessagesoverInternetProtocol(IP)usingtheservicesoftheStream ControlTransmissionProtocol(SCTP).M2PAisalsousedbetweenSS7SignalingPoints usingtheMTPLevel3protocol.TheSS7SignalingPointsmayalsousestandardSS7links usingtheSS7MTPLevel2tooffertransportofMTPLevel3signallingmessages.With theuseofM2PAallowsthepossibilityofmaintainingtheoriginaltopologyoftheSS7 network,implyingthatallthenetworkparametersincludingSignalingTransferPoints (STPs)andpointcodes.TheonlychangeisthattransportationofsignallingoccursoverIP insteadofovertraditional64Kbit/slinks TheimportanceforSwitchedCircuitNetwork(SCN)signallingprotocoldeliveryoveran IPnetworkisneeded,whichcomprisesmessagetransferbetweenthefollowing: • ASignalingGateway(SG)andaMediaGatewayController(MGC) • ASGandanIPSignalingPoint(IPSP) • AnIPSPandanIPSP Thus,thismaybringaboutforconvergenceofsomesignallinganddatanetworks.SCN signallingnodesdohaveaccesstodatabasesandotherdevicesintheIPnetworkdomain whichmaynotuseSS7signallingconnections.Similarly,IPtelephonyapplicationsmight haveaccesstoSS7services.Hence,whenevertraditionalsignallinglinksarechangedbyIP networkconnections,therearealwaysperformanceandoperationalcostbenefits ThisdeliverytechniqueillustratedatthisjunctureprovidesforfullMTP3messagecontrol andnetworkadministrationcompetenciesbetweenanytwoSS7nodesthatareexchanging informationoveranIPnetwork.Thus,anySS7nodeequippedwithanIPnetworklinkis knownasanIPSignalingPoint(IPSP).TheseIPSPsoperatelikestraditionalSS7nodesvia theIPnetworkratherthanSS7links[4].

-- 17 - - Thisdeliverytechniquesupports: • ManagementofSCTPtransportassociationsandtrafficratherthanMTP2Links • TheMTPLevel2/MTPLevel3interfaceborder. • SeamlessoperationofMTP3protocolpeersoveranIPnetworklink. • Asynchronousbriefingofstatuschangestomanagement

3.4.3 M2UA (MTP2-User Adaptation layer) M2UAadaptsMTP3toSCTP,anditisaprotocolthattransportssignallinginformation betweentheMTP3layeronamediagatewaycontroller(MGC)andtheMTP2layerona SGW as in VoIP system. Rather than being a peer-to-peer protocol as in M2PA, it functionsonaclient-serverbasis,wheretheMGC(IPnode)istheclientandtheSGW standsfortheserver. M2UAprovidesbackhaulingofSS7MTP2-UsersignallingmessagesoverIPbymeansof theStreamControlTransmissionProtocol(SCTP).Thescenariowhensignallingdatais transmittedoverIPfromthetopofoneSS7layertothebottomofanotherisreferredto as backhauling . The protocol enables communication betweenaSignallingGateway(SG) and Media Gateway Controller (MGC). The assumption is that the SG accepts SS7 signallingoverastandardSS7interfacebymeansoftheSS7MessageTransferPart(MTP) fortransportprovisioning.TheSGoperateslikeaSignallingLinkTerminal.

Figure3.4a:BackhaulingwithM2UAintwodistantnodes.TheSGWandtheMGCare notawarethattheyareremoteandeachnodethinksthatMTP3isdirectlycommunicating withMTP2 M2UAis repeatedlyemployedwhenever there is alow densityof physical SS7 links in variousareaofthenetwork,orinsituationwheretheSGWsareatanenormousdistance fromoneanother.Insuchsituation,backhaulingmaylinkmanyofthesesignallingnodes toasinglecentralizednetworkelement,therebyenablingallthedistantnodestomanagea singleSGW. M2UA is a cost saving option since it is implemented over an IP network and much cheaperthanSS7network.OneotherbenefitisthefactthateachoftheSGWthatjoinsa remote signallingpoint to aMGChas no point code. The point code isallottedto the MGCthatkeepsseveralSS7PCswhichifnotwouldhavebeenneededbyeach SGW[15].

-- 18 - - Figure3.4b:TwodistantSS7networkislandsareconnectedoverInternetthroughM2PA [25]. 3.4.3 M3UA (MTP3 User Adaptation)

Thisprotocolfunctionsonaclient-serverbasislikeM2UA,providingremoteconnection betweentwoSS7layersinaSGWandaMGC(IPnode).M3UAsupportstransportingof everySS7MTP3-UsersignallinglikeISUPandSCCPmessagesoverIP,withtheservices oftheSCTP.TheprotocolofferscommunicationbetweenaSignallingGateway(SG)and aMediaGatewayController(MGC)orIP-residentdatabase.Theassumptionisthatthe SGobtainsSS7signallingoverastandardSS7interfaceusingtheSS7MessageTransfer Part(MTP)inprovidingtransport.Thisprotocolcomprisesofacommonmessageheader trailedbyfactorsasdescribedbythemessagetype. TheM3UAheaderstructureisasfollows: 0 1 2 3 0 12 34 5 678901 2 34 56 78901 23 4 56 78901 Parametertag Parameterlength Parametervalue Figure3.4c:M3UAheaderstructure Just like M2UA, M3UAnever process signallingpackets; it onlysends packets to their respective destination. Thus, it implies that the M3UAin the IP node have no routing tables andcannot implement anyother purposes of the relatedMTP3 layer. Whenever M3UAisemployedinanall-IPnetworkwithoutanypureSS7nodes,itwillsubstitutethe MTP3 layers of the both IP nodes andtherefore functions in a point-to-point fashion called IP Signaling Point (IPSP) behaviour. M3UA is among the user adaptation layer protocols which eliminates most SS7 layers from the signalling points and thereby transformsthetopologyofthenetworktoamoreIP-likeone.Hencethesystemisthen bettermakinguseofthemoreresourcefulIPsolutionsandinexpensiveinfrastructure.In every IP network, M3UA is not constrained to the SS7 conditions of an upper limit messagesizeof272bytes,butinsteadmayutilizethelargestbandwidthavailableoverthe IPnetwork.TheadvantagesofM3UAasbeingabetterutilizationinIPnetworkandits flexibilityareresponsibleforitschoiceasthestandardprotocolforUMTSnetworks.

-- 19 - - Figure3.4d:BackhaulingusingM3UA . 3.4.4 SUA (Signalling Connection Control Part User Adaptation) Layer.

TheintegrationofSCNnetworksandIPnetworksenablesnetworkserviceprovidersto designall-IParchitecturesthatincludesupportforSS7andSS7-likesignallingprotocols. IPoffersaneffectivemeansoftransportinguserdataandalsoallowsoperatorstoenlarge theirnetworksandtoincorporatenewservices.Hence,mostofthesenetworksrequirethe interworkingbetweentheSS7andIPdomains. TheSUAprotocolspecifiesthedeliveryofSCCP-userdatai.e.MAPandCAPoverTCAP, RANAP,andnew-fangledthirdgenerationnetworkprotocolmessagesoverIPbetween twosignallingend-points.ThereisconsiderationgiventothetransportingfromanSS7SG to an IP signallingnode that was explainedin the frameworkarchitecture for Signaling Transport. SUA also support transport of SCCP-user data between two endpoints completelyenclosedwithinanIPnetwork. While migrating from SS7 network, IP-network service providers are interested in rendering many precious services from the traditional telecom networks like toll free, prepaidandroamingapplications.ThiswasmadepossiblebySIGTRANworkinggroup by defining the SCCP User Adaptation (SUA) layer that does not only offer the IP- networkwiththeseapplications.ItaswelleradicatesmoreoftheSS7stackthandoesthe otheruseradaptationprotocols[15]. ThedeliverytechniqueofSUAmeetsthebelowstatedcriteria: • Support for the management of SCTP transport associations betweenaSG and oneormoreIP-basedsignallingnodes. • Support for the asynchronous reportingof status changes to management. The protocol is modular in design, therebyenablingseparate implementations to be made,centredupontheenvironmentwhichisneededtobesupported.TheSUA doesneedtosupportSCCPconnectionlessservice,SCCPconnect-orientservice orevenbothservices,dependingupontheupperlayerprotocolthatissupported • SupportfortheseamlessoperationofSCCP-Userprotocolpeers • SupportfordistributedIP-basedsignallingnodes • SupportfortransferofSS7SCCP-UserPartmessagessuchasTCAP,RANAP) • SupportforSCCPconnectionlessservice. • SupportforSCCPconnectionorientedservice.

-- 20 - - Figure3.4e:BackhaulingwithSUA. . 3.5 Security

In atelephonyaccess network, access protocols are employedfor signalling, andinthe corenetworktheSS7protocolstackisemployedforsignalling.SS7networksaremostly physicallyinaccessibletoend-users,sotheyareconsideredtobeprotectedfromattacks, sincethenetworkequipmentisbehindlockeddoors. Theaccessnetworksontheotherhandareusedforend-usersignallingandheresecurity issuesarequiteimportant[4].Themajorthreatsareattackerswhicharepassiveandcould interpret messages on the network, hence monitoring passwords alongside with active attackerswhichdelete,write,andmodifymessages.Theimportantsecurityobjectivesare: integrity,denialofservice(DoS),authenticationofpeers,confidentialityofuserdata,and avoidance of unauthorized and inappropriate use. All SIGTRAN user adaptation layer protocolsuseSCTPfortransportationofdata,whichprovidessomesecurityfeaturessuch asresistanceagainstblinddenialofserviceattacks(flooding,masqueradingandimproper monopolizationofservices) Cookies: IntheSCTPfour-wayhandshakecookiesareexchanged;thisprevents attackersfromestablishingconnectionswithoutusingthemandinthatwayhindering legitimateusersfromestablishingconnections. Verificationtag: TheSCTPpacketheadercontainsaverificationtagthatindicatesifa packetbelongstoacertainassociation.Ifitdoesnot,itisdropped;thisprotectsthe usersfromaman-in-the-middleattack. 3.6 Interoperability tests

TheETSIPlugtestServiceisaprofessionalunitoftheEuropeanTelecommunications StandardsInstitute(ETSI)thatspecializesinarranginginteroperabilitytesteventsfor companies,organizations,andstandardizationbodiessuchasETSI,InternetEngineering TaskForce(IETF),InternationalTelecommunicationUnion(ITU).Thesetestsareinthe areaoftelecommunications,Internet,broadcasting,andmultimedia.Theparticipantsare operators,vendors,orequipmentmanufacturersthatwanttotesttheinteroperabilityof theirproductsbetweeneachother,beforeplacingthemonthemarket.Otherimportant participantsarestandardizationbodiesorotherworkinggroupsthataredevelopinganew standardandneedfeedbackbeforecontinuingthestandardizationwork. Duringtheinteroperabilityteststheimplementationsaretestedonatest-bedprovidedby thePlugtestService,withscenariosandcasesthathavebeensetupbyexperts.By

-- 21 - - doingtheseteststheengineerslearnatanearlystageofthedevelopmentprocesshow theirprototypeworkstogetherwithothermanufacturerssolutions.Thename, “PLUGTEST”,wasselectedtoreflecttheideaoftheinteroperabilityeventaimingat TESTingthatallimplementationscanPLUGintothenetworkortoitsspecific environmentaswellasinterworkingwitheachother,accordingtothehomepageof Plugtests [6]. Despite compatibilitywith a standard, there might not be interoperability betweentwoproductsusingthesamestandard. TherewasaSIGTRANPlugtests6-10September2004inFrancewherethe interoperabilitybetweenimplementationsofuseradaptationlayers(IUA,M2PA, M2UA,M3UA,andSUA)wastested.TheresultscanbefoundontheSIGTRAN mailinglist[25]andwillbeusedtoimprovetheinternetdrafts. 3.7 Commercial Implementations

TherangeofcommercialSIGTRANimplementationsislargeandmanyofthese companieshaveparticipatedinETSIPlugtestssuchasAdax,CiscoSystems,Ericsson, Hewlett-Packard, Siemens, andUlticom. The SIGTRAN functions are offeredas either hardware or software depending on the demands of the network provider. There are physical signalling gateways (SGW) as well as stacks and blades, and some companies implement just one protocol while others implement the whole protocol suite. Most companiesoffersignallinggatewaysthatenable2.5Gand3Gservices,IntelligentNetwork (IN)services,SMSoffload,SS7offload,andVoIP.OnthehomepageofoneoftheSCTP founders,RandallStewartisalistofseveraltelecomcompaniesthathaveextendedtheir businesstoSIGTRANtechnologyaswell. Performance Technologies was the first to announcesupport for the SCTP protocol in February2001,only6monthsafterstandardization.Otherswaitedfortheuseradaptation protocolstobestandardizedbeforeintroducingSIGTRANintheirproducts.Performance Technologiesisoneofthenewestcompaniesinthesignallingbusiness,whileothers,such asAdax,havebeenprovidingtraditionalsignallingsolutionsformorethan20years. Ingeneral,theSIGTRANsignallingproductslookthesame;mostcompaniesoffer SGWsthatarecustomer’sadaptabletoagreatextent.Dependingonthecustomer’s networksandneeds,aSGWcanbeprovidedwithanysuitableadaptation(UA)layer runningoverSCTPandwithdifferentcapacitiesdependingonthesizeandneedsofthe network.Table3.2comparesfourcompanies’SIGTRANSGWimplementations. ThreecompaniesofferaSGWasabox,whileUlticomhassoftwarethatisinstalledonan alreadyexistingsignallinginfrastructure.Adaxhasthelargestspectrumof hardwareand software variants, while the others generally have one or two products that differ in capacity.Themost frequentlyimplementedUAprotocolsare M3UAandSUA,andfor companies with one product, these are usuallythe two supported protocols. M2PA is availablefrommanycompanies;itsimplychangesatraditionalSS7linktoanIPlink,while the infrastructure and topology of the networks remain the same. According to PerformanceTechnologies,thecostforleasingaSS7linkcanbe$300perlinkpermonth intheU.S.anduptofivetimesthatamountforinternationallinks.Therefore,bysharing anIPlinkwithotherIPtraffic,thebandwidthcanmoreefficientlybeutilizedandthecost ofthelinkisreduced.Soeventhoughmostofthenetwork’sfunctionsremainthesame, the cost savings are substantial using M2PA, which reduces costs bytransporting SS7 messagesovershared-useIPnetworksratherthanoverdedicatedSS7links.

-- 22 - - Company Product Protocols Capacity Other Adax SGW M2PA,M2UA, 64-256SS7 128-253SCTP M3UA,SUA links associations Intellinet SGW M3UA,SUA 4,16SS7links 110 SCCP/ISUP persecond Performance SGWorblades M2PA,M3UA, 8,16,24SS7 16-32M3UA Technologies SUA links associations Ulticom SGWsoftware M2PA,M3UA, 4SS7links -- SUA Table3.7:Comparisonofcommercialimplementations. ThecapacityofaSGWcanbeexpressedandmeasuredinmanyways;onecommon metricisthenumberofSS7linksthatcanbeterminatedinit.Themorelinks,themore calls that can be processed at the same time. The latter is sometimes expressed in throughput,e.g.,110SCCPorISUPmessagespersecondat1Erlang.Another interestingquantitythatisprovidedbyAdaxandPerformanceTechnologiesisthe numberofSCTP/M3UAassociationsthatcanbeestablishedwithaSGW.Adax indicatesitsupports3to25secondaryIPaddressesontheirSGWs,whichprovides differentlevelsofredundancyforthenetworkwhenusingthemulti-homingfeature. SIGTRANproductsarewellestablishedinthemarketandtherearemanytochoose fromdependingontheneedsofeachcustomer.

Figure3.7:AdaxSignalingGateway Figure3.7b:APerformanceTechnologiesSG5600 PICMG®2.16-CompliantSignalingGatewayBlade

-- 23 - - Chapter Four 4.0 DISCRETE EVENT SIMULATION OF UMTS 4.1 Introduction and General Model Description ThischapterillustratesOPNETimplementationofthesignalflowswithintheUniversal Mobile Telecommunication Services (UMTS) model. The signal flows in UMTS is very important for determination of QoS measurements on the network. In this report, the QoSoftheUMTSwillbestudiedusingOPNETsimulator.

UniversalMobileTelecommunicationsSystem(UMTS)isathirdgeneration(3G)wireless protocolthatispartoftheInternationalTelecommunicationsUnion'sIMT-2000visionof aglobalfamilyof3Gmobilecommunicationssystems.UMTSisexpectedtodeliverlow- cost,high-capacitymobilecommunications,offeringdataratesupto2-Mbps.TheUMTS model suite enables modelling UMTS networks to evaluate end-to-end service quality, throughput,droprate,end-to-enddelay,anddelayjitterthroughtheradioaccessnetwork andcorepacketnetwork.Itcanalsobeusedtoevaluatethefeasibilityofofferingamixof serviceclassesgivenqualityofservicerequirements.Thismodelisavailableaspartofthe specializedmodellibrary.

TheUMTSmodelofthepacketwirelessnetworkisbasedon3 rd GenerationPartnership Project (3GPP) Release-5 standards. The network architecture of this release is divided intotheradioaccessnetwork(RAN)andthecorenetworkasshowninfigure4.0.The UMTSmodulemodelstheUMTSRANandtheUMTSfunctionalityofthecorenetwork (seehighlightedelementsinfigure4.0).TheradioaccessnetworkforUMTScontainsthe UserEquipment(UE),whichincludestheTerminalEquipment(TE)andMobileTerminal (MT), andthe UMTS Terrestrial Radio Access Network (UTRAN), which includes the Node-BandRadioNetworkController(RNC).

UMTS uses WidebandCode DivisionMultiple Access (W-CDMA) access scheme.This version of W-CDMA uses direct spreadwith a chip rate of 3.84 Mbps anda nominal bandwidth of 5 MHz. The model supports one of W-CDMA's two duplex modes: FrequencyDivisionDuplex (FDD). Time DivisionDuplex (TDD) is not supported.In FDDmode,uplinkanddownlinktransmissionsusedifferentfrequencybands.Theradio framehasalengthof10msandisdividedinto15slots.Spreadingfactorsvaryfrom256 to4foranFDDuplinkandfrom512to4foranFDDdownlink.Withthesespreading factors,dataratesofupto2Mbpsareattainable.

The packet domain core network includes two types of network nodes: servingGPRS support nodes (SGSNs) and the gateway GPRS support node (GGSN). The GPRS supportnodes(GSNs)includeallGPRSfunctionalityneededtosupportGSMandUMTS packetservices.SGSNsmonitoruserlocationandperformsecurityfunctionsandaccess control.TheGGSNcontainsroutinginformationforpacket-switched(PS)attachedusers and provides interworking with external PS networks such as the packet data network (PDN).Themodel'sCNnodesincludebothSGSNandGGSNfunctionality.

-- 24 - - The circuit switched (CS) core network, which is not currentlymodelled, includes the mobileswitchingcenter/visitorlocationregister(MSC/VLR).TheMSC/VLRisusedin the packet domain architecture to efficiently coordinate PS and CS services and functionality.TheHomeLocationRegister(HLR)containsGSMandUMTSsubscriber information.TheChargingGatewayFunctionality(CGF)collectschargingrecordsfrom theSGSN(s)andGGSN.TheEquipmentIdentityRegister(EIR)storesinformationabout user equipment identity. The HLR, CGF, andEIR are includedin this description for completeness,butarenotcurrentlymodelled[16].

Figure4.0 Overview of Packet Domain Architecture. Source from OPNET Modeler Documentation 4.2 UMTS Protocol Background Thepacketdomaincorenetworkincludestwonetworknodes:theservingGPRSsupport node(SGSN)andthegatewayGPRSsupportnode(GGSN).TheGPRSsupportnodes (GSNs)includesalltheGPRSfunctionalityrequiredtosupportGSMandUMTSpacket services.Usingthenotationdefinedinfigure4.0,3G-SGSNand3G-GGSNrefertothe UMTS functionalityof the SGSN andGGSN respectively. The SGSN monitors users' locationandperformssecurityfunctionsandaccesscontrol.TheGGSNcontainsrouting information for packet-switched (PS) attached users and provides interworking with externalPSnetworkssuchasthepacketdatanetwork(PDN).Thecircuitswitched(CS) corenetworkincludesthemobileswitchingcenter/visitorlocationregister(MSC/VLR). TheMSC/VLRisusedinthepacketdomainarchitecturetocoordinatePSandCSservices andfunctionalitymoreefficiently.

The association between SGSN and MSC/VLR is created, for example, to coordinate usersthatarebothGPRS-attachedandIMSI(InternationalMobileSubscriberIdentity)- attached. The Home Location Register (HLR) contains GSM and UMTS subscribers' information.TheChargingGatewayFunctionality(CGF)collectschargingrecordsfrom

-- 25 - - theSGSNandGGSN.TheEquipmentIdentityRegister(EIR)storesinformationabout userequipmentidentity.

4.3 Model Architecture

4.3.1 UE Node Model Architecture

Three types of UEs are supported in the UMTS model: simple mobile stations (umts_station),advancedworkstations(umts_wkstn),andadvancedservers(umts_server). TheUEnodescanbemodelledaseitherfixed(fix)ormobile(mob).Usethemobilenode whentheUEthataremodelingmovesduringthesimulation.Simulationruntimescanbe reducedbyusingthefixednodestomodelUEsthatdonotmoveduringsimulation.

TheUMTSstationmodelshowninfig4.1includesanapplicationlayerthatfeedsdirectly intotheGMMlayer.ItalsoincludestheRLC/MAClayer,aradiotransmitterandreceiver, andoneantenna.TheadvancedworkstationandserverincludethefullTCP(UDP)/IP protocolstackbetweentheapplicationlayerandGMMlayer.

TheGMMlayercontainsfunctionsfromtheGMM,GSM,andRRClayers.Ithasmobility management functions (such as GPRS attach), session management functions (such as PDP context activation), and radio resource control functions (such establishment and release of radio bearers). The RLC/MAC layer contains the RLC and MAC layers. It includespriorityhandlingofdataflows,thethreetypesofRLCmodes,andsegmentation andreassemblyofhigher-layerpackets.

ThelinksbetweentheradiotransmitterandtheRLC/MAClayerandbetweentheradio receiverandtheRLC/MAClayerrepresenttransportchannels.Ontheuplink,therecan beonerandomaccesschannel(RACH),onecommonpacketchannel(CPCH),andone dedicated channel (DCH) where signalling and data traffic converges. Each transport channelinthededicatedchannelhasauniquespreadcodethatdistinguishesitfromother transportchannels.Onthedownlink,therecanbeoneforwardaccesschannel(FACH), onedownlinksharedchannel(DSCH),oneacquisitionindicatorchannel(AICH),andone dedicated signalling channel per user, and up to four data channels. The number of signallinganddatachannelsonthedownlinkisequaltothenumberofsignallinganddata channelsontheuplink;theexceptiontothisistheDSCH,whichhasoneextrachannel. Eachchannelisassignedadifferentspreadcodeandtrafficonallchannelscanbesent simultaneously.

-- 26 - -

Figure4.1SimpleandFull-ProtocolStackUENodeModels

TheRLCisassignedalogicalchannelaccordingtoanapplication'sDiffServcharacteristics. MAC uses a queuingscheme in combination with logical channel weights/priorities to multiplexandscheduledatafromlogicaltotransportchannels.Logicalchannelstransport control/databetweenL2/RLCandL2/MAC.Transportchannelstransportdatabetween L2/MACandL1.UserscanmaphigherlayerdatatologicalchannelsusingeitherToSor DiffServpriorityhandling, andmultiplex logical channels to transport channels usinga queuing scheme. This capability allows custom classes to be defined (i.e., prioritizing certaincellphonetrafficsourcesoverothers),andincreasesthegranularityofapplication performancemetricstoobserveschedulingbehaviour.

TheGMMlayerhasfourqueues,oneforeachQoSclasstheUEcansupport.Whenadata packet from the application layer arrives at the GMM layer, it is forwarded to the RLC/MAClayerifachannelhasalreadyreceivedaRABsetupmessagefortheRABof thepacket'sQoSclass.Otherwise,thepacketisenqueuedattheGMMlayerinthequeue correspondingtoitsQoSprofile.TheRLC/MAClayerusesqueuestotransmitpackets coming from higher layers, to retransmit packets in RLC acknowledged mode, and to receive packets fromlower layers andreassemble themto buildthe PDUs fromthese packets. Eachcategoryrequires one queue forsignallingandfour queues for eachQoS supported.

4.3.2 Node-B Model Architecture

-- 27 - - TheNode-Bmanagesthenetwork'sairinterfaceforUEsinthesamesectorastheNode- B.TherearebothATMandIP-enabledNode-Bs.Themodelsuiteincludesasingle-sector Node-B, athree-sector Node-B, andasix-sector Node-B. AnRNCconnects to one or moreNode-BstocommunicatewiththeUEsofthenetworkandtomanagemultiplecalls.

The Node-B node models include one node_b processor module for each sector it manages.Thenode_bprocessormoduleisconnectedtoanATMorIPprotocolstack,a transmitter module, and a receiver module. Each packet stream between the node_b moduleandthetransmitterrepresentsadownlinkchannelandeachstreambetweenthe node_bmoduleandthereceiverrepresentsanuplinkchannel.Inthedownlinkdirection, packets are forwarded to the transmitter on the FACH or DSCH streams, or on the dedicatedchannel viaop_pk_deliver. In the uplinkdirection, all packets travel over the RACH,CPCH(notmodeledinthecurrentrelease),orDCHstreams.AllDCHpackets convergeattheDCHinputstream,regardlessoftheirchannelorspreadingcode.

When the simulation starts, Node-Bs initialize the data structures used in the pipeline stages,setsradiotransmitterandreceiverattributesforallUEsandNode-BsintheUMTS network(onlythefirstNode-Btostartperformsthistask),andinitializesATM-VCorIP connectionstotheRNCforeachQoSclassandsignallingdatachannel.

Besides relayingpackets between UEs andthe RNC, the Node-B also assists the RNC withradioresourcemanagementthroughNBAP(Node-BApplicationProtocol)signalling messages.WhentheRNCreceivesarequesttoaddanewradiolink,itinformstheNode- Boftheadditionofthislinkforthecall.TheNode-Bthenrespondstotherequestwith assignedspreadingcode for the radio link. A similar communication happens between Node-B and RNC for radio link deletions. RNC informs Node-B about the deletion request,andNode-Bfreesthespreadingcodeassignedforthatlink,beforerespondingto theRNC.

When the RNC receives a request to modify a radio link, it informs Node-B of the modificationofthislink.Oncecomplete,Node-BrespondstotheRNC.

-- 28 - -

Figure4.2Node-BNodeModel

4.3.3 RNC Model Architecture TheRNCmanagestheresourcesoftheairinterfaceofalltheUEsonNode-Bsserviced bytheRNC.TheRNCdoesthefollowingmanagementtasks:

• CoordinatestheadmissioncontrolprocessofestablishingandtearingdownRABs forUEsrequestingserviceovervariousQoSclasses. • Findsneededresourcesfornewrequestsbyreorganizingtheresourceallocations andnegotiating/renegotiatingQoSparametersonneworalreadyestablishedRABs. • Manages the handovers of UEs between its Node-B due to UE's movements betweenthecells. • BufferspacketsdestinedforUEsperQoSclass. • CommunicateswiththeSGSN(s)allowingtheSGSN(s)tosendandreceivedatato andfromtheUEsitservices. • PerformsrelatedtasksasthepeeroftheRLCandMAClayersoftheservedUEs. • Monitorstheactivityontheestablishedradiobearerstotearthemdownincaseof inactivity.

The RNC Node model consists of the "RNC Manager" andthree childprocesses that performthe functionalityof the RNC. The RNC Manager has nine ATMor IP stacks attachedtoit,oneofwhichconnectstotheSGSN(s)servicingtheRNC.Theothereight willconnecttoNode-BATMorIPstacks.TheRNCprocessmodelscandeterminewhich

-- 29 - - typeofnodeexistsattheotherendofanygivenconnection,sotheRNCcanconnectany ofthesestackstoeitheraNode-BorSGSNsolongasnomorethanoneRNCconnects toitandatleastoneNode-Bconnectstoit.Thetotalnumberofsupportednode-Bscan beincreasedbyaddingmoreATMorIPstackstothenodestructure.

Figure4.3RNCNodeModel

Figure4.3bRNCNodeModel

4.3.4 CN Model Architecture

ThemodelincludestwooptionsformodellingCNnodes:

CNnodemodelscombineSGSNandGGSNfunctionality.

• Gateway CN node: generic gateway nodes that include SGSN and GGSN functionality • Simple CN node: a simple SGSN node that includes UMTS functionality and packet-switchingfunctionalitybetweentheSGSN'sUEstationnodes

-- 30 - - SSGNandGGSNnodemodelsletyoumodeltheCNcomponentsindividually:

• GGSNnodes • SGSN nodes: generic SGSN nodes that canconnect to upto 8 RNCs andone GGSN

The simple CN node model figure 4.4 includes the SGSN module and variable ATM stacksforcommunicationswiththeRNCs.Youcanconfigurethenodes'sNetworkDelay attributetomodelthedelaythatwouldbeintroducedbythenetworkcloudbetweenthe sourceanddestinationUMTSnetworkwithinthenodemodel.

Figure4.4SimpleCNNodeModel:umts_sgsn

Figure4.4bSimpleCNNodeModel:umts_sgsn

ThegatewayCNnodemodels,umts_ethernet_slip8_gtwyor umts_ethernet_slip8_large_gtwy,includetheSGSNmodule,variableATMstacksfor

-- 31 - - communicationswiththeRNCs,andarouternodeprotocolstackwithanIPmoduleand IPinterfacesrunningotherlayer-2technologies.

Figure4.5GatewayCNNodeMode

Figure4.5bGatewayCNNodeMode

GGSNNodeModels

The model suite includes three GGSN node models, umts_ggsn_slip8 umts_ggsn_atm8_ethernet8_slip8, and umts_ggsn_ethernet2_slip8. The GGSN node models are similar to the gatewayCN node model, except that theydo not include the SGSN module andATMstacks. The GPRS TunnelingProtocol (GTP) runs in the IP moduleonthesenodesandsetsupGTPtunnelsbetweentheGGSNandSGSN.

SGSNNodeModels

-- 32 - - The model suite includes two SGSN node models, umts_sgsn_ethernet_slip and umts_sgsn_atm_ethernet_slip.TheSGSNnodesaresimilartothesimpleCNnodemodel, exceptthattheyalsoincludeanATM,Ethernet,orIPinterfacetoconnecttoaGGSN nodeasGninterfaces.TheGPRSTunnellingProtocol(GTP)runsintheIPmoduleon thesenodesandsetsupGTPtunnelsbetweentheSGSNandGGSN.

SGSNModule

TheSGSNmoduleismodelledasaqueueandiscommontobothCNnodesandtothe SGSNnodes.Thenumberofqueuesdependsonthenumberofusersinthecellsandon thenumberofQoSclassessupportedperuser.DatapacketsarrivingattheCNnodeare queuedwhennoPDPcontexthasbeenactivatedforthatQoSclassorwhennochannel hasbeensetupwiththeterminatingUE.ThepacketsarequeuedbyQoSclassasshown in fig 4.6. If the PDP context is alreadyactivated for the packet's QoS class and if a channelisalreadysetup,thepacketistransparentlyforwardtotheRNC.

Figure4.6QueueStructureintheSGSNModule 4.3.5 UMTS Model Architecture TheGPRSnetworkarchitectureisshowninfigure4.7.Thissectiondescribesthenodes showninfigure4.7,includingtheirprocessandnodemodels.Whenauserpowers-on,the modelassumesthatsynchronizationandaPSsignallingconnectionareestablished.This PS signalingconnection is kept for the entire simulation. Because of this, when a user powers-on it can immediatelydo aUMTS GPRS attach withthe SGSN(s) to access to GPRSservices.

Packetsarequeuedwhentheyarereceivedfromhigherlayers.Sinceeachusersupports fourQoSprofiles,thetrafficisqueuedononeoffourQoSqueues.IfnoPDPcontexthas been activated for that QoS profile, an Activate PDP Context Request is sent to the SGSN(s).ThisPDPcontextactivationmessageincludestheQoSrequested.Themodel assumesthattheSGSN(s),afterconsultingtheRNC,eithergrantstheQoSrequestedby theuserinitsentiretyorrejectsit.NonegotiationbytheSGSN/GGSNorRNCofthe requestedQoSisdoneatthisstage.

OnreceiptoftheActivatePDPContextRequest,theSGSN(s)sendsaRABAssignment Request to the RNC alongwith the QoS requested. The UTRAN performs admission

-- 33 - - control to determine if the request can be granted. If the uplink and downlink have sufficientcapacitytoaccommodatetherequest,therequestcanbegranted.Iftherequest canbegranted,theRNCsendsaRadioBearerSetuprequesttotheUE.

OnreceiptoftheRadioBearerSetuprequest,theUEsetsupthechannelasspecifiedin therequestandsendaRadioBearerCompletetotheRNC.OnreceiptoftheRadioBearer Complete,theRNCsendsaRABAssignmentResponse,whichincludesthegrantedQoS, totheSGSN/GGSN.TheSGSN(s)thensendstheActivatePDPContextAcceptmessage, whichalsoincludesthegrantedQoS.

The UE can send packets to the destination on receipt of the Activate PDP Context Accept message fromthe SGSN(s). Before reachingtheir destination, these packets are firsttunnelledthroughservingtheRNCandSGSN/GGSN,andthenroutedthroughthe IPcloud.IfthedestinationnetworkisalsoaUMTSnetwork,thentheyarefinallyqueued at the destinationSGSN/GGSN node. Once achannel is set upat the destination, the packetsareforwardedtothedestinationUE.

Figure4.7UMTSNetworkArchitecture.SourcefromOPNETModelerDocumentation

4.4 Scheduling Algorithms

TheUMTSsystemwasmodeledimplementingWFQandMDRRscheduleralgorithms.In this thesis, simplified models are implemented so as to reduce the computational complexityandhaveashorterruntimes.Thescopeofthesystemsimulationisbounded bytherecommendedprofileconfigurationforUMTS.Inthefirstscenario,WFQthatuses class based implementation was selected; while MDRR was selected as the scheduling schemeforthesecondscenario.ItisnotedthatMDRRbelongstocategoryofrate-latency scheduling algorithms. The MS can only calculate the overall size of backlog of each connectionandnottheactualamountofeachbackloggedpacket. IprovidedonlyoneinstanceofWFQandMDRRschedulerontheMSforboththeuplink and downlink connections. Scheduling algorithms WFQ and MDRR are set to have their

-- 34 - - parameters reserve a minimum based on UMTS traffic. The minimum reserved rate is computedasthetotalofUMTSsources’peakrates.Thisisdoneduetowell-knownresultsof WFQparameters’configuration[21]. 4.4.1 MAC Scheduler TheMACschedulerefficientlyallocatesresourcesinresponsetodatatrafficnature(bursty). ThefollowingpropertiesforMACschedulingservicesbelowareusedforenablingbroadband service[18]; • Fast Data Scheduler: Due to the burstynature of traffic the MAC scheduler must efficientlyallocatesresources.

• DL and UL Scheduling: The UL feedbacks accurate information about the traffic status. Multipleuplinkbandwidthrequests mechanisms are used; bandwidthrequest throughrangingchannel,piggybackrequestandpolling.

• DynamicResourceAllocation:FrequencytimeresourceallocationexistinginbothDL and UL on a per-frame is supported byMAC. And the resource allocatedwill be deliveredbyMAPmessages,whichisatthebeginningofeachframe. 4.4.2 Weighted Fair Queuing (WFQ) Module Inthismodel,WFQwaschosenastheuplinkschedulingmechanism.WFQprovidesbothbit wise fairness (allowing queue to be serviced fairly) and flow isolation. WFQ uses a combinationofbothpriorityandcyclicservice.InWFQ,trafficclassesareservedbasedon weightofthequeueinvolved.AndtheweightiscalculatedbytheQoSparametersgranted. With WFQ, important traffic gets higher priority than less important ones. It considers channelcapacitywhenallocatingbandwidthtotheMS. WFQ-VirtualClock: ComplexityofWFQarisesin;thevirtualtimecomputationanddecision onwhichnextqueuetoserve.WFQusesvirtualclocktotracktheprogressofGPS,which makespacketizedGPSimplementationpragmatic.Thevirtualtime V(t) isdefinedtobezero atalltimeswhentheserverremainidle. Foranybusyperiod,letthetimethatitstartsbetimezero.Therefore; V(0) =0 v(tj-1+ T )=v(tj-1)+rT for T≤tj–tj-1 f=2,3,...... eqn4.0 ∑iri rT eqn4.1 TherateofchangeofVis ∑iri V(t) inthiscaseincreasesatmarginalrateatwhichbackloggedsessionsreceiveservice. Bj signifiessetsofbusyMS. OperationsofWFQ • Apacketarrivinghasitsendtimeoftransmissioncalculated. • Packetwiththeearliestendtimeisbeinglookedforamongsttheheadpacketsinall queues.

• Thesearchedandfoundpacketisoutputwhenit’stimeforoutput.

-- 35 - - Real-lifepictureoftheoperationofWFQisshowninfigure4.8.

Figure4.8:Real-lifescenarioofWFQ IfNdataflowscurrentlyandactive,withweightW1,W2…WN,dataflownumber i willachieve anaveragedatarateof[26]: RWi /(W1 +W2 +….+WN)eqn4.2 Sumofassignedrate :sum =∑ichecklog { i} eqn4.3 Outputrate r: ri = RX1 eqn 4.4 sum Endtimeofpackettransmission Fi(k):Fi(k)=Fi(k–1)+L1(k) ,(k>1)eqn4.5 ri(k) Fi(k)=t+L1(k) ,(k=1){ New}eqn 4.6 ri(k) Searchesforpacketthathasearliestendtimefromall F(1) min{ Fi(1)|i backlog} R:Ratefortheport t:receivedtime

-- 36 - - Figure4.9:WFQoperation 4.4.3 Modified Deficit Round Robin (MDRR) Module MDRR is a modification of DRR andtackles the aspect of delay. MDRR has lowlatency queueandmakeprovisionforbandwidthguarantees.Itisimportanttonotethatmodification asinMDRRdoesnotnecessarilymeanthatitisauniqueapproach[19].TheimpactofMDRR is felt in voice packets. And it is known that when delayis minimized then bandwidth is guaranteed, since bothdelayminimizationandbandwidthguarantees are essential for voice applications. OperationsofMDRR MDRR is employed in the Cisco 12000 series Internet Router [20]. MDRR make use of quantumvaluewhichisawardedtothequeues,andthisisbasedonweighttiedtothequeue. Weight=(MTMR/TotalSystemCapacity)X100 eqn4.7 Equation4.7givestheweight.TheproportionofbandwidthoftheMSistheweightgivenin equation4.7.DiagramoftheoperationofMDRRschedulerisshowninfigure4.10

Figure4.10:OperationofMDRR[19]

-- 37 - - MDRRassignspriorityqueuewhichwillbeoflowlatency,andprovidesbandwidthguarantee also. This makes MDRR differ fromDRR. Everyqueue within MDRR is defined bytwo variables[20]: • Quantumvalue :Thisistheaveragenumberofbytesservedineachround.

• DeficitCounter :Thishelpintrackingthenumberofbytesaqueuehastransmittedin eachround. Solongthedeficitcounterismorethanzero;thepacketsavailableatthequeuewillbeserved. Andthedeficitcounterreducesbyavalueofpackets’servedlength.However,withaqueue havingzeroornegativecounterthenitwon’tbeserved. The priorityqueue inside the MDRR helps in the provision of both lowdelayand jitter. ConfiguringoftheMDRRwiththepriorityqueueoccursintwodifferentmodes[20]: • Alternate mode; The MDRR in this mode services the PQ and at the same time services other queues that are configured. The demerit of this mode is that it introducesjitteranddelayascomparedwiththeothertypeofmode.

• Strict Prioritymode; TheMDRR inthis mode services the PQ onlywhenit is not empty.Thedemeritwiththismodeisthatotherqueuescanbestarved. 4.5.0 Integration with OPNET Modeler 14.5 OPNETmodelerisadynamicandhierarchicalsimulationkernelwhichistheindustry’smost efficient simulation engine. It is scalable and enables the fastest simulation runtimes for wireless models. Real networks, protocols and applications are precisely modeled with OPNETmodelerbecauseofitsspontaneousgraphicalenvironment[17]. 4.5.1 Essential parts of OPNET NetworkEditor:Itisusedtodefineandchangenetworktopologymodels. SimulationTool : Itisusedtodefineandrunsimulationsapplyingmodelsalreadycreatedwith theOPNETEditor. AnalysisTool: Thisdepictsstatisticalresultsandmakescomparisonwhereappropriate.Data collectedfromanalysiscanberepresentedasoneofgraphical,numericalandfileforexport. 4.6.0 Simulation Model The simulation setupconsists of amobile client, base station, RNC, SGSN andGGSN as shown in figure 4.11. All the configurednodes for MS, BS, RNC, SGSN andGGSN use UMTSandit’sshowninfigure4.11.

-- 38 - - Figure4.11:UMTSOPNETSimulationModel 4.6.1 Signal Flows Forcompleteness,theentireGPRSAttachprocedurewithoutpriorCS(CircuitSwitched) traffic is shown in figure 4.12. However, the model assumes that a PS signalling connectionisalreadyestablishedatpower-on.TheGPRSAttachprocedureisperformed toinformtheSGSN(s)ofauser'slocationandtosetupaPSsignallingconnection.Once a PS signallingconnection is established, the UE andSGSN(s) move fromthe PMM- DetachedStatetothePMM-ConnectedState.

ThePSsignallingconnectionincludestheRRCsignallingconnectionbetweentheUEand UTRAN,andtheIusignallingconnectionbetweentheUTRANandCN.Iftherehasbeen nopriorCStraffic,asignallingconnectionissetupbetweentheUEandUTRAN.Once an RRC signalling connection is established between the UE and UTRAN, a Service Request(signalling)messageissenttotheSGSN(s)tosetuptheIuconnectionbetween theUTRANandSGSN.OncethePSsignallingconnectionisestablished,theUEinitiates theGPRSAttachprocedurebysendingaGPRSAttachRequestmessagetotheSGSN(s). TheGPRSAttachRequestincludestheFollowOnRequestindicationthatindicatesthat theIuconnectionshouldbereleasedorkeptaftertheGPRSAttachprocedure.Atthis stage,themodelassumesthatthePSsignallingconnectionismaintainedfortheduration ofthesimulation.

-- 39 - -

Figure4.12GPRSAttachwithnoPriorCSTraffic

HereishowOPNETModelerexplicitlymodelsGPRSattachsignalling:

1. UE initiates the GPRS Attach procedure by sending a GPRS Attach Request (IMSI,AttachType,FollowOnRequest)messagetotheSGSN.UEstartstimer

T3310 whensendingtheGPRSAttachRequestmessage.TheAttachTypeissetto GPRS Attach onlyandthe FollowOn Request indication is set to keepthe Iu connection. 2. UponreceiptoftheGPRSAttachRequestmessage,theSGSNsendstheUEan

AttachAccept(P-TMSI)messageandstartstimerT 3350 .Inthecurrentmodel,P- TMSIisalwaysincludedintheAttachAcceptmessage.

3. UponreceiptoftheGPRSAttachAcceptmessage,theUEstopstimerT 3310 and respondstotheSGSNwithaGRPSAttachCompletemessage.

On receipt of the GPRS AttachComplete message, the SGSN stops timer T 3350 , which completestheGPRSAttachprocedure.

4.6.2 PDP Context Activation and RAB Assignment (MS-Connected State)

The PDP Context Activation procedure is required when the PDP context for the requestedclassofserviceisinactive.Figure4.13andfigure4.14showthePDPContext ActivationproceduresinitiatedbytheUEandCN,respectively.IftheUEisinPMM-Idle State, the UE first performs a Service Request Procedure to set up a PS signalling connection and enter the PMM-Connected State before initiating the PDP Context Activationprocedure.OncetheGPRSAttachprocedureiscompleted,theUEremainsin thePMM-ConnectedStatefortherestofthesimulation.

-- 40 - -

Figure4.13PDPContextActivationProcedureInitiatedbytheUE(ConnectedState)

1. WhentheUEreceivesProtocolDataUnits(PDUs)fromhigherlayers,itinitiates thePDPContextActivationProcedureifthePDUsbelongtoaqualityofservice that does not yet have an activated PDP context. The UE initiates the PDP ContextActivationprocedurebysendinganActivatePDPContextRequest(PDP

Type, QoS Requested) message to SGSN. The UE starts T 3380 when sendingan ActivatePDPContextRequestmessage.Inthemodel,onlyonePDPContextper QoSissetupandthePDPTypecorrespondstotheQoSrequested. 2. On receipt of the Activate PDP Context Request, the SGSN sends a RAB AssignmentRequestmessagetotheRNC(RadioNetworkController)toestablish

aRAB(RadioAccessBearer).TheSGSNstartstheT RABAssgt timerwhensendinga RABAssignmentRequestmessage. 3. OnreceiptofaRABAssignmentRequestmessage,theRNCperformsadmission control.Ifsufficientuplinkanddownlinkcapacityisavailable,theRNCestablishes theappropriateradiobearerbysendingaRadioBearerSetupmessagetotheUE. 4. OnreceiptofaRadioBearerSetupmessage,theUEsetsuptheappropriateradio bearer as specifiedbythe RNC. The UE then sends a Radio Bearer Complete messagetotheRNC. 5. On receipt of the Radio Bearer Complete message, the RNC sends a RAB AssignmentResponsemessagetotheSGSN. 6. OnreceiptofasuccessfulRABAssignmentResponse,theSGSNnormallysendsa Create PDP Context Request (PDP Type, QoS Negotiated) to the GGSN. However, since the SGSN and GGSN are modelled as a single node, this procedure is not modelled. However, a newentryin the PDP context table is createdas wouldbe done at the GGSN. When completed, the SGSN sends an Activate PDP Context Accept message to the UE. If the RAB Assignment procedureisunsuccessfulbecausetherequestedQoSprofilecannotbeprovided, theUEtriestoactivatethePDPContextatalatertime.Becausethemodelalways negotiatesaQoSthatmatchestheQoSRequested,theSGSNmodeldoesnotsend anewRABAssignmentRequestmessagewithadifferentQoSprofile.Onreceipt

ofaRABAssignmentResponse,theSGSNstopstheT RABAssgt timer. 7. The UE stops the T 3380 timer on receipt of an Activate PDP Context Accept message,completingthePDPContextActivationprocedure.TheUEisnowready tosendanyPDUswithaQoSmatchingthePDPcontextithasactivated.

-- 41 - -

Figure4.14 PDP Context Activation Procedure Initiated by the Network (ConnectedState)

8. SincetheSGSNandGGSNaremodelledasasinglenode,thePDUNotification procedureisnotmodelled.Instead,thecombinedSGSN/GGSNnodeinitiatesthe Network-Requested PDP Context Activation procedure by sending a Request

PDP Context Activation message to the UE. It starts T 3385 when sending the Request PDP Context Activation message. The combinedSGSN/GGSN stores anysubsequentPDUsforthesamequalityofserviceuntilthePDPcontexthas beenactivated. 9. OnreceiptoftheRequestPDPContextActivationmessage,theUEinitiatesthe

PDP Context Activation procedure, as describedabove. The CN stops T 3385 on receiptoftheActivatePDPContextRequestmessagefromtheUE.

4.6.3 RAB Assignment with Prior PDP Activation (MS-Connected State)

If an active PDP context for the requested QoS already exists, the PDP Context Activationprocedureisnotrequired.However,ifthereisnoradioaccessbearerforthe active PDP context, the RAB Assignment procedure must be initiated. Figure 4.15 and figure 4.16 shows the RAB Assignment procedure initiated by the UE and CN, respectivelywhenaPDPcontextfortherequestedQoSisalreadyactive.IftheUEisin thePMM-IdleState,theUEfirstneedstoperformaServiceRequestProceduretosetupa PSsignallingconnectionandenterthePMM-ConnectedStatebeforeinitiatingtheRAB Assignmentprocedure.OncetheGPRSAttachprocedureiscompleted,theUEremains inthe PMM-ConnectedStatefor the rest of thesimulation. Thus, the diagrams assume thattheUEisalreadyinPMM-ConnectedState.

-- 42 - -

Figure4.15RABAssignmentProcedureInitiatedbytheUE(ConnectedState)

1. On receipt of PDUs fromhigher layers, the UE initiates the RAB Assignment procedureifthesePDUsbelongtoaqualityofserviceforwhichaPDPcontext hasalreadybeenactivatedbutforwhichnoradiobearerhasbeenestablished.The UE initiates the RAB Assignment procedure bysending a Service Request (P- TMSI,ServiceType)messagetotheSGSN.ServiceTypespecifiestherequested service.ServiceTypecanbesettoDataorSignaling.Inthiscase,theServiceType

issettoData.TheUEstartsT 3317 whensendingtheServiceRequestmessage. 2. OnreceiptoftheServiceRequest,theSGSNsendsaServiceAcceptmessageto

UE.TheUEstopsitstimerT 3317 onreceiptoftheServiceAcceptmessage. 3. OnreceiptoftheServiceRequest(Data),theSGSNinitiatestheRABAssignment procedure by sending a RAB Assignment Request to the RNC. The RAB Assignmentprocedurewaspreviouslydescribed.

Figure4.16 RAB Assignment Procedure Initiated by the Network (Connected State)

4. OnreceiptofPDUs,theCNdeterminesiftheNetwork-RequestedPDPContext Activationprocedurehastobeinitiated.SinceaPDPContextisalreadyactivefor the quality of service requested, the combined CN node initiates the RAB Assignmentprocedurepreviouslydescribed.

-- 43 - - 4.6.4 PDP Context Modification with RAB Modification ThesignallingflowsforPDPcontextmodificationwithRABmodificationareshownin thefollowingdiagram:

Figure4.17SignalFlowsforPDPContextModificationwithRABModification

1. TheRNCmodifiesanexistingRABbysendingaRABModificationrequesttothe SGSN. 2. On receipt of the RAB Modification request, the SGSN initiates a PDP ModificationprocedurebysendingaPDPContextModificationrequesttotheUE. TheSGSNstartsitstimerT3386. 3. On receipt of the PDP context modification request, the UE responds to the SGSNwithaPDPContextModificationAcceptmessage. 4. OnreceiptofthePDPContextModificationAcceptmessagefromtheUE,the SGSN modifies the appropriate RAB by sending a RAB Assignment request (Modification)totheRNC.TheSGSNstopsitstimerT3386andstartsthetimer TRABAssgt. 5. OnreceiptoftheRABAssignmentrequest(Modification),theRNCmodifiesthe appropriateradiobearerbysendingaRadioBearerReconfigurationmessagetothe UE. 6. OnreceiptoftheRadioBearerReconfigurationmessage,theUEreconfiguresthe appropriate radio bearer as specifiedbythe RNC. The UE then sends a Radio BearerComplete(Reconfiguration)messagetotheRNC.

-- 44 - - 7. On receipt of the Radio Bearer Complete (Reconfiguration) message, the RNC modifies the appropriate radio link by sending a Radio Link Reconfiguration messagetothenodeB. 8. OnreceiptoftheRadioLinkReconfigurationmessage,thenodeBreconfigures theappropriateradiolinkasspecifiedbytheRNC.ThenodeBthenrespondsto theRNCwithaRadioLinkReconfigurationResponsemessage. 9. On receipt of the Radio Link Reconfiguration Response, the RNC sends RAB AssignmentResponse(Modification)messagetotheSGSN. 10. Onreceipt of the RAB Assignment Response (Modification) message, the RNC modifiestheappropriatePDPcontext.TheSGSNstopsitstimerTRABAssgt.

4.7 Nodes Configuration

Figure4.18:UMTSMSNodesConfiguration

-- 45 - -

Figure4.19:BaseStation(Node_B)Configuration

-- 46 - -

Figure4.20:RNCNodeConfiguration

-- 47 - -

Figure4.21:SGSNNodeConfiguration

-- 48 - -

Figure4.22:GGSNNodeConfiguration

4.8 Performance Metrics for Schedulers

4.8.1 Analysis based on QoS traffic : Themostrelevantmetricsareasfollows: • Throughput:Itisreferredtoastheamountofdataselectedfortransmissionbyauser per unit time. This definition is based on application perspective. Throughput is estimatedbyusinganexponentialmovingaverage,anditisexpressedinKbps,and sometimesreferredtoasbandwidth.

-- 49 - -

• Delay:ItisthetimebetweenarrivalsofpacketatMACtransmitbufferofthesource nodeandthetimethatthispacketiscompletelydeliveredtotheupperprotocollayer ofthedestinationnode[22].

• Jitter: It is the difference between the 99 th percentile of the delay and the packet transmission delay, i.e., the time taken for a packet of minimum length to be transmittedovertheairfromthesourcetothedestination[22]. 4.9 Simulation Results

Inthisthesis,IuseOPNETmodeller14.5tomodelUniversalMobileTelecommunications Service (UMTS). Voice and data traffics are considered and they are modelled using exponential packet inter-arrival time. I analyzed the performance of the two scheduling algorithms(WFQandMDRR)basedonthecontextofUMTS Assumptionsmadeare: • Thechannelhasaconstantphysicaltransmissionandiserrorfree.

• Fortheentiresimulationrun,bothuplinkanddownlinkchannelshareframeevenly

• Packetprocessingtimedoesnottaketime0

• Allpacketshavetheirdeparturetimethesame.

• Grantrequestshavethesamearrivalbecausetheyarriveinthesameuplinksubframe.

• No time stamp in any packet, since time synchronization is not an issue in the simulations.

• Itisassumedthatthechannelconditionisideal,implyingnopacketcorruption.

4.9.1 Result of throughput in both MDRR and WFQ I carriedout the simulation for 10 minutes using100 values per statistics. The Mobile stationhostsUMTSapplicationsandestablishesanuplinkconnectiontotheSGSNviathe Basestation(Node_b)andRNC.ThemodelassumesthataPSsignallingconnectionis alreadyestablishedatpower-on.TheGPRSAttachprocedureisperformedtoinformthe SGSN(s)ofauser'slocationandtosetupaPSsignallingconnection.OnceaPSsignalling connectionisestablished,theUEandSGSN(s)movefromthePMM-DetachedStateto thePMM-ConnectedState. ThePSsignallingconnectionincludestheRRCsignallingconnectionbetweentheUEand UTRAN,andtheIusignallingconnectionbetweentheUTRANandCN.Iftherehasbeen nopriorCStraffic,asignallingconnectionissetupbetweentheUEandUTRAN.Once an RRC signalling connection is established between the UE and UTRAN, a Service

-- 50 - - Request(signalling)messageissenttotheSGSN(s)tosetuptheIuconnectionbetween theUTRANandSGSN.OncethePSsignallingconnectionisestablished,theUEinitiates theGPRSAttachprocedurebysendingaGPRSAttachRequestmessagetotheSGSN(s). TheGPRSAttachRequestincludestheFollowOnRequestindicationthatindicatesthat theIuconnectionshouldbereleasedorkeptaftertheGPRSAttachprocedure.Atthis stage,themodelassumesthatthePSsignallingconnectionismaintainedfortheduration ofthesimulation.ThroughputfromthegraphindicatesthattheMStransmittheloadas required.UTRAN nodeisbeinganalyzed,sincealltrafficfromMSarebeingsenttotheCN, andbasicallytheUTRANsendstraffictoCN.InordertoobtainidealthroughputofUMTS, we make sure the UTRAN and MS utilizes the full capacity by implementing the best modulationschemeallthetime.

Figure4.23a:ThroughputSimulationResultwithStackedStatisticsforUplinktraffic

Figure4.23b:ThroughputSimulationResultwithOverlaidStatisticsforUplinktraffic

-- 51 - - Figure4.24a:ThroughputSimulationResultwithStackedStatisticsfordownlinktraffic

Figure4.24b:ThroughputSimulationResultwithOverlaidStatisticsfordownlinktraffic

-- 52 - - Figure4.25a:TrafficSentandTrafficReceivedwithStackedStatisticsSimulationResult

Figure4.25b:TrafficSentandTrafficReceivedwithoverlaidStatisticsSimulationResult From the throughput graph, it is shown that the overall throughput is higher in MDRR (scenario 2) than WFQ (scenario 1). Also the two schedulingschemes (WFQ andMDRR) have relativelystable throughput because of the nature of the traffic. However, the actual throughputissmallerthantheidealmaximumthroughputbecauseoftheschedulingoverhead andchannelconditions.ItcouldalsobeseenthattheMDRRhasbetterperformancethanthe WFQintermsofpacketsentandreceivedasshowninFigures4.25aand4.25b,sincepackets sentandreceivedisalmosttwiceofwhatisobtainedinWFQ.

-- 53 - - Chapter Five

5.0 Conclusions and Recommendations

5.1 Thesis Summary Inthisthesis,Ilookedatvarioussignallingbothinwiredandmobilenetworks,withmore emphasis on SIGTRAN. The SIGTRAN is the protocol suite applicable in the current new generation and next-generation networks, most especially as it enables service provider to be able to interpolate both wireline and wireless services within the same architecture. This concept is an important component in today’s Triple-play communication, and hence this thesis has provided a broad view on Signalling and ProtocolGatewaysinTraditionalandNextGenerationsNetworks. Signal flowin atypical newgeneration networkwas examinedbycarryingout discrete eventsimulationofUMTSnetworkusingOPNETmodeller14.5.ThroughbothPacket- Switching(PS)andCircuit-Switching(CS)signalling,IwasabletoexaminetheQoSona UMTS.Precisely,IlookedatthroughputonUMTSnetworkbyimplementingWFQand MDRRschedulingschemes. SimulationsshowthatMDRRperformsbetterwithrespecttothroughputmeasurement. Theefficiencyoftheschedulingalgorithmsisdefinedintermsofthroughput-thenumber of bits receivedper second. Overall, MDRR is more desirable andefficient for UMTS traffic.

5.2 Thesis Contribution Inthisthesis,Iwasabletoachievethefollowingcontributions: • Analysing various signalling and proposals gateways in the new generation networks,theiroperationsanddesignarchitecture. • ImplementationofUMTSinOPNETusingbothWFQandMDRRasscheduling algorithms. • Analysis of WFQandMDRR schedulingalgorithmfor voiceanddatatraffic of UMTSbasedonthethroughputparameters • Verify through simulation that MDRR is more suitable than WFQ for UMTS traffic.

-- 54 - - 5.3 Recommendation Thefollowingsbelowarelistofrecommendationsforfuturework: • AnewsimulatorthathasHLRfunctionalityshouldbeused • Modellingofvoice/datatrafficwiththeschedulingalgorithmsusingmulti-classtraffic. • Considering more performance metrics in the analysis. Performance metrics like bandwidthutilization,queuingdelay,jitter,packetlossetc. • Consideringmorecomplexscenarioslikemobilityandmulti-userenvironment.

-- 55 - - REFERENCES :

[1]www.3g.co.uk/PR/Feb2004/6632.htm [2]www.ulticom.com/html/products/signalware-overview.as [3]http://www.iec.org/online/tutorials/ss7_overl [4]MiaImmonen“SignallingoverIP–Astepclosertoanall-IPnetwork”,MasterThesis, KTH,2005 [5]http://pt.com/page/tutorials/ss7-tutorial [6]www.tekelec.com/ss7/protocols/atm11.asp [7]http://pt.com/page/tutorials/ss7-tutorial/ss7-protocol-stack [8]http://pt.com/page/tutorials/ss7-tutorial/sccp [9]http://pt.com/page/tutorials/ss7-tutorial/tcap [10]ITU-TRecommendationQ.706:SignallingSystemNo.7-MessageTransferPart SignallingPerformance,ITU,Geneva,March1993 [11]www.squire-technologies.co.uk/products/ss7-signallinggateway [12]http://www.faqs.org/rfcs/rfc768 [13]http://en.wikipedia.org/wiki/Transmission_Control_Protocol_Applicability [14]http://en.wikipedia.org/wiki/Stream_Control_Transmission_Protocol [15]http://www.protocols/pbook/sigtran.htm#M2PA [16]OpnetModeller14.5Documentation-CreatingUMTSNetworkTopology. [17]www.opnet.com [18]WiMAXTMSystemEvaluationMethodologyversion2.1, 2008WiMAXForum, July7, 2008. [19] S. Baban, “Design and Implementation of a Scheduling Algorithm for Mobile Network”,ReportforMSc.Mobile,PersonalandSatelliteCommunications,UniversityofWestminster , September2007. [20]CiscoSystems. “http://www.cisco.com/en/US/products/hw/routers/ps167/products_tech_note09186a 0080094c00.shtml”. [21] M. Katevenis, S. Sidiropoulos and C. Courcoubetis, “Weighted RoundRobin Cell Multiplexing in a General-Purpose ATM Switch Chip”, IEEE Journal Selected Areas in Comm unication,volume9,no.8,pp.1265-1279,1991. [22] Yang Xiao, “Support for QoS in IEEE 802.16 Point-to-Multipoint Networks: A SimulationStudy”, AuerbachPublications. [23]IEEEP802.16-REVd/D5-2004,“DraftIEEEStandardforLocalandMetropolitan AreaNetwork–Part16:AirInterfaceforFixedBroadbandWirelessAccessSystem”,May 2004. [24]http://greco.dit.upm.es/~enrique/pub/jbento-Memoria.pdf [25]@ ietf.org [26]J.Lin,C.Chou,C.Liu,“PerformanceEvaluationForSchedulingAlgorithmsIn Network”22ndInternationalConferenceonAdvancedInformationNetworkingandApplications- Workshops ,2008. [27]www.squire-technologies.co.uk/products/svi-mgc.php

-- 56 - -