Asymptotic Analysis of Shape Parameters of Trees and Lattice Paths

Total Page:16

File Type:pdf, Size:1020Kb

Asymptotic Analysis of Shape Parameters of Trees and Lattice Paths Benjamin Hackl Asymptotic Analysis of Shape Parameters of Trees and Lattice Paths DISSERTATION zur Erlangung des akademischen Grades Doktor der Technischen Wissenschaften STUDIUM Doktoratsstudium der Technischen Wissenschaften im Dissertationsgebiet „Technische Mathematik“ Alpen-Adria-Universität Klagenfurt Fakultät für Technische Wissenschaften BETREUER UND ERSTGUTACHTER ZWEITGUTACHTER Univ.-Prof. Dr. Clemens Heuberger Prof. Dr. Stephan Wagner Alpen-Adria-Universität Klagenfurt Stellenbosch University Institut für Mathematik Department of Mathematical Sciences Klagenfurt, 11. Jänner 2018 iii Eidesstattliche Erklärung Ich versichere an Eides statt, dass ich die eingereichte wissenschaftliche Arbeit selbstständig verfasst und keine anderen als • die angegebenen Hilfsmittel benutzt habe, die während des Arbeitsvorganges von dritter Seite erfahrene Unterstützung, ein- • schließlich signifikanter Betreuungshinweise, vollständig offengelegt habe, die Inhalte, die ich aus Werken Dritter oder eigenen Werken wortwörtlich oder sinnge- • mäß übernommen habe, in geeigneter Form gekennzeichnet und den Ursprung der Information durch möglichst exakte Quellenangaben (z.B. in Fußnoten) ersichtlich gemacht habe, die eingereichte wissenschaftliche Arbeit bisher weder im Inland noch im Ausland • einer Prüfungsbehörde vorgelegt habe und bei der Weitergabe jedes Exemplars (z.B. in gebundener, gedruckter oder digitaler • Form) der wissenschaftlichen Arbeit sicherstelle, dass diese mit der eingereichten digitalen Version übereinstimmt. Mir ist bekannt, dass die digitale Version der eingereichten wissenschaftlichen Arbeit zur Plagiatskontrolle herangezogen wird. Ich bin mir bewusst, dass eine tatsachenwidrige Erklärung rechtliche Folgen haben wird. Benjamin Hackl, e.h. Klagenfurt, 11. Jänner 2018 v Acknowledgements The following lines are devoted to my family, friends, and colleagues, without whose support composing this thesis would not have been possible. In particular, I want to thank my advisor Clemens Heuberger for his continuous support, as well as for all the time and resources he invested in this project. Fortunately, we have a very harmonious workplace environment in our department, which I want to thank my colleagues for. Especially, I would like to thank Daniel Krenn, not only for his valuable feedback on this thesis, but also for the non-mathematical guidance he provided. I am very grateful to Helmut Prodinger for supporting me as a mentor within the Young- Scientists-Mentoring-Program of Alpen-Adria-Universität Klagenfurt, and in addition I want to thank him and Stephan Wagner for giving me possibilities of research stays abroad. Finally, I am very grateful to my family, my friends, and in particular my girlfriend Anja for their continuous support—even (and especially) in times where I could not stop talking about mathematics. Thank you! This work was supported financially by the Austrian Science Fund (FWF): P 24644-N26 and by the Karl Popper Kolleg “Modeling-Simulation-Optimization” funded by Alpen-Adria- Universität Klagenfurt together with the Carinthian Economic Promotion Fund (KWF). Addi- tional funding for research stays abroad has been provided by the Mobilitätsförderung für NachwuchswissenschaftlerInnen of Alpen-Adria-Universität Klagenfurt. vi Abstract This thesis belongs to the mathematical field of Analytic Combinatorics, which is concerned with the asymptotic analysis of parameters of discrete structures (here, primarily trees and lattice paths) using analytic methods. After modeling the parameter of interest as a random variable, the properties brought to light by means of such a rigorous investigation include high-precision asymptotic (sometimes even explicit) formulas for the expected value, the corresponding variance—and, if possible, higher moments and the characterization of a limiting distribution as well. Predominantly, the shape parameters under investigation are associated to deterministic reduction procedures defined on families of plane trees and lattice paths, respectively. To be more precise, a suitable deterministic reduction naturally induces some sort of age on the objects (in the sense that “older” objects require more reductions until they are “irreducible”). A prominent example for a parameter that can be modeled in this way is the well-known register function for binary trees. Both the age itself as well as the object size after a fixed number of reductions are studied in different context within this thesis. Another interesting shape parameter is defined for so-called Łukasiewicz paths, i.e., two- dimensional simple lattice paths with a unique down step. These paths have a very nice structure, as they are strongly related to plane trees whose node degrees are contained in a predefined set. In this fairly general setting we are interested in ascents—maximal sequences of non-negative steps. Something all of our investigations have in common is that they all contain some compre- hensive computational aspects. To this end, we make heavy use of the free open-source computer mathematics software system SageMath and its included module for computations with asymptotic expansions developed by Clemens Heuberger, Daniel Krenn, and the author. For all results obtained with the help of this module, there is a corresponding worksheet containing the computations available for download. vii Zusammenfassung Die vorliegende Dissertation ist dem mathematischen Teilgebiet der analytischen Kombinatorik zuzuordnen, welches sich mit der präzisen asymptotischen Analyse von Parametern diskreter Strukturen (in dieser Arbeit konkret Bäumen und Gitterpfaden) mittels analytischer Methoden beschäftigt. Die Ergebnisse der Untersuchungen dieser als Zufallsvariablen modellierten Parameter umfassen asymptotische Ausdrücke hoher Präzision (sowie gegebenenfalls sogar explizite Ausdrücke) für den Erwartungswert, die Varianz — und, sofern möglich, auch für höhere Momente (was gegebenenfalls auch Rückschlüsse auf eine Grenzverteilung erlaubt). Die in erster Linie untersuchten Parameter hängen mit deterministischen Reduktionsproze- duren zusammen, die auf Familien von geordneten Wurzelbäumen, beziehungsweise auf Familien von Gitterpfaden, definiert werden. Genauer gesagt induziert eine geeignete deter- ministische Reduktion auf natürliche Art und Weise ein Alter auf den jeweiligen Objekten (in dem Sinne, dass „ältere“ Objekte öfter reduziert werden müssen, bis sie „irreduzibel“ sind). Ein prominentes Beispiel für einen Parameter, der als ein solches Alter gesehen werden kann, ist die wohlbekannte Registerfunktion binärer Bäume. Sowohl das Alter als auch die Objektgröße nach einer festen Anzahl von Reduktionen werden im Rahmen dieser Arbeit in verschiedenen Kontexten untersucht. Ein weiterer Parameter von Interesse ist für sogenannte Łukasiewicz-Pfade definiert. Das sind einfache zweidimensionale Gitterpfade, bei denen die Menge der erlaubten Schritte nur einen einzigen Schritt nach unten enthält. Die Struktur von Łukasiewicz-Pfaden ist besonders reichhaltig, weil sie stark mit jenen geordneten Wurzelbäumen, deren Knotengrade in einer vorgegebenen Menge enthalten sind, zusammenhängen. In diesem relativ allgemeinen Rahmen werden Aufstiege — das sind maximale Folgen nicht-negativer Schritte — untersucht. Ein Aspekt, der allen Analysen in dieser Dissertation gleicherweise innewohnt, ist, dass immer wieder rechentechnisch sehr aufwändige Berechnungen vorkommen. Aus diesem Grund wird starker Gebrauch vom freien, quelloffenen Computermathematiksystem SageMath und insbesondere dem darin enthaltenen Modul für asymptotische Entwicklungen, welches von Clemens Heuberger, Daniel Krenn und dem Autor entwickelt wurde, gemacht. Für alle Resultate, die mit Hilfe dieses Moduls erhalten wurden, steht ein SageMath-Worksheet mit den zugehörigen Berechnungen zum Download zur Verfügung. Contents 1 Introduction 1 2 Reductions of Binary Trees and Lattice Paths 7 2.1 Introduction . .7 2.1.1 Binary Trees . .8 2.1.2 Lattice Paths . .9 2.2 Tree Reductions and the Register Function . 10 2.2.1 Motivation and Preliminaries . 10 2.2.2 r-branches . 17 2.2.3 Total Number of Branches . 25 2.3 Reduction of Lattice Paths . 30 2.3.1 Iterative Reductions and an Analogue to the Register Function . 30 2.3.2 Fringes . 40 3 Cutting and Pruning Plane Trees 49 3.1 Introduction . 49 3.2 Cutting Leaves . 52 3.2.1 Preliminaries . 52 3.2.2 Leaf-Reduction and the Expansion Operator . 56 3.2.3 Asymptotic Analysis . 60 Contents ix 3.3 Cutting Paths . 67 3.3.1 Expansion Operator and Results . 67 3.3.2 Total number of paths . 71 3.4 Cutting Old Leaves . 75 3.4.1 Preliminaries . 75 3.4.2 Expansion Operator and Asymptotic Results . 76 3.5 Cutting Old Paths . 80 3.5.1 Expansion Operator . 80 3.5.2 Analysis of Tree Size and Related Parameters . 83 3.5.3 Total number of old paths . 88 3.6 Future Work . 89 4 Growing and Destroying Catalan–Stanley Trees 91 4.1 Introduction . 91 4.2 Growing Catalan–Stanley Trees . 93 4.3 Age of Catalan–Stanley Trees . 98 4.4 Analysis of Ancestors . 102 5 Ascents in Non-Negative Lattice Paths 107 5.1 Introduction . 107 5.2 Generating Functions: An Analytic Approach . 111 5.3 Generating Functions: A Combinatorial Approach . 115 5.4 Singularity Analysis of Inverse Functions . 120 5.5 Analysis of Ascents . 124 5.5.1 Analysis of Excursions . 124 5.5.2 Analysis of Dispersed Excursions . 127 5.5.3 Analysis of Meanders . 131 Bibliography 137 List of Figures 1.1 Iterated application of a simple deterministic tree reduction operator . .2 1.2 Descendents of the trivial tree in the
Recommended publications
  • Total Positivity of Narayana Matrices Can Also Be Obtained by a Similar Combinatorial Approach?
    Total positivity of Narayana matrices Yi Wanga, Arthur L.B. Yangb aSchool of Mathematical Sciences, Dalian University of Technology, Dalian 116024, P.R. China bCenter for Combinatorics, LPMC, Nankai University, Tianjin 300071, P.R. China Abstract We prove the total positivity of the Narayana triangles of type A and type B, and thus affirmatively confirm a conjecture of Chen, Liang and Wang and a conjecture of Pan and Zeng. We also prove the strict total positivity of the Narayana squares of type A and type B. Keywords: Totally positive matrices, the Narayana triangle of type A, the Narayana triangle of type B, the Narayana square of type A, the Narayana square of type B AMS Classification 2010: 05A10, 05A20 1. Introduction Let M be a (finite or infinite) matrix of real numbers. We say that M is totally positive (TP) if all its minors are nonnegative, and we say that it is strictly totally positive (STP) if all its minors are positive. Total positivity is an important and powerful concept and arises often in analysis, algebra, statistics and probability, as well as in combinatorics. See [1, 6, 7, 9, 10, 13, 14, 18] for instance. n Let C(n, k)= k . It is well known [14, P. 137] that the Pascal triangle arXiv:1702.07822v1 [math.CO] 25 Feb 2017 1 1 1 1 2 1 P = [C(n, k)]n,k≥0 = 13 31 14641 . . .. Email addresses: [email protected] (Yi Wang), [email protected] (Arthur L.B. Yang) Preprint submitted to Elsevier April 12, 2018 is totally positive.
    [Show full text]
  • Entropoid Based Cryptography
    Entropoid Based Cryptography Danilo Gligoroski∗ April 13, 2021 Abstract The algebraic structures that are non-commutative and non-associative known as entropic groupoids that satisfy the "Palintropic" property i.e., xAB = (xA)B = (xB)A = xBA were proposed by Etherington in ’40s from the 20th century. Those relations are exactly the Diffie-Hellman key exchange protocol relations used with groups. The arithmetic for non-associative power indices known as Logarithmetic was also proposed by Etherington and later developed by others in the 50s-70s. However, as far as we know, no one has ever proposed a succinct notation for exponentially large non-associative power indices that will have the property of fast exponentiation similarly as the fast exponentiation is achieved with ordinary arithmetic via the consecutive rising to the powers of two. In this paper, we define ringoid algebraic structures (G, , ∗) where (G, ) is an Abelian group and (G, ∗) is a non-commutative and non-associative groupoid with an entropic and palintropic subgroupoid which is a quasigroup, and we name those structures as Entropoids. We further define succinct notation for non-associative bracketing patterns and propose algorithms for fast exponentiation with those patterns. Next, by an analogy with the developed cryptographic theory of discrete logarithm problems, we define several hard problems in Entropoid based cryptography, such as Discrete Entropoid Logarithm Problem (DELP), Computational Entropoid Diffie-Hellman problem (CEDHP), and Decisional Entropoid Diffie-Hellman Problem (DEDHP). We post a conjecture that DEDHP is hard in Sylow q-subquasigroups. Next, we instantiate an entropoid Diffie-Hellman key exchange protocol. Due to the non-commutativity and non-associativity, the entropoid based cryptographic primitives are supposed to be resistant to quantum algorithms.
    [Show full text]
  • Enumeration of Colored Dyck Paths Via Partial Bell Polynomials
    Enumeration of Colored Dyck Paths Via Partial Bell Polynomials Daniel Birmajer, Juan B. Gil, Peter R. W. McNamara and Michael D. Weiner Abstract Weconsideraclassoflatticepathswithcertainrestrictionsontheirascents and down-steps and use them as building blocks to construct various families of Dyck paths. We let every building block Pj take on c j colors and count all of the resulting colored Dyck paths of a given semilength. Our approach is to prove a recurrence relation of convolution type, which yields a representation in terms of partial Bell polynomials that simplifies the handling of different colorings. This allows us to recover multiple known formulas for Dyck paths and related lattice paths in a unified manner. Keywords Colored Dyck paths Colored Dyck words Colored Motzkin paths Partial Bell polynomials · · · 2010 Mathematics Subject Classification Primary: 05A15 Secondary: 05A19 · 1 Introduction A Dyck path of semilength n is a lattice path in the first quadrant, which begins at the origin (0, 0),endsat(2n, 0),andconsistsofsteps(1, 1) and (1, 1).Itiscustomary to encode an up-step (1, 1) with the letter u and a down-step (1−, 1) with the letter − D. Birmajer Department of Mathematics, Nazareth College, 4245 East Ave., Rochester, NY 14618, USA e-mail: [email protected] J. B. Gil (B) M. D. Weiner Penn State Altoona,· 3000 Ivyside Park, Altoona, PA 16601, USA e-mail: [email protected] M. D. Weiner e-mail: [email protected] P. R. W. McNamara Department of Mathematics, Bucknell University, 1 Dent Drive, Lewisburg, PA 17837, USA e-mail: [email protected] ©SpringerNatureSwitzerlandAG2019 155 G. E.
    [Show full text]
  • Combinatorial Counting
    COMBINATORIAL COUNTING MARTIN KLAZAR i Contents Preface iv 1 Catalan numbers 1 1.1 Definition, recurrence, parity, exponential growth . 1 1.2 What is an effective formula? For example, for n 7! cn? . 6 1.3 Recurrences, explicit formulae, asymptotics . 7 1.4 Dyck words, good bracketings and pattern-avoiding permutations 12 1.5 Can (cn) satisfy a linear recurrence with constant coefficients? . 18 1.6 Refining cn | the Narayana numbers . 22 1.7 Stanley's list and Valtr's theorem . 24 Comments and references . 29 2 Analytic intermezzo I. Stirling's formula for factorial 30 2.1 Approximating sums with integrals . 31 2.2 The gamma function . 32 2.3 Cauchy's formula . 34 2.4 Comments and references . 35 3 0 { 1 laws and the Blatter{Specker theorem 37 3.1 The Bollob´as{Thomasontheorem: thresholds exist . 38 3.2 The GKLT{F theorem: enumerative first-order 0 { 1 laws . 42 3.3 The Friedgut{Kalai theorem: thresholds are sharp . 49 3.4 The Shelah{Spencer theorem: irrational exponents are not first order . 49 3.5 The Blatter{Specker theorem: second-order binary structures are periodic . 49 4 Algebra of generating functions 50 4.1 The ring of formal power series . 50 4.2 Formal convergence in C[[x]] and C((x)) . 53 4.3 Differentiation, composition, exp and log . 61 4.4 Composition of GF: exponential GF and the Lagrange inversion formula . 68 4.5 Effective computation of modular reductions . 68 ii 4.6 More on algebra in C[[x]] and C((x)) . 68 4.7 Comments and references .
    [Show full text]
  • Generalized Chung-Feller Theorems for Lattice Paths
    Generalized Chung-Feller Theorems for Lattice Paths A Dissertation Presented to The Faculty of the Graduate School of Arts and Sciences Brandeis University Department of Mathematics Ira M. Gessel, Advisor In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy by Aminul Huq August, 2009 This dissertation, directed and approved by Aminul Huq's committee, has been accepted and approved by the Faculty of Brandeis University in partial fulfillment of the requirements for the degree of: DOCTOR OF PHILOSOPHY Adam Jaffe, Dean of Arts and Sciences Dissertation Committee: Ira M. Gessel, Dept. of Mathematics, Chair. Susan F. Parker, Dept. of Mathematics Richard P. Stanley, Dept. of Mathematics, Massachusetts Institute of Technology c Copyright by Aminul Huq 2009 Dedication To My Parents iv Acknowledgments I wish to express my heartful gratitude to my advisor, Professor Ira M. Gessel, for his teaching, help, guidance, patience, and support. I am grateful to the members of my dissertation defense committee Professor Richard P. Stanley and Professor Susan F. Parker. Specially I'm greatly indebted to Professor Parker for her continual encouragement and mental support. I learned a great deal from her about teaching and mentoring. I owe thanks to the faculty, specially Professor Mark Adler and Professor Daniel Ruberman, to my fellow students, and to the kind and supportive staff of the Brandeis Mathematics Department. I would like to thank all my family and friends for their love and encouragement with patience and I wish to express my boundless love to my wife, Arifun Chowdhury. This thesis is dedicated to my parents, Md.
    [Show full text]
  • RIMS-1824 Rigged Configurations and Catalan, Stretched Parabolic
    RIMS-1824 Rigged Configurations and Catalan, Stretched Parabolic Kostka Numbers and Polynomials : Polynomiality, Unimodality and Log-concavity By Anatol N. KIRILLOV May 2015 RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES KYOTO UNIVERSITY, Kyoto, Japan Rigged Configurations and Catalan, Stretched Parabolic Kostka Numbers and Polynomials : Polynomiality, Unimodality and Log-concavity anatol n. kirillov Research Institute of Mathematical Sciences ( RIMS ) Kyoto 606-8502, Japan URL: http://www.kurims.kyoto-u.ac.jp/ ~kirillov and The Kavli Institute for the Physics and Mathematics of the Universe ( IPMU ), 5-1-5 Kashiwanoha, Kashiwa, 277-8583, Japan Abstract We will look at the Catalan numbers from the Rigged Configurations point of view originated [9] from an combinatorial analysis of the Bethe Ansatz Equations associ- ated with the higher spin anisotropic Heisenberg models . Our strategy is to take a combinatorial interpretation of Catalan numbers Cn as the number of standard Young 2 tableaux of rectangular shape (n ), or equivalently, as the Kostka number K(n2);12n , as the starting point of research. We observe that the rectangular (or multidimen- sional) Catalan numbers C(m; n) introduced and studied by P. MacMahon [21], [30], see also [31], can be identified with the Kostka number K(nm);1mn , and therefore can be treated by Rigged Configurations technique. Based on this technique we study the stretched Kostka numbers and polynomials, and give a proof of \ a strong rationality \ of the stretched Kostka polynomials. This result implies a polynomiality property of the stretched Kostka and stretched Littlewood{Richardson coefficients [7], [26], [16]. Another application of the Rigged Configuration technique presented, is a new fam- ily of counterexamples to Okounkov's log-concavity conjecture [25].
    [Show full text]
  • Arxiv:2009.04900V2 [Math.CO] 11 Sep 2020 Counting Generalized
    Counting generalized Schr¨oder paths Xiaomei Chen∗, Yuan Xiang School of Mathematics and Computational Science Hunan University of Science and Technology Xiangtan 411201, China Mathematics Subject Classifications: 05A15 Abstract A Schr¨oder path is a lattice path from (0, 0) to (2n, 0) with steps (1, 1), (1, 1) and (2, 0) that never goes below the x axis. A small − − Schr¨oder path is a Schr¨oder path with no (2, 0) steps on the x axis. − In this paper, a 3-variable generating function RL(x,y,z) is given for Schr¨oder paths and small Schr¨oder paths respectively. As corollaries, we obtain the generating functions for several kinds of generalized Schr¨oder paths counted according to the order in a unified way. Keywords: Schr¨oder path, Narayana number, generating function 1 Introduction arXiv:2009.04900v2 [math.CO] 11 Sep 2020 In this paper, we will consider the following sets of steps for lattice paths: S = (1, 1), (1, 1) , 1 { − } S = (r, r), (r, r) r N+ , 2 { − | ∈ } S = (1, 1), (1, 1), (2, 0) , 3 { − } S = (r, r), (r, r), (2r, 0) r N+ , 4 { − | ∈ } ∗Corresponding author: [email protected] 1 S = (1, 1), (1, 1), (2r, 0) r N+ , 5 { − | ∈ } S = (r, r), (r, r), (2, 0) r N+ , 6 { − | ∈ } where (r, r), (r, r), (2r, 0) are called up steps, down steps and horizontal − steps respectively. For a given set S of steps, let LS (n) denote the set of lattice paths from (0, 0) to (2n, 0) with steps in S, and never go below the x axis.
    [Show full text]
  • Some Properties and Combinatorial Implications of Weighted Small Schr
    Some Properties and Combinatorial Implications of Weighted Small Schr¨oder Numbers Yu Hin (Gary) Au Department of Mathematics and Statistics University of Saskatchewan Saskatoon, SK Canada [email protected] Abstract th The n small Schr¨oder number is s(n) = k≥0 s(n, k), where s(n, k) denotes the number of plane rooted trees with n leaves and k internal nodes that each has at least P two children. In this manuscript, we focus on the weighted small Schr¨oder numbers k sd(n)= k≥0 s(n, k)d , where d is an arbitrary fixed real number. We provide recur- sive and asymptotic formulas for s (n), as well as some identities and combinatorial P d interpretations for these numbers. We also establish connections between sd(n) and several families of Dyck paths. 1 Introduction 1.1 Small Schr¨oder numbers The small Schr¨oder numbers, denoted s(n) for every n 1 gives the sequence ≥ n 12345 6 7 8 ··· s(n) 1 1 3 11 45 197 903 4279 ··· arXiv:1912.00555v1 [math.CO] 2 Dec 2019 (A001003 in the On-line Encyclopedia of Integer Sequences (OEIS) [13]). This sequence has been studied extensively and has many combinatorial interpretations (see, for instance, [16, Exercise 6.39]). We list two below: Let n denote the set of Schr¨oder trees with n leaves, which are plane rooted trees • whereT each internal node has at least 2 children. Then s(n) = for every n 1. |Tn| ≥ Figure 1 shows the s(4) = 11 Schr¨oder trees with 4 leaves.
    [Show full text]
  • Arxiv:Math/0611106V2 [Math.CO] 18 Oct 2007
    Generalized Noncrossing Partitions and Combinatorics of Coxeter Groups Drew Armstrong Author address: Department of Mathematics, Cornell University, Ithaca, New York 14853 Current address: School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455 E-mail address: [email protected] arXiv:math/0611106v2 [math.CO] 18 Oct 2007 For Moira. Contents Abstract ix Acknowledgements xi Chapter 1. Introduction 1 1.1. Coxeter-Catalan Combinatorics 1 1.2. Noncrossing Motivation 6 1.3. Outline of the Memoir 9 Chapter 2. Coxeter Groups and Noncrossing Partitions 13 2.1. Coxeter Systems 13 2.2. Root Systems 16 2.3. Reduced Words and Weak Order 19 2.4. Absolute Order 22 2.5. Shifting and Local Self-Duality 26 2.6. Coxeter Elements and Noncrossing Partitions 29 2.7. InvariantTheoryandCatalanNumbers 35 Chapter 3. k-Divisible Noncrossing Partitions 41 3.1. Minimal Factorizations 41 3.2. Multichains and Delta Sequences 42 3.3. Definition of k-Divisible Noncrossing Partitions 46 3.4. Basic Properties of k-Divisible Noncrossing Partitions 48 3.5. Fuss-Catalan and Fuss-Narayana Numbers 59 3.6. The Iterated Construction and Chain Enumeration 66 3.7. Shellability and Euler Characteristics 72 Chapter 4. The Classical Types 81 4.1. Classical Noncrossing Partitions 81 4.2. TheClassicalKrewerasComplement 87 4.3. Classical k-Divisible Noncrossing Partitions 92 4.4. Type A 102 4.5. Type B 104 4.6. Type D 111 Chapter 5. Fuss-Catalan Combinatorics 115 5.1. Nonnesting Partitions 115 5.2. Cluster Complexes 128 5.3. Chapoton Triangles 143 5.4. Future Directions 147 vii viii CONTENTS Bibliography 155 Abstract This memoir is a refinement of the author’s PhD thesis — written at Cornell University (2006).
    [Show full text]
  • Enumeration Via Ballot Numbers Martin Aigner
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Discrete Mathematics 308 (2008) 2544–2563 www.elsevier.com/locate/disc Enumeration via ballot numbers Martin Aigner Mathematics Institute, Freie Universität Berlin, Arnimallee 3, D-14195 Berlin, Germany Received 27 April 2004; received in revised form 19 June 2007; accepted 21 June 2007 Available online 22 October 2007 Abstract Several interesting combinatorial coefficients such as the Catalan numbers and the Bell numbers can be described either via a 3-term recurrence or as sums of (weighted) ballot numbers. This paper gives some general results connecting 3-term recurrences with ballot sequences with several applications to the enumeration of various combinatorial instances. © 2007 Elsevier B.V. All rights reserved. Keywords: Ballot numbers; Catalan-like numbers; Weighted sums; Combinatorial instances 1. Introduction 2n Our starting point is a two-fold description of the Catalan numbers Cn = (1/(n + 1)) n . First, consider the ballot number recurrence: a0,0 = 1,a0,k = 0 (k > 0), an,k = an−1,k−1 + an−1,k +···+an−1,n−1 (n1). Then a classical result says n an,k = Cn+1,an,0 = Cn for all n. k=0 The matrix A = (an,k) indexed by N0 is lower triangular with 1’s in the main diagonal. The following table shows the first rows of A with the 0’s omitted: 1 11 221 A = 5531 14 14 9 4 1 42 42 28 14 5 1 ... 2n−k The numbers an,k =[(k + 1)/(n + 1)] n are called the (ordinary) ballot numbers.
    [Show full text]
  • UNIVERSITY of CALIFORNIA, SAN DIEGO Flips
    UNIVERSITY OF CALIFORNIA, SAN DIEGO Flips and Juggles A Dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Mathematics by Jay Cummings Committee in charge: Professor Ron Graham, Chair Professor Jacques Verstra¨ete,Co-Chair Professor Fan Chung Graham Professor Shachar Lovett Professor Jeff Remmel Professor Alexander Vardy 2016 Copyright Jay Cummings, 2016 All rights reserved. The Dissertation of Jay Cummings is approved, and it is acceptable in quality and form for publication on micro- film and electronically: Co-Chair Chair University of California, San Diego 2016 iii DEDICATION To mom and dad. iv EPIGRAPH We've taught you that the Earth is round, That red and white make pink. But something else, that matters more { We've taught you how to think. | Dr. Seuss v TABLE OF CONTENTS Signature Page . iii Dedication . iv Epigraph . .v Table of Contents . vi List of Figures . viii List of Tables . ix Acknowledgements . .x Vita......................................... xii Abstract of the Dissertation . xiii Chapter 1 Juggling Cards . .1 1.1 Introduction . .1 1.1.1 Juggling card sequences . .3 1.2 Throwing one ball at a time . .6 1.2.1 The unrestricted case . .7 1.2.2 Throwing each ball at least once . .9 1.3 Throwing m ≥ 2 balls at a time . 16 1.3.1 A digraph approach . 17 1.3.2 A differential equations approach . 21 1.4 Throwing different numbers of balls at different times . 23 1.4.1 Boson normal ordering . 24 1.5 Preserving ordering while throwing . 27 1.6 Juggling card sequences with minimal crossings .
    [Show full text]
  • Enumerating a Class of Lattice Paths
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Discrete Mathematics 271 (2003) 13–28 www.elsevier.com/locate/disc Enumerating a class oflattice paths Curtis Coker Department of Mathematics, Gonzaga University, Spokane, WA, USA Received 10 February 2000; received in revised form 5 November 2002; accepted 15 November 2002 Abstract Let D0(n) denote the set oflattice paths in the xy-plane that begin at (0,0), terminate at (n; n), never rise above the line y = x and have step set S = {(k; 0) : k ∈ N+}∪{(0;k):k ∈ N+}. Let E0(n) denote the set oflattice paths with step set S that begin at (0,0) and terminate at (n; n). Using primarily the symbolic method (R. Sedgewick, P. Flajolet, An Introduction to the Analysis ofAlgorithms, Addison-Wesley, Reading, MA, 1996) and the Lagrange inversion formulawe study some enumerative problems associated with D0(n) and E0(n). c 2003 Elsevier B.V. All rights reserved. Keywords: Lattice path; Lagrange inversion formula; Narayana number 1. Introduction For any positive integer n let C0(n) denote the set oflattice paths in the xy-plane that: (i) have step set S(1) = {(1; 0); (0; 1)}, (ii) begin at (0,0) and terminate at (n; n), (iii) never rise above the line y = x. 2n It is ofcourse well known that |C0(n)|=[1=(n+1)]( n ). More generally if n ¿ k ¿ 0 n+k then the ballot number [(n − k +1)=(n + 1)]( k ) counts the lattice paths that begin at (0,0), terminate at (n; k), never rise above the line y = x and have step set S(1).
    [Show full text]