Investigation Into High Efficiency Visible Light Photocatalysts for Water Reduction and Oxidation

Total Page:16

File Type:pdf, Size:1020Kb

Investigation Into High Efficiency Visible Light Photocatalysts for Water Reduction and Oxidation Investigation into high efficiency visible light photocatalysts for water reduction and oxidation David James Martin 2014 A thesis submitted for the partial fulfilment of the requirements for the degree of Doctor of Philosophy at University College London Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE 1 Declaration I, David James Martin, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. ……………………………………………… Signature ……………………………………………… Date 2 I. Acknowledgements Firstly, I would like to thank my supervisor, Dr Junwang Tang for his unparalleled guidance, expertise and insight throughout the entire project. Throughout the ups and downs, he remained focused and determined, two characteristics which have definitely rubbed off on me. He will remain a lifelong mentor and friend. I would also like to thank my second supervisor, Prof. Jawwad Darr, for many beneficial discussions, and for being very supportive in difficult times. I’m eternally grateful to Mark Turmaine and Jim Davy for helping me with SEM, Steve Firth for help with TEM/FTIR/Raman spectroscopy, Martin Vickers with XRD, and Rob Gruar for helping me with the most annoying instrument ever (ZetaSizer Nano). A special mention goes to Xiaowei Chen and the humble Juan Jose Delgado for consistently collaborating via their excellent TEM expertise. A huge mention must go to Dr Naoto Umezawa and Prof. Jinhua Ye (National Institute of Materials Science, ‘NIMS’, Japan). Prof. Ye, who very kindly let me undertake a short research internship in her group, taught me in a very short space of time, to not only think outside the box, but also to make sure the box has the correct space group reflection conditions – so you know where the edges are! In my first international collaboration, Naoto was not only a good friend, but a patient and thoughtful man who had real faith that our work would be complementary and hence publishable. We had many discussions both personal and professional, and he will remain another lifelong friend. I thank them both for making my study in Japan thoroughly enjoyable. I would also like to thank the forever enthusiastic and forward-thinking Dr Stephen Shevlin, who was heavily involved in the second collaboration. His insight into DFT and TDDFT studies complimented and explained some of the experimental work I completed on carbon nitride. On a personal level Stephen also taught me about the ups and downs of reviewers, which I’ll never forget. Kaipei Qiu was also extremely helpful in contributing to a publication. Prof. Z. Xiao Guo, who co-supervised the collaboration with Dr Junwang Tang, was also precise, thoughtful and insightful throughout. Dr Albertus Handoko and Dr Savio Moniz were two of the best post-docs a student could have. Before Albertus arrived, working without a PDRA was frankly a little difficult. Sometimes it’s really beneficial to have 3 somebody who can give you a quick answer, rather than search for it for hours. Definitely a friend for life, and despite him moving away from the group, I’m sure our paths will cross again soon. The people who made my PhD actually fun in moments, kept me sane and helped with work during the later hours; Ben, Phil, Rhod, Seamus, Lawerence, Mayo, Amal, Chara, Noor, Mithila, Miggy, Eria, Moz, Toby, Jay, Vidal, Erik and all the rest of you guys. To my fiancé Catariya, who was there throughout the good times and bad - I couldn’t have done it without you. Finally, to my family; Mum, Dad, brothers, Nan and Granddad – you literally kept me going and I will never forget the sacrifices made. 4 II. Abstract Solar water splitting using an inorganic semiconductor photocatalyst is viewed as one of the most exciting and environmentally friendly ways of producing clean renewable fuels such as hydrogen from abundant resources. Currently, there are many diverse semiconductors that have been developed, the majority for half reactions in the presence of sacrificial reagents. However, for industrial facilitation, there exists an essential, non- debatable trifecta of being robust, cheap and efficient for overall water splitting. To date, no system has combined all three, with most examples missing at least one of the necessary trio. Therefore one of the current challenges of the field is to develop low cost, highly efficient and stable photocatalysts for industrial scale-up use. In order to achieve that aim, researchers must focus on novel semiconductors to improve efficiencies and also understand the fundamental mechanisms. The primary focus of this thesis then, is to investigate some of the newest photocatalysts for water photooxidation, reduction, and overall water splitting. In doing so, the thesis aids to shed light on the mechanisms behind what makes certain photocatalysts either efficient or inefficient. Firstly, test station was set up to analyse gaseous products such as hydrogen and oxygen produced from photocatalytic water splitting, by using a custom made high purity borosilicate reactor in conjunction with a gas chromatography unit. Gaseous products could be measured with very small sampling error (<1%), which improved the throughput of experiments. The photooxidation of water using a novel faceted form of Ag3PO4 was investigated. A novel synthetic method was created that made it possible to control the exposing facets of silver phosphate in the absence of surfactants to yield tetrahedral crystals composed entirely of {111} facets. It was found that due to high surface energy of {111}, and low hole (h+) mass in the 111 direction, Ag3PO4 tetrahedral crystals could outperform all other low index facets for the oxidation of water under visible light. The quantum yield was found to be nearly unity at 400 nm, and over 80% at 500 nm. With the exception of Ag3PO4 tetrahedral crystals, no photocatalyst has exhibited quantum efficiencies reaching 100% under visible irradiation. Therefore, the strategy of morphology control of a photocatalyst, led by DFT calculations of surface energy and charge carrier mobility, in order to boost photooxidation yield has been demonstrated to 5 be very successful, and could be applied to improve other semiconductors in future research. Hydrogen production from water was further studied using the only known robust organic photocatalyst, graphitic carbon nitride (g-C3N4). It was discovered that using a novel preparation method, urea derived g-C3N4 can achieve a quantum yield of 26% at 400 nm for hydrogen production from water; an order of magnitude greater than previously reported in the literature (3.75%). The stark difference in activity is due to the polymerisation status, and consequently the surface protonation status as evidenced by XPS. As the surface protonation decreases, and polymerisation increases, the performance of graphitic carbon nitride for hydrogen production increases. The rate of hydrogen production with respect to BET specific surface area was also found to be non-correlating; a juxtaposition of conventional photocatalysts whose activity is enhanced with larger surface areas - believed to be because of an increase in surface active sites. Finally, overall water splitting was probed using Z-scheme systems comprising of a redox mediator, hydrogen evolution photocatalyst, and oxygen evolution photocatalyst. Ag3PO4 was found not be not suitable for current Z-scheme systems, as it is unstable in the pH ranges required, and also reacts with both of the best known electron mediators used in Z- schemes, as evidenced by XRD, TEM, and EDX studies. However, it has been demonstrated that urea derived g-C3N4 can participate in a Z-scheme system, when combined with either WO3 or BiVO4 – the first example of its kind, resulting in a stable system for an overall water splitting operated under both visible light irradiation and full arc irradiation. Further studies shows water splitting rates are influenced by a combination of pH, concentration of redox mediator, and mass ratio between photocatalysts. The solar-to-hydrogen conversion of the most efficient system was experimentally verified to be ca. 0.1%. It is postulated that the surface properties of urea derived graphitic carbon nitride are related to the adsorption of redox ions, however, further work is required to confirm these assumptions. 6 III. Publications & conferences Publications 1. Efficient visible driven photocatalyst, silver phosphate: performance, understanding and perspective. David James Martin, Liu Guigao, Jinhua Ye and Junwang Tang. Chemical Society Reviews, in preparation, 2014 2. Visible Light-Driven Pure Water Splitting by a Nature-Inspired Organic Semiconductor-Based System. David James Martin, Philip James Thomas Reardon, Savio J.A. Moniz, and Junwang Tang. Journal of the American Chemical Society, 2014, 136 (36), 12568 -12571 3. Highly Efficient H2 Evolution from Water under visible light by Structure-Controlled Graphitic Carbon Nitride. David James Martin, Kaipei Qiu, Stephen Andrew Shevlin, Albertus Denny Handoko, Xiaowei Chen, Zheng Xiao Guo & Junwang Tang. Angewandte Chemie International Edition, 2014, 53 (35), 9240-9245 4. Facet engineered Ag3PO4 for efficient water photooxidation. David James Martin, Naoto Umezawa, Xiaowei Chen, Jinhua Ye and Junwang Tang. Energy & Environmental Science, 2013, 6, 3380-3386 5. H2 and O2 Evolution from Water Half-Splitting Reactions by Graphitic Carbon Nitride Materials. A. Belen Jorge, David James Martin, Mandeep
Recommended publications
  • Facile Synthesis of Potassium Poly(Heptazine Imide) (PHIK)
    Subscriber access provided by CORNELL UNIVERSITY LIBRARY Article Facile synthesis of potassium poly(heptazine imide) (PHIK) / Ti-based Metal- Organic Framework (MIL-125-NH2) composites for photocatalytic applications Nicolás Artemio Rodríguez, Aleksandr Savateev, Maria Alejandra Grela, and Dariya Dontsova ACS Appl. Mater. Interfaces, Just Accepted Manuscript • Publication Date (Web): 13 Jun 2017 Downloaded from http://pubs.acs.org on June 14, 2017 Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.
    [Show full text]
  • Solar Energy Harvesting with Carbon Nitrides: Do We Understand The
    Solar energy harvesting with carbon nitrides: Do we understand the mechanism? Wolfgang Domcke1, Johannes Ehrmaier1 and Andrzej L. Sobolewski2 1 Department of Chemistry, Technical University of Munich, D-85747 Garching, Germany 2 Institute of Physics, Polish Academy of Sciences, 02-668 Warsaw, Poland Email: [email protected] (Wolfgang Domcke) Abstract The photocatalytic splitting of water into molecular hydrogen and molecular oxygen with sunlight is the dream reaction for solar energy conversion. Since decades, transition-metal- oxide semiconductors and supramolecular organometallic structures have been extensively explored as photocatalysts for solar water splitting. More recently, polymeric carbon nitride materials consisting of triazine or heptazine building blocks have attracted considerable attention as hydrogen-evolution photocatalysts. The mechanism of hydrogen evolution with polymeric carbon nitrides is discussed throughout the current literature in terms of the familiar concepts developed for photoelectrochemical water splitting with semiconductors since the 1970s. We discuss in this perspective an alternative mechanistic paradigm for photoinduced water splitting with carbon nitrides, which focusses on the specific features of the photochemistry of aromatic N-heterocycles in aqueous environments. It is shown that a water molecule which is hydrogen-bonded to an N-heterocycle can be decomposed into hydrogen and hydroxyl radicals by two simple sequential photochemical reactions. This concept is illustrated by first-principles calculations of excited-state reaction paths and their energy profiles for hydrogen-bonded complexes of pyridine, triazine and heptazine with a water molecule. It is shown that the excited-state hydrogen-transfer and hydrogen-detachment reactions are essentially barrierless, in sharp contrast to water oxidation in the electronic ground state, where high barriers prevail.
    [Show full text]
  • Photo-Induced Phenomena from the Quantum Chemist Point of View Tangui Le Bahers
    Photo-Induced Phenomena from the Quantum Chemist Point of View Tangui Le Bahers To cite this version: Tangui Le Bahers. Photo-Induced Phenomena from the Quantum Chemist Point of View. Theoretical and/or physical chemistry. Université Claude Bernard Lyon 1, 2018. tel-02073756 HAL Id: tel-02073756 https://hal.archives-ouvertes.fr/tel-02073756 Submitted on 22 Mar 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. MEMOIRE En vue de l’obtention du diplôme national de l’ Habilitation à diriger des recherches, délivré par l’Université Claude Bernard Lyon 1 Discipline : Chimie Laboratoire de Chimie de l’ENS Lyon Présenté publiquement le 14 Juin 2018 Par Monsieur Tangui LE BAHERS Photo-Induced Phenomena from the Quantum Chemist Point of View Devant le jury composé de : Dr. Valérie Keller CNRS / Université de Strasbourg Pr. Mario Barbatti Université d’Aix-Marseille Dr. Pascal Raybaud IFP Energies Nouvelles Dr. Filippo De Angelis CNR Perugia / Italy Pr. Christophe Morell Université Claude Bernard Lyon 1 Dr. Chantal Andraud CNRS / ENS Lyon Remerciements Voilà maintenant 7 ans que j’ai soutenu ma thèse. Ce manuscrit vient retracer les travaux scientifiques que j’ai réalisés depuis.
    [Show full text]
  • Graphitic Carbon Nitride (G-C3N4), an Organic Semiconductor That Proved a Suitable Photocatalyst for Hydrogen Production from Water
    METAL LOADED G-C₃N₄ FOR VISIBLE LIGHT-DRIVEN H₂ PRODUCTION Federica Fina A Thesis Submitted for the Degree of PhD at the University of St Andrews 2014 Full metadata for this item is available in St Andrews Research Repository at: http://research-repository.st-andrews.ac.uk/ Please use this identifier to cite or link to this item: http://hdl.handle.net/10023/6322 This item is protected by original copyright This item is licensed under a Creative Commons Licence Metal loaded g-C3N4 for visible light-driven H2 production by Federica Fina A thesis submitted in partial fulfilment for the degree of PhD at the University of St Andrews 2014 I, Federica Fina hereby certify that this thesis, which is approximately 50,000 words in length, has been written by me, and that it is the record of work carried out by me and that it has not been submitted in any previous application for a higher degree. I was admitted as a research student in January 2011 and as a candidate for the degree of Doctor of Philosophy in August 2014; the higher study for which this is a record was carried out in the University of St Andrews between 2011 and 2014. Date …………….………….. Signature of candidate …………….………….. I hereby certify that the candidate has fulfilled the conditions of the Resolution and Regulations appropriate for the degree of Doctor of Philosophy in the University of St Andrews and that the candidate is qualified to submit this thesis in application for that degree. Date …………….………….. Signature of supervisor …………….………….. In submitting this thesis to the University of St Andrews I understand that I am giving permission for it to be made available for use in accordance with the regulations of the University Library for the time being in force, subject to any copyright vested in the work not being affected thereby.
    [Show full text]
  • Heptazine Imide Salts Can Exchange Metal Cations in the Solid State
    MPIKG Public Access Author Manuscript Published in final edited form as: Savateev, A., Pronkin, S., Willinger, M. G., Antonietti, M., & Dontsova, D. (2017). Towards Organic Zeolites and Inclusion Catalysts: Heptazine Imide Salts Can Exchange Metal Cations in the Solid State. Chemistry – An Asian Journal, 12(13), 1517-1522. doi:10.1002/asia.201700209. Towards organic zeolites and inclusion catalysts: heptazine imide salts can exchange metal cations in the solid state Savateev, A., Pronkin, S., Willinger, M. G., Antonietti, M., & Dontsova, D. Worth its salt: A variety of heptazine imide salts and a free base can be easily prepared by a simple ion exchange starting from the synthesized potassium derivative. Thus, various mono- and bivalent cations can be incorporated in the structure that resembles the behavior of zeolites. The photocatalytic activity in visible-light-driven hydrogen evolution is shown to depend on the nature of the introduced cation and reaches its maximum in the case of the Mg-salt. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. Towards organic zeolites and inclusion catalysts: heptazine ipt imide salts can exchange metal cations in the solid state Aleksandr Savateev1, Sergey Pronkin2, Marc Willinger1,3, Markus Antonietti1, and Dariya Manuscr 1* Dontsova Abstract. Highly crystalline potassium (heptazine imides) were preparations. In addition, intercalation of chloride and prepared by the thermal condensation of substituted 1,2,4- · Author · bromide changes the gallery heights of the graphitic triazoles in eutectic salt melts. These semiconducting salts are already known to be highly active photocatalysts, e.g.
    [Show full text]
  • From Triazines to Heptazines: Novel Nonmetal Tricyanomelaminates As Precursors for Graphitic Carbon Nitride Materials
    Chem. Mater. 2006, 18, 1891-1900 1891 From Triazines to Heptazines: Novel Nonmetal Tricyanomelaminates as Precursors for Graphitic Carbon Nitride Materials Bettina V. Lotsch and Wolfgang Schnick* Department Chemie und Biochemie, Lehrstuhl fu¨r Anorganische Festko¨rperchemie, Ludwig-Maximilians-UniVersita¨t Mu¨nchen, Butenandtstrasse 5-13, D-81377 Mu¨nchen, Germany ReceiVed October 25, 2005. ReVised Manuscript ReceiVed December 22, 2005 The first non-metal tricyanomelaminates have been synthesized via metathesis reactions and characterized by means of single-crystal X-ray diffraction and vibrational and solid-state NMR spectroscopy. The crystal structures of [NH4]2[C6N9H] (1)(P21/c, a ) 1060.8(2) pm, b ) 1146.2(2) pm, c ) 913.32(18) pm, â ) 6 3 112.36(3)°, V ) 1027.0(4) × 10 pm ), [C(NH2)3]3[C6N9]‚2H2O(2)(P212121, a ) 762.12(15) pm, b ) 6 3 1333.6(3) pm, c ) 1856.6(4) pm, V ) 1887.0(7) × 10 pm ) and [C3N6H7]2[C6N9H]‚2.5 H2O(3)(P1h, a ) 1029.5(2) pm, b ) 1120.3(2) pm, c ) 1120.7(2) pm, R)104.22(3)°, â ) 112.74(3)°, γ ) 104.62- (3)°, V ) 1064.8(4) × 106 pm3) are composed of singly protonated (1 and 3) or nonprotonated (2) tricyanomelaminate ions, which, together with the respective counterions, form two-dimensional, layered structures (1 and 3) or a quasi three-dimensional network (2). Particular emphasis has been placed on the elucidation of the thermal reactivity of the three molecular salts by means of thermal analysis and vibrational and NMR spectroscopy, as well as temperature-dependent X-ray powder diffraction.
    [Show full text]
  • 2,5,8-Trihydrazino-S-Heptazine
    2,5,8-Trihydrazino-s-heptazine: a precursor for heptazine-based iminophosphoranes Edwin Kroke, Tatyana Saplinova, Vadym Bakumov, Tobias Gmeiner, Jörg Wagler, Marcus Schwarz To cite this version: Edwin Kroke, Tatyana Saplinova, Vadym Bakumov, Tobias Gmeiner, Jörg Wagler, et al.. 2,5,8- Trihydrazino-s-heptazine: a precursor for heptazine-based iminophosphoranes. Journal of Inorganic and General Chemistry / Zeitschrift für anorganische und allgemeine Chemie, Wiley-VCH Verlag, 2009, 10.1002/zaac.200900311. hal-00518304 HAL Id: hal-00518304 https://hal.archives-ouvertes.fr/hal-00518304 Submitted on 17 Sep 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ZAAC 2,5,8-Trihydrazino-s-heptazine: a precursor for heptazine- based iminophosphoranes Journal: Zeitschrift für Anorganische und Allgemeine Chemie Manuscript ID: zaac.200900311.R1 Wiley - Manuscript type: Article Date Submitted by the 17-Jul-2009 Author: Complete List of Authors: Kroke, Edwin; TU Bergakademie Freiberg, Institut fuer Anorganische Chemie Saplinova, Tatyana; TU Bergakademie Freiberg,
    [Show full text]
  • Investigations Into S-Heptazine-Based Carbon Nitride Precursors
    Dissertation zur Erlangung des Doktorgrades der Fakultät für Chemie und Pharmazie der Ludwig-Maximilians-Universität München Investigations into s-Heptazine-Based Carbon Nitride Precursors Andreas Sattler aus Augsburg 2010 Erklärung Diese Dissertation wurde im Sinne von § 13 Abs. 3 bzw. 4 der Promotionsordnung vom 29. Januar 1998 von Herrn Prof. Dr. Wolfgang Schnick betreut. Ehrenwörtliche Versicherung Diese Dissertation wurde selbstständig, ohne unerlaubte Hilfe erarbeitet. München, den 12.02.2010 Andreas Sattler Dissertation eingereicht am 15.02.2010 1. Gutachter: Prof. Dr. Wolfgang Schnick 2. Gutachter: Prof. Dr. Dirk Johrendt Mündliche Prüfung am 20. April 2010 ii Für meine Familie und Freunde Und für alle denen dies Information und Hilfe sein mag iii iv Acknowledgements First of all, I would like to express my gratitude to Prof. Dr. Wolfgang Schnick for hav- ing granted me the opportunity to work in his research group. His guidance and expertise have been invaluable for the present work. I am most grateful to Prof. Dr. Dirk Johrendt for his willingness to be the co-referee of this thesis. I thank Prof. Dr. Bettina V. Lotsch, Prof. Dr. Jürgen Senker, Prof. Dr. Konstantin Karaghiosoff and Priv. Doz. Dr. Klaus Müller-Buschbaum for being available as examiners in my viva-voce. The past and present members of the work group and other members of the department, whose company I have had the honor to enjoy, have helped and supported me in a multitude of ways. Working with these fine colleagues has become a part of my life that I will look back upon often and happily. I would like to address special thanks and gratitude to: My predecessors Dr.
    [Show full text]
  • Structure Elucidation of Polyheptazine Imide by Electron Diffraction
    View Article Online / Journal Homepage / Table of Contents for this issue COMMUNICATION www.rsc.org/chemcomm | ChemComm Structure elucidation of polyheptazine imide by electron diffraction—a templated 2D carbon nitride networkw Markus Do¨blinger,a Bettina V. Lotsch,a Julia Wack,b Ju¨rgen Thun,b Ju¨rgen Senkerb and Wolfgang Schnick*a Received (in Cambridge, UK) 10th November 2008, Accepted 9th January 2009 First published as an Advance Article on the web 27th January 2009 DOI: 10.1039/b820032g Structure elucidation of a condensed carbon(IV) nitride with a owing to the lack of single-crystal data. Electron diffraction is stoichiometry close to C3N4 by electron diffraction reveals a a powerful tool to deliver on both requirements by locally two-dimensional planar heptazine-based network containing probing the real structure of nanocrystalline materials and isolated melamine molecules in the trigonal voids. minority phases not previously accessible to bulk structural analysis. Owing to their exceptional chemical stability and hardness, Here, we communicate the structure elucidation of a crys- nitrides of main group elements have entered the stage as talline 2D carbon nitride network with the formula ubiquitous light-weight, high-performance materials relevant to (C6N7)2(NH)3ÁC3N3(NH2)3 by electron diffraction. This novel a multitude of technological applications. Although 3D phases of member of the carbon nitride family, featuring an intermediate binary carbon nitride C3N4 hold promise as new ultra-hard condensation stage halfway between melon and g-C3N4, may materials,1 the layered polymorph, graphitic carbon nitride shed light on structural implications and stability considerations (g-C3N4) has recently garnered attention for its versatile optical, associated with graphitic carbon nitride.
    [Show full text]
  • © Copyright 2020 Emily Rabe
    © Copyright 2020 Emily Rabe The Role of Excited-State Energy Landscapes in Directing Electron and Proton Motion for Light Harvesting Applications Emily Rabe A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2020 Reading Committee: Cody Schlenker, Chair Brandi Cossairt Munira Khalil Program Authorized to Offer Degree: Chemistry University of Washington Abstract The Role of Excited-State Energy Landscapes in Directing Electron and Proton Motion for Light Harvesting Applications Emily Rabe Chair of the Supervisory Committee: Professor Cody Schlenker Department of Chemistry To meet the increasing global demand for energy we need to innovate new ways to harness and convert renewable energy sources. Solar energy provides a huge potential to meet these demands, but there is still a plethora of unanswered questions surrounding how photons interact with organic molecules and materials, particularly in the field of photovoltaics and photochemistry. The low dielectric constant of these organic materials causes them to behave differently than their inorganic counterparts. Chapter 2 provides background for the variety of applications of organic optoelectronic materials and common techniques used to study them. In recent years, the aza-aromatic material carbon nitride, and its monomer unit, heptazine, has seen a surge in popularity to mediate photochemical transformations, particularly hydrogen evolution. Yet despite the thousands of publications in this field, there are few fundamental photophysical studies, which are critical to enable new reaction pathways. This work describes a series of photophysical explorations into a molecular heptazine derivative, 2,5,8-tris(4- methoxyphenyl)-1,3,4,6,7,9,9b-heptaazaphenalene (TAHz).
    [Show full text]
  • Fritz-Haber-Institut Der Max-Planck-Gesellschaft Berlin
    Fritz-Haber-Institut der Max-Planck-Gesellschaft Berlin 19th Meeting of the Fachbeirat Berlin, November 28th – 30th, 2017 Fritz-Haber-Institut der Max-Planck-Gesellschaft Berlin 19th Meeting of the Fachbeirat Berlin, November 28th – 30th, 2017 Reports Members of the Fachbeirat 2017 Prof. Dr. Roberto Car Prof. Dr. Hans-Peter Steinrück Princeton University Universität Erlangen-Nürnberg Department of Chemistry Physikalische Chemie II Frick Laboratory, 153 Egerlandstr. 3 Princeton, NJ 08544-1009 91058 Erlangen USA Germany +1 609-258-2534 +49 9131 85-27343 [email protected] [email protected] Prof. Dr. Tony Heinz Prof. Dr. Wataru Ueda Columbia University Kanagawa University Departments of Physics and Electrical Department of Material and Life Chemistry Engineering Faculty of Engineering 500 West 120th St. 3-27-1, Rokkakubashi, Kanagawa-ku New York, NY 10027 Yokohama, 221-8686 USA Japan +1 212 854 6564 +81-45-481-5661 [email protected] [email protected] Prof. Dr. Manfred Kappes Prof. Dr. Evan R. Williams Karlsruhe Institut für Technologie (KIT) University of California, Berkeley Institut für Physikalische Chemie Department of Chemistry Fritz-Haber-Weg 2 B84 Hildebrand Hall 76131 Karlsruhe Berkeley, CA 94720-1460 Germany USA +49 721 608-42094 +1 510-643-7161 [email protected] [email protected] Prof. Dr. Maki Kawai Prof. Dr. Weitao Yang Institute for Molecular Science Duke University 38 Nishigo-Naka, Myodaiji, Department of Chemistry Okazaki, 444-8585 5310 French Family Science Center Japan Durham, NC 27708-0346 +81-564-55-7103 USA [email protected] +1 919 660- 1562 [email protected] Prof.
    [Show full text]
  • Renewing Accessible Heptazine Chemistry
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Archive Ouverte en Sciences de l'Information et de la Communication Renewing accessible heptazine chemistry: 2,5,8-tris(3,5-diethyl-pyrazolyl)-heptazine, a new highly soluble heptazine derivative with exchangeable groups, and examples of newly derived heptazines and their physical chemistry Laurent Galmiche, Clémence Allain, Tuan Le, Régis Guillot, Pierre Audebert To cite this version: Laurent Galmiche, Clémence Allain, Tuan Le, Régis Guillot, Pierre Audebert. Renewing accessible heptazine chemistry: 2,5,8-tris(3,5-diethyl-pyrazolyl)-heptazine, a new highly soluble heptazine deriva- tive with exchangeable groups, and examples of newly derived heptazines and their physical chemistry. Chemical Science , The Royal Society of Chemistry, 2019, 10 (21), pp.5513-5518. 10.1039/c9sc00665f. hal-02276787 HAL Id: hal-02276787 https://hal.archives-ouvertes.fr/hal-02276787 Submitted on 3 Sep 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial| 4.0 International License Chemical Science View Article Online EDGE ARTICLE View Journal | View Issue Renewing accessible heptazine chemistry: 2,5,8- tris(3,5-diethyl-pyrazolyl)-heptazine, a new highly Cite this: Chem.
    [Show full text]