© Copyright 2020 Emily Rabe
Total Page:16
File Type:pdf, Size:1020Kb
© Copyright 2020 Emily Rabe The Role of Excited-State Energy Landscapes in Directing Electron and Proton Motion for Light Harvesting Applications Emily Rabe A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2020 Reading Committee: Cody Schlenker, Chair Brandi Cossairt Munira Khalil Program Authorized to Offer Degree: Chemistry University of Washington Abstract The Role of Excited-State Energy Landscapes in Directing Electron and Proton Motion for Light Harvesting Applications Emily Rabe Chair of the Supervisory Committee: Professor Cody Schlenker Department of Chemistry To meet the increasing global demand for energy we need to innovate new ways to harness and convert renewable energy sources. Solar energy provides a huge potential to meet these demands, but there is still a plethora of unanswered questions surrounding how photons interact with organic molecules and materials, particularly in the field of photovoltaics and photochemistry. The low dielectric constant of these organic materials causes them to behave differently than their inorganic counterparts. Chapter 2 provides background for the variety of applications of organic optoelectronic materials and common techniques used to study them. In recent years, the aza-aromatic material carbon nitride, and its monomer unit, heptazine, has seen a surge in popularity to mediate photochemical transformations, particularly hydrogen evolution. Yet despite the thousands of publications in this field, there are few fundamental photophysical studies, which are critical to enable new reaction pathways. This work describes a series of photophysical explorations into a molecular heptazine derivative, 2,5,8-tris(4- methoxyphenyl)-1,3,4,6,7,9,9b-heptaazaphenalene (TAHz). Chapter 3 provides an overview of the photophysical and electrochemical properties of TAHz, including the unusual inversion of the lowest singlet and triplet state. Chapter 4 provides the first experimental evidence for excited-state proton-coupled electron transfer (ES-PCET) from water to a heptazine chromophore using time- resolved photoluminescence and radical scavenging. This first step of water oxidation opens a new range of possible photochemical reactions to harness solar energy. Chapter 5 proposes design rules for increasing reaction efficiency of ES-PCET with heptazine chromophores by studying reaction rates with a series of phenol derivatives. By adding electron-donating groups on phenol, increased reactivity and support the corollary: adding electron-withdrawing groups to heptazine could increase reaction efficiency with water. Chapter 6 considers another aspect of chromophore design by studying hydrogen bonding and how the local excited-state landscape is modulated by hydrogen-bond strength. Together, this work presents a holistic picture of heptazine’s photophysics with implications for tailoring organic chromophores to meet unique photochemical demands. TABLE OF CONTENTS List of Figures .............................................................................................................................v List of Tables ............................................................................................................................ ix Chapter 1. Introduction ...............................................................................................................1 1.1 Motivating Clean Energy Research ..............................................................................1 1.1.1 Increasing Global Energy Demand ...........................................................................1 1.1.2 Solar Energy Potential .............................................................................................2 1.1.3 Global Hydrogen Production ....................................................................................3 1.2 Photocatalytic Reactions ..............................................................................................4 1.2.1 Hydrogen Evolution .................................................................................................5 1.2.2 Proton-Coupled Electron Transfer ............................................................................5 1.3 History of Carbon Nitride and Heptazine .....................................................................7 1.4 References ...................................................................................................................9 Chapter 2. Background .............................................................................................................. 13 2.1 Photophysics of Organic Molecules ........................................................................... 13 2.1.1 Absorption of Light ............................................................................................... 13 2.1.2 Photoluminescence ................................................................................................ 15 2.1.3 Non-radiative rates ................................................................................................. 17 2.2 Methods for Studying Optoelectronic Materials ......................................................... 18 2.2.1 Lock-in Amplification............................................................................................ 18 2.2.2 Time-Resolved Photoluminescence ........................................................................ 21 2.3 Global Analysis ......................................................................................................... 23 i 2.4 Excited State Energies Drive Charge Transfer in Organic Materials ........................... 24 2.4.1 Introduction ........................................................................................................... 24 2.4.2 Depicting the Energy Landscape of OPV’s ............................................................ 25 2.4.3 Methods for Determining Energy Levels ................................................................ 30 2.5 References ................................................................................................................. 35 Chapter 3. Synthesis and Characterization of Heptazine Derivatives ......................................... 39 3.1 Synthesis of Tri-Anisole Heptazine (TAHz) ............................................................... 39 3.2 Characterizing TAHz Structure .................................................................................. 41 3.3 Understanding the Excited State Landscape of TAHz ................................................ 43 3.4 Singlet-Triplet Inversion in Heptazine ....................................................................... 51 3.4.1 Computational Results ........................................................................................... 53 3.4.2 Experimental Results ............................................................................................. 58 3.5 References ................................................................................................................. 63 Chapter 4. Proton-Coupled Electron Transfer from Water to a Model Heptazine-Based Molecular Photocatalyst ............................................................................................................................. 66 4.1 Summary ................................................................................................................... 66 4.2 Introduction ............................................................................................................... 66 4.3 Conclusions ............................................................................................................... 74 4.4 Experimental Methods ............................................................................................... 74 4.5 References ................................................................................................................. 77 Chapter 5. Barrierless Heptazine-Driven Excited-State Proton-Coupled Electron Transfer: Implications for Controlling Photochemistry of Carbon Nitrides and Aza-Arenes ..................... 81 ii 5.1 Introduction ............................................................................................................... 81 5.2 Results and Discussion .............................................................................................. 84 5.2.1 Association Constants for Hydrogen-Bonding ........................................................ 84 5.2.2 Quenching Constants for PhOH Derivatives........................................................... 86 5.2.3 Time-Resolved Photoluminescence ........................................................................ 89 5.2.4 Computational Studies of Hz-PhOH Complexes and Their Potential Energy Surfaces 92 5.2.5 Implications for Molecular Design ......................................................................... 95 5.3 Conclusions ............................................................................................................... 97 5.4 Experimental Methods ............................................................................................... 98 5.5 References ............................................................................................................... 101 Chapter 6. Intermolecular hydrogen bonding tunes vibronic coupling in heptazine complexes 104 6.1 Summary ................................................................................................................