<<

NonNegative Matrices and Related Topics 1.ThePerronFrobeniusTheorem 2.GraphsandMatrices 3.Stability 4.ApplicationsandExtensions 1. The Perron-Frobenius Theorem Nonnegativematricesarethemainobjectsofthiscourse.Ichosetotalkaboutsuch matricesbecausetheyenjoylovelyalgebraic,geometricandcombinatorialpropertiesand havemanyimportantapplications. AAis nonnegative ,A ≥0,ifallitsentriesarenonnegative.AmatrixAis positive , A>0,ifallitsentriesarepositive. Therearemanybooksandsurveysonnonnegativematrices.Hereisapersonalchoice: [BapatandRaghavan1997],[Berman,NeumannandStern1989],[Bermanand Plemmons1979,1994],[Minc1988],[Rothblum2006]and[Senata1981]. ForasquarematrixAwedenote ρ (A)=max{ λ ; λ isaneigenvalueofA} and (A)=max{ λ ; λ isaneigenvalueofA, λ ≠ ρ (A)}. ρ (A)iscalledthe spectral radius of(A). TheseminaltheoremonpositivematriceswasprovedbyOscarPerronmorethan100 yearsago. Theorem, [Perron 1907] IfAisasquarepositivematrixthen a) ρ (A)>0, b) ρ (A)isasimpleeigenvalueofA, c)to ρ (A)correspondsapositiveeigenvector, d) (A)< ρ (A), e) lim(A / (ρ ( A )) m≡ L = xy T ,where m→∞ Ax= ρ (A)x,x>0; AyT = ρ( Ay ) ,y>0; xT y =1, f)foreveryr, ()/()A ρ A< r < 1 ,thereexistsaconstantC=C(r,A),suchthatforeverym (A /ρ ( A )) m− L ≤ Cr m ,where A= max a . ∞ ∞ ij

1 Application: The Google Matrix Whenwegoogleaconcept,forexamplethePerronFrobeniusTheorem,weareoffereda largenumberofpossiblewebsites.Tomakethesearchuseful,themoreimportantsites areofferedfirst. So,howarethesitesranked?Inasimilarwaytothewaythattennisplayersareranked.A siteisimportantifimportantsitespointtoit. SupposewehaveNpagesthathavetoberanked. Example(N=6):

LetPR(i)=theofsitei,denotetheprobabilitythatarandomsurferwillbeinsitei. Assumptions: Ifklinksgooutfromsiteiandifoneofthemgoestositej,thenifthesurferfollowsthe linkhewillchoosejinprobability1/k. Iftherearenolinksatallfromsitei,thentheprobabilitytogotojis1/N.

ThematrixP=( Pij )isstochastic ,i.e.,nonnegativewithrowsumsequalto1. Intheexample; 0 1 0 0 0 0    0 0 1/4 1/4 1/4 1/4  1/6 1/6 1/6 1/6 1/6 1/6  P=   0 0 0 0 1/21/2  0 0 0 1/2 0 1/2    1/6 1/6 1/6 1/6 1/6 1/6  Anotherassumption:

2 Thesurferusesoneofthelinks(orartificiallinks)inprobabilityα(around0.85)or choosesanarbitrary(possiblythesame)siteinprobability1α,sothefinalprobability ofmovingfromsiteitositejis aij=α P ij +(1 − α )1/ N .

ThenewmatrixA=( aij )isalsostochastic.Itisalsopositive. Intheexample 1/40 7/8 1/40 1/40 1/40 1/40    1/40 1/40 19/80 19/80 19/80 19/80  ee T  1/6 1/6 1/6 1/6 1/6 1/6  A=α P +−(1 α ) =   N 1/40 1/40 1/40 9/20 1/40 9/20  1/40 1/40 1/40 9/20 1/40 9/20     1/6 1/6 1/6 1/6 1/6 1/6  Thematrix ee T canbereplacedby ve T wherevisapositivevectorthatischosentogive preferencetoparticularsites. SohowarethePR(i)srelated?

PR(1)= a11 PR (1) + a 21 PR (2) ++ ... aN 1 PR ( N )

PR(2)= aPR12 (1) + aPR 22 (2) ++ ... aPRNN 2 ( ) . . . . . .

PRN( )= aPR1N (1) + aPR 2 N (2) ++ ... aPRN NN ( ) Denoting x= ( PR (1),... PRN ( )) T weget AT x= x soxisaneigenvectorof AT . Indeed1isthespectralradiusof AT ,andbyPerron'sTheorem,thiseigenvectoris uniquelydefinedwhenthePR(i)sarepositivenumbersthatsumto1. ThePerronvectoriscomputedbythepowermethod,startingwithaprobabilityvectorx andcomputingthelimitof Ak x,whichisgivenbypart(e)ofPerron'stheorem.Using part(f)ofthetheoremonecanshowthattheprobabilityαdeterminestherateof convergence.Forsmallerαwehavefasterconvergence.Ontheotherhandforlargerα wehavebetteruseofthehyperlinkstructureofthewebsothereisatradeoffbetweenthe two. Perron'sTheoremcanbegeneralizedtoprimitiveandtoirreduciblematrices.

3 Primitivity Anonnegativematrixis primitive ifforsomenaturalnumberk, Ak ispositive. InPerron'sTheorem,"positive"canbereplacedby"primitive".

Irreducibility ToannxnmatrixA,correspondsadirectedgraph(digraph),D(A),withnvertices

1,2,...,n,andanarcfromitojiff aij ≠ 0 .Digraphsaresurveyedin[BermanandShaked Monderer2008]. Examples(xdenotesanonzeroentry): 1 2 0x 0 0    0 0x 0 A =   D(A): 0 0 0 x    x 0 0 0  4 3 0x 0 0  1 2   0 0x 0 B =   D(B): 0 0 0 x    0x 0 0  4 3 0x 0 0  1 2   0 0x 0 C =   D(C): 0 0 0 x    x x 0 0  4 3 AdirectedgraphDis strongly connected ifforanytwoverticesiandjofD,Dcontainsa pathfromitoj. AsquarematrixAis irreducible ifD(A)isstronglyconnected.OtherwiseAis reducible. Inotherwords,annxn,n>1,squarematrixAisreducibleiffitispermutationallysimilar to

T B C  PAP =   0 D  whereBandDaresquare.Ifn=1,Aisreducibleiffitisa(1x1)zeromatrix. Examples:

4 0x 0 0    0 0x 0 A =   D(A): 0 0 0 x    x 0 0 0  Aisirreducible. 0x 0 0    0 0x 0 B =   D(B): 0 0 0 x    0x 0 0  Bisreducible. 0x 0 0    0 0x 0 C =   D(C): 0 0 0 x    x x 0 0  Cisirreducible. Perron'sTheoremwasextendedbyFerdinandGeorgFrobenius.Theresulting fundamentaltheoremisknownasthePerronFrobeniusTheorem.Wedivideitintotwo parts.

The Perron-Frobenius Theorem [Frobenius 1912] - Part I InthefirstthreestatementsofPerron'sTheorem,"positive"canbereplacedby "nonnegativeirreducible",namely: IfA ≥0isirreduciblethen a) ρ (A)>0, b) ρ (A)isasimpleeigenvalueofA, c)to ρ (A)correspondsapositiveeigenvector. Inaddition,ifA ≥0isirreducible(whichofcourseincludesA>0): d)ifAx= λ xandxispositive,then λ = ρ (A), e)ifB ≥A,B ≠ A,then ρ (B)> ρ (A), f)ifB ≤A,B ≠ A,then ρ (B)< ρ (A).

5 Corollary IfB ≠ AisaprincipalsubmatrixofanirreduciblenonnegativematrixA,then ρ (B)< ρ (A). Another corollary IfAisasquarenonnegativematrix, n n minaij≤ρ ( A ) ≤ max a ij i ∑i ∑ j=1 j = 1 TointroducethesecondpartofthePFTweneedthedefinitionoforderofcyclicity. The order of cyclicity ofanirreduciblenonnegativematrixisthenumberofits eigenvalueswhosemodulusisthespectralradius. Anirreduciblenonnegativematrixisprimitiveiffitsindexofcyclicityis1.

The Perron-Frobenius Theorem, Part II IfA ≥0isirreducibleanditsindexofcyclicityisk>1,then a)theeigenvaluesofAofmodulus ρ (A)are ρ(A ) e 2πi / k ;i=0,1,...,k1, b)rotatingthecomplexplaneby 2π / k takesthespectrumofAontoitself, c)Aispermutationallysimilarto

0A12 0..0    00A ... 23  ......  PAP T =   . ...0    . . . Ak−1 k   Ak1 . . .0 0  wherethezeroblocksonthediagonalaresquare. ThePerronFrobeniusTheoremhasmanyproofs.Herewementiononlytheclassical proofgivenbyWielandt,[Wielandt1950]. WeconcludethissubsectionwithalovelywaysuggestedbyRomanovskyforcomputing theorderofcyclicity. Theorem [Romanovsky 1936]

LetA ≥0beirreducibleandlet ki bethegreatestcommondividerofthelengthsofcycles inD(A)thatpassthroughi.Thenallthe ki 'sareequalandareequaltotheorderof cyclicityofA.

6 Examples:

D(A): k1= k 2 = k 3 = k 4 = 4

D(C): k1= k 2 = k 3 = k 4 = 1

Reducible Matrices IfA ≥0isreducible(oforder>1)thenthereexistsapermutationmatrixP,sothatAcan bereducedtotheform

T B C  PAP =   0 D  whereBandDaresquarematrices.IfeitherBorDarereducible(oforder>1)theycan bereducedinasimilarmannersofinally,byasuitablepermutation,Acanbereducedto ablocktriangularform , the

A11 A 12. . . A 1 s    0A . . 22  .. . .    . . ..    . . As−1 s   0 . ..0 Ass  whereeachblockonthediagonalissquareandirreducibleora(reducible)1x1zero matrix. Wewillstudythespectralpropertiesofreduciblematricesingreaterdepthintheendof thissection. Inverse Eigenvalue Problems Question:Finda4x4nonnegativematrixwitheigenvalues 2 , 2 ,1,1.

7 Answer: 2    2    1    1  Question:Finda4x4nonnegativematrixwitheigenvalues 2 , 2 ,1,1. Answer: 2    2    0 1    1 0  Question:Finda4x4symmetricnonnegativematrixwitheigenvalues 2 , 2 ,i,i. Answer: Thereisnosuchmatrixsincetheeigenvaluesofarealsymmetricmatrixarereal. Question:Finda4x4nonnegativematrixwitheigenvalues 2 , 2 ,i,i.

The Nonnegative Inverse Eigenvalue Problem (NIEP)

Givenncomplexnumbers λ1, λ 2 ,..., λ n and λ1≥ λ 2 ≥... ≥ λ n , isthereannxnnonnegativematrixAwhoseeigenvaluesare λ1, λ 2 ,..., λ n ? The Symmetric Nonnegative Inverse Eigenvalue Problem (SNIEP) Givennrealnumbers λ, λ ,..., λ λ≥ λ ≥... ≥ λ , 1 2 n 1 2 n isthereannxnsymmetricnonnegativematrixAwhoseeigenvaluesare λ1, λ 2 ,..., λ n ? NecessaryconditionsforNIEP:

λ1= λ 1 , _ _ _

{ λ1, λ 2 ,..., λ n }={ λ1, λ 2 ,..., λ n } n k Sk ≥ 0 ,k=1,2,...;where Sk= ∑λ i , i=1 m m −1 ()Sk≤ ( n ) S km ;k,m=1,2,....

8 ([LoewyandLondon1978],[Johnson1981]). Question:Istherea4x4nonnegativematrixwitheigenvalues 2 , 2 ,i,i? Answer:No! IftherewassuchamatrixAitwouldbereducible,soforsomepermutationP 2 x x x    0 PAP T =   0    0 B  whereBisa3x3nonnegativematrixwitheigenvalues 2 ,i,ibut m m −1 ()Sk≤ ( n ) S km 2 doesnotholdfork=1,m=2,n=3as 2 >3x0. Forn ≤4,NIEPandSNIEParesolved.Also,forn ≤4,arealsolutionofNIEPalsosolves

SNIEP([Johnson,LaffeyandLoewy1996]);However,forn>4let St ={3+t,3,2,2,2}, t>0.

Thesmallestvalueoftforwhich St solvesSNIEPist=1(HartwigandLoewy,see

[LoewyandMcDonald2004])butthereexists0

The Boyle-Handelman Theorem ([BoyleandHandelman1991])

Let λ1, λ 2 ,..., λ n benonzeronumberssuchthatλ1 >max(2 ≤i ≤ n , λ i ) .

Then,forsomeN,λ1, λ 2 ,..., λ n aretheeigenvaluesofan(n+N)x(n+N)primitivematrix, iff

λ1= λ 1 n k Sk ≥ 0 ;k=1,2,...(where Sk= ∑λ u ) i=1

Sk >0=> S jk >0;j,k=1,2,... Example: Wesawthat 2 ,i,iarenottheeigenvaluesofa3x3nonnegativematrix.However,for everypositiveepsilon, 2 + ε ,i,iarethenonzeroeigenvaluesofa(3+N)x(3+N) primitivematrix.Howeverwhenε → 0 , N → ∞ .

9

Suleimanova's type results

Letλ1 >0and λi ≤ 0 ;i=2,...,n.

[Suleimanova1949]showedthat λ1, λ 2 ,..., λ n solveNIEPiff S1 ≥ 0.

The C f ofthepolynomial n n −1 fx( )=+ xax1 ++ ... axan− 1 + n is

−an    1  1    . C =   f .    .  −a  2    1 −a1  [Friedland1978]showedthatinSuleimanova'sresultthenonnegativematrixcanbe chosentobeacompanionmatrix.

[Borobia,MoroandSoto2004]showedthatif λ1, λ 2 ,..., λ n satisfy

1) λ1 > 0,

2) Reλi ≤ 0 ,i=2,…,n,

3){ λ1, λ 2 ,..., λ n }isclosedundercomplexconjugationand

4) Reλi≥ Im λ i ,i=2,…,n,

thentheysolveNIEPiff S1 ≥ 0. [Smigoc2004}improvedtheresultbyreplacingcondition(4)by

3 Reλi≥ Im λ i ,i=2,…,n,andshowedthatherresultisthebestpossibleofthistype. Theorem ([LaffeyandSmigoc2006])

Let λ1, λ 2 ,..., λ n benonzerocomplexnumberssuchthat λ1 >0, Re(λi )≤ 0 ;i=2,...,n.Then

λ1, λ 2 ,..., λ n arethenonzeroeigenvaluesofan(n+N)x(n+N)nonnegativematrixif

{ λ1, λ 2 ,..., λ n }isclosedundercomplexconjugation, S1 ≥ 0and S2 > 0 . ThenonnegativematrixcanbechosentobeoftheformC+tI,whereCisacompanion matrixandtisanonnegativenumber.

10 UnliketheBoyleHandelmanTheoremwhereNisnotbounded,herethesmallest nonnegativeNneededisthesmallestNthatsatisfies 2 S1≤( nNS + ) 2 .

Corollary ([LaffeyandSmigoc2006])

Thenumbers λ1, λ 2 ,..., λ n ,asinthetheorem,solveNIEPiff

{ λ1, λ 2 ,..., λ n }isclosedundercomplexconjugation, S1 ≥ 0, 2 S2 ≥ 0 and S1≤ nS 2 . Index of primitivity Recallthatanonnegativematrixisprimitiveifforsomenaturalnumberk, Ak ispositive. SincethisisequivalenttoAbeingirreduciblewithorderofcyclicity1itfollowsthat Al isalsopositiveforall l≥ k . The index of primitivity ofaprimitivematrixAisthesmallestnumber γ (A ) suchthat Aγ (A ) ispositive.Theindexforaprimitivegraphisdefinedinasimilarway. Wenowstatesomeresultsonupperboundsfortheindexofprimitivity. [Wielandt1950]provedthatforan n× n primitivematrix γ ()A≤ n2 − 2 n + 2 and showedthat 010. . .0    001. . .0  ... .    .... .  ... . .    000. . .1    110. . .0  isprimitivewithindexprimitivity n2 −2 n + 2 . TheupperboundcanbereducedifmoreinformationonAisknown. Theorem Let A ≥ 0bean n× n primitivematrixandsupposethatforsomenaturalnumberh, A+ A2 +... + A h hasatleastdpositivediagonalentries,then γ (A )≤−+ n d hn ( − 1) .

AmatrixAiscombinatoriallysymmetricif aij isnonzeroiff a ji is.

Corollary

11 IfAisannxncombinatorialsymmetricprimitivematrixthenitsindexofprimitivityis lessthanorequalto2(n1). Stochastic Matrices StochasticmatricesarethematricesthatappearinthestudyofMarkovChains. Asquarematrixis (row) stochastic ifitisnonnegativeandifitsrowsumsareequalto1. Asquarematrixis column stochastic ifitisnonnegativeandifitscolumnsumsareequal to1.Amatrixis doubly stochastic ifitisrowstochasticandcolumnstochastic.

Theorem Themaximaleigenvalueofastochasticmatrixis1.AnonnegativematrixAisstochastic iffe,thevectorofones,isaneigenvectorofAcorrespondingto1. Inthenextsubsectionwewillcharacterizethosenonnegativematricesthatpossesa positiveeigenvectorthatcorrespondstothespectralradius.Thisclassofmatrices contains,ofcourse,theirreduciblematricesandbythelasttheoremalsothestochastic matrices.Infactthereisasimilarityconnectionbetweenstochasticmatricesandthis classandthisconnectionisdescribedinthenexttheorem.

Theorem. IfA≥0, ρ(A )> 0 and Az= ρ( Az ) ,then A/ρ ( A ) issimilartoastochasticmatrix.

Thesimilaritymatrixcanbeadiagonalmatrixwhosediagonalentriesaretheelementsof z. Weconcludethissubsectionwiththreeremarksondoublystochasticmatrices.

An ordered vector x= ( x i ) ; x1≥ x 2 ≥... ≥ x n majorizes anorderedvector y= ( y i ) ; k k n n y1≥ y 2 ≥... ≥ y n if ∑xi≥ ∑ y i ; k=1,..., n − 1 ; ∑xi= ∑ y i i=1 i = 1 i=1 i = 1 Theorem([Hardy,LittlewoodandPolya1929]) Anorderedvectorxmajorizesanorderedvectoryiffforsomedoublystochasticmatrix A,y=Ax. ThesecondremarkisatheoremofBirkhoff([Birkhoff1946]) Theorem Thesetofall n× n doublystochasticmatricesisaconvexpolyhedronwhoseverticesare thepermutationmatrices. ThethirdremarkisaclassicalconjectureofvanderWaerdenfrom1926,morethanfifty yearslaterindependentlybyEgorichevandFalikman.

12 RecallthatthepermanentofannxnmatrixAisafunctionsimilartothebut withouttheminussign. n

Per( A ) = π a iσ ( i ) ∑ i=1 σ∈Sn where Sn isthesymmetricgroupofordern.

Theorem IfAisan n× n doublystochasticmatrixthen n! Per( A ) ≥ nn andtheminimumisobtainedonlyforthematrixthatallofitsentriesareequal(to1/n). Thefollowingexampledemonstrateswhatthepermanentmeans: Example:

Particles qi arelocatedontheverticesofacompletegraphwithnvertices ci .If pij is theprobabilitythatatbuttonpushparticle qi movesfromvertex ci tovertex cj and

P= ( p ij ) thentheprobabilitythatafterthebuttonpushthereispreciselyoneparticleat eachvertexisper(P). More on Reducible Matrices

Tostudythespectralpropertiesofreduciblematricesingreaterdepthwereturntotheir directedgraphs. LetAbean n× n nonnegativematrix.MotivatedbyapplicationstoMarkovchainswesay thatinD(A),vertexi has an access tovertexjifthereisapathfromitoj,andthatiand j communicate ifihasanaccesstojandjhasanaccesstoi.communicationisan equivalenceandwerefertotheequivalenceclassesastheclassesofA.Aclass α hasanaccesstoclass β ifforsome i ∈α and j ∈ β ,ihasanaccesstoj. Aclassis final ifithasaccesstonootherclass.Aclass α is basic if ρ([])A α= ρ () A where A[α ] istheprincipalsubmatrixofAbasedontheindicesin α andnonbasicif ρ([])A α< ρ () A . ThediagonalblocksintheFrobeniusnormalformofamatrixcorrespondtotheclasses ofthematrix.

13 Example: 1111111    1111111  {1,2}{3,4} 0011000    0010000 ;   0000011  {5,6}{7}   0000111    0000002  Here{7}and{3,4}arefinalclassesand{1,2}and{7}arebasicclasses. AmatrixAisirreducibleiffithasonlyone(basicandfinal)class.Suchamatrixhasa positiveeigenvectorthatcorrespondstothespectralradius. Stochasticmatricesalsohavethisproperty.Aninterestingquestionis:whatarethe matricesthathavesuchapositiveeigenvector? Theorem Tothespectralradiusof A ≥ 0therecorrespondsapositiveeigenvectoriffthefinal classesofAareexactlyitsbasicones. Theorem Tothespectralradiusof A ≥ 0apositiveeigenvectorofAandapositiveeigenvectorof AT iffalltheclassesofAarebasicandfinal. Corollary Aisirreducibleiff ρ(A ) issimpleandpositivevectorscorrespondto ρ(A ) bothforAand for AT . Formoreinformationonreduciblematricesthereadersarereferredto[Rothblum,2006] andthereferencesthere. 2. Graphs and Matrices SeveralmatricescanbeassociatedwithagraphG.Similardefinitionsholdfordigraphs (seeBermanandShakedMonderer[2008]). The N(G)definedby 1 if i≠ j and i and j are neighbors N( G ) =  0 otherwise

14 The C(G),wheretherowsaretheverticesandthecolumnsaretheedges and aij = 1ifedgejcontainsvertexi,and0otherwise,

The degrees matrix D(G)–adiagonalmatrixwhere dii isthedegreeofvertexiandthe Laplacian L(G)=D(G)N(G). Thematricesareofcourserelated, A= CCT − D and L= D −= A2 D − CC T . Example

0 1 0 1 1    1 0 1 0 1  N( G ) = 0 1 0 1 0    1 0 1 0 0    1 1 0 0 0  1 0 011 0  3      1 1 00 01  3  C( G ) = 01 1 0 0 0  D( G ) = 2      0 01 1 0 0  2      0 0 001 1  2 

15 3− 10 − 1 − 1    −13 − 10 − 1  LG()=0− 12 − 10  = 2()()() DGCGCG − T   . −10 − 12 0    −1 − 10 0 2  TheLaplacianmatrixispositivesemidefiniteandsingular.Itssecondsmallest eigenvalueiscalledthe algebraic connectivity ofG,asitispositiveiffGisconnected. Boundsonthealgebraicconnectivityarerelatedtoboundson (A ) ofanonnegative matrixAandarestudiedincomputerscienceinconnectionwithexpanders. Theorem AdjL=kJwhereJisamatrixofonesandkisthenumberofspanningtreesofG. Example

Herethereare11spanningtrees. Thelettersdenotethedeletededges.

16

Wenowreturntotheadjacencymatrix. Herearetwosimpleexamples. Neural Networks AteachvertexofagraphGthereisalightbulb. Someofthelightsarelit.Someareoff.Theirstatuschangesaccordingtothefollowing majorityrule: Ifattimet,abulbhasmoreneighborsthatareon,itwillbeonattimet+1.Ifattimet,it hasmoreneighborsthatareoff,itwillbeoffattimet+1.Inacaseofatie,thereisno change.

Example + + + + + +

17 Neural Networks Theorem Foreverygraphandforeveryinitialstates,thereisTsuchthatforallt ≥T,thestatesof thelightsattimet+2arethesameasthestatesattimet. Proof. LetNbetheadjacencymatrixofGandletA=(1/2)I+N. 1 if bulb i is on Let x( t ) i =  −1 if bulb i is off Wehavetoshowthatfort ≥T,x(t+2)=x(t). Ax(t)andx(t+1)havethesamesigns. Let ft()=+ xt ( 1)T Axt ()!max = yAxt T () = xtAxt () T ( + 1) yi∈{ ± 1} ft(+=+ 1) xt ( 2)T Axt ( += 1) !max yAxt T ( + 1) sof(t+1) ≥f(t) yi∈{ ± 1} fcanattainonlyafinitenumberofvaluessofromsomeT,f(t+1)=f(t)andthus, x(t+2)=x(t). The "all lights on" problem. Ateachvertexofagraphthereisalightbulbandaknob. Pressingaknobactivatesit(changesthestateofthecorrespondingbulb)andalso activatesitsneighbors. Prove:Givenanygraphwithalllightsoffitispossibletosimultaneouslylitallthebulbs. Proof. HereletA=I+N. Considerthecolumnsasrepresentingtheknobspressedandtherowsasrepresentingthe rowsactivated.

WehavetoshowthatAx=eissolvableover Z2 .Supposeitisnot.Thensomerowsof (A/e)sumto(0...0/1),sothenumberoftheserowsisodd.ThusAhasasubmatrixbased onanoddnumberofrowsandonallthecolumnssuchthatthenumberofonesineach columnisodd. Thesameistruefortheprincipalsubmatrixbasedontheserowsandonthecolumnswith thesameindices. Contradiction!

18 Completely Positive Matrices and Graphs Thissectionisbasedon[Berman&ShakedMonderer2003]

Question:Givennvectors x1, x 2 ,..., x n ina(mdimensional)vectorspaceV,cantheybe imbeddedinanonnegativeorthant?Inotherwords,isthereanaturalnumberkandan k isometryTsuchthat TxTx1, 2 ,..., Txn ∈ R + ? Answer:

TheycanifftheGrammatrix A=( < xi , x j > ) isaGrammatrixofnonnegativevectors. An n× n matrixAiscompletelypositive(CP)iffthereexistsan n× k (notnecessarily square)nonnegativematrixBsuchthat: A= BB T ,orequivalently TT T n Abb=+++11 bb 22 ... bbk k ; bRi i ∈=+ ; 1,... k Example: Ifa>0anddet A ≥ 0,then

a 0  T a  0  a b      T  T A ==bdet A   =b  () + det A  () c d        a a  a  a  Applications: Blockdesigns,[Hall1958,1967,1986], Modelingenergydemand,[GrayandWilson,1980], MarkovianmodelforDNAevolution,[Kelly,1994], Probability[Diaconis,1994], Clustering,[LinialandSamorodinsty,1998], Imageprocessing,[Li,KummertandFrommer,2004], A= A T is copositive if x≥0 ⇒ xAxT ≥ 0 Applications: Thelinearcomplementarityproblem,quadraticoptimalcontrol. Thedualcone S * ofasetSisaninnerproductvectorspaceVistheset {vVvs∈; < , >≥ 0, ∀ sS ∈ } Theorem,([HallandNewman,1993]) The n× n copositivematricesandthe n× n completelypositivematricesareclosed convexconesinthespaceof n× n realsymmetricmatrices,andeachisthedualofthe otherwithrespecttotheinnerproduct=AB.

19 Questions: GivenamatrixAisitCP? Givenan n× n CPmatrixwhatisthesmallestksuchthatABB=T , B ≥ 0 BR ∈ n× k ? Herewewillbrieflydiscussthefirstquestion. Necessaryconditions: A∈ CP ⇒ Aispositivedefinite(PSD)andelementwisenonnegative.Wereferto havingthetwopropertiesasbeingdoublynonnegative(DNN). SufficientConditions:

Theorem (Kaykobad, 1987) T If A= A is diagonally dominant (aii≥∑ a ij , ∀ i ) thenAisCP. j=1 Example: T 522  100  220  202  000 1 2 20             241 = 010  + 220  + 000  + 011  =  0 201      213  000  000  202  011          0 0 21    The comparison matrix ofA,M(A),isdefinedby

MA()ii= a ii , MA () ij = − a ij i≠ j Theorem (Drew, Johnson and Loewy , 1996) A= AT ≥0, M ( A ) is PSD ⇒ AisCP ThisfollowsfromthefactthatthereexistsapositivediagonalmatrixDsuchthatDADis diagonallydominant. Combiningthenecessaryofthesufficientconditionswehaveforanonnegativeof symmetricmatrixA: M( A ) is PSD ⇒ AisCP ⇒ A is PSD Thesufficientconditionisnotnecessary. Example: 1 1 1    A = 1 1 1    1 1 1 

20 Thenecessaryconditionisnotsufficient. Example: 1 1 0 0 1    1 2 1 0 0  0 1 2 1 0    0 0 1 2 1    1 0 0 1 3  Theorem (Maxfield and Minc 1962) T n× n For n ≤ 4 ( A= A ∈ R + ),CP ⇔ DNN withan n× n symmetricmatrixAweassociateagraphG(A): V(G(A))={1,2,…,n};

(i,j) ∈E(G(A))iffi ≠ jand aij ≠ 0 . Aisa matrix realization ofG(A)). Examples: 1 1 1    A = 1 1 1  ,G(A):   1 1 1  1 1 0 0 1    1 2 1 0 0  A = 0 1 2 1 0  ,G(A):   0 0 1 2 1    1 0 0 1 3  2 0 0 1 1    0 2 0 1 1  A = 0 0 2 1 1  ,G(A):   1 1 1 3 0    1 1 1 0 3 

21 2 1 0 0 0    1 2 1 0 0  A = 0 1 2 1 0  ,G(A):   0 0 1 2 1    0 0 0 1 2 

Whenisthesufficientconditionnecessary? Theorem (Drew, Johnson and Loewy, 1994) IfAisCPandG(A)doesnotcontainatrianglethenM(A)isPSD. Whenisthenecessaryconditionsufficient? AgraphGis CP ifforeverysymmetricnonnegativematrixrealizationAofG, AisCPiffitisPSD. Examples Smallgraphs(n ≤4),trees,forests,(BermanandHershkowitz,1987) Theorem (Berman and Hershkowitz, 1987) IfGcontainsanoddcycleoflengthgreaterthan4,thenitisnotCP. HerewewillshowtheproofforthecasethatGisanoddcycleoflengthk,k=5,7,…. TheresultforageneralgraphfollowsbycontinuitysincetheconeofCPmatricesis closed. SoletBbethe k×( k − 1) matrix 10 .. . 0    11. .  0 . .    .. .. B =   . . .    . .. 0  0 . .011    1− 1.. ± 10 

22 110...0 1    12. 0  0.. .    .... . Then A= BB T =   . ... .    1 ... 0  0...012 1    1.....1k − 2  G(A)isakcycle.AisPSDandforoddkitisalsononnegative. 1− 10...0 − 1    −12. 0  0.. .    .... . M( A ) =   . ... .    . ... 0  0 .....2− 1    −10...0 − 1k − 2 

anddetM(A)=k212(k1)=4,sofork>3,itfollowsfromthenotriangletheoremthat AisDNNbutnotCP. Theorem (Berman and Grone, 1988) BipartitegraphsareCP. ThisresultfollowsfromSylvester’slawofInertiaforrealsymmetricmatricessince

I0DC1  I 0  DC 1 −  T  =  T  0−ICD2  0 − I − CD 2  InthemoduleofstabilitywewillmentiontheHermitianversionofSylvester’sTheorem. Finally,thecompletecharacterizationofCPgraphsis: Theorem (Kogan and Berman, 1988, 1993) AgraphGisCPiffitdoesnotcontainanoddcycleoflengthgreaterthan4.

23 A Game of Numbers ThefollowingproblemwasgivenintheInternationalOlympiadinMathematicsin Polandin1986: Ineveryvertexofapentagonthereisaninteger.Thesumofthefivenumbersispositive. Ifoneofthemisnegative,theplayercanchooseoneofthenegativenumbers,addittoits neighborsandmultiplyitby1.Thisiscontinuedaslongasthereisanegativenumber. Provethatthegamemustterminate. Example: 1 1 0 1 0 1 0 0 1 1 1 0 0 1 0 0 1 1 1 1 Hereisasolution: Withastate x x (xx x x x ) 2 1 2 3 4 5 1 x5 x 3 x4 Weassociatethenumber 2 2 2 2 2 f(x)= fxxx()(=−13 )( +− xx 24 )( +− xx 35 )( +− xx 41 )( +− xx 52 ) .

If,forexample, x1 < 0 andwechoosethecorrespondingvertexthenf( xnew )–f(x)=

2(xx11+ x 2 ++ x 3 x 4 + x 5 )0 < andsincefisasumofsquares,theprocessmustterminate. [ShaharMozes1990]extendedtheprobleminthefollowingway: Ateachvertexofagraph(nondirected,connectedandsimple)thereisarealnumber(not necessarilyinteger). Thesumofthenumbersisnotnecessarilypositive. Ifsomeofthenumbersarenegative,suchanumberischosen,addedtoitsneighborsand multipliedby1.Theproblemistreatedmatrixtheoreticallyin[Eriksson1992]. Question:Whataretheinitialstatesforwhichtheprocesswillterminate? Thereare3possibilities.

24 Thegameconverges,i.e.,endsinafinitenumberofstates, Thegameloops,i.e.,itisperiodicalandthusdoesnotend, Thegamedoesnotendandnostateisrepeated. Wesaythatagraphisa looper ifthereisaninitialstatefromwhichitloops. Theorem a) Ifagameconverges,thefinalstateandthenumberofstepsdonotdependonthe choiceofvertices. b) If ρ (N(G))<2,everygameconverges. c) Gisalooperiff ρ (N((G))=2. d) If ρ (N(G))>2,Gisnotalooperandthereareinitialstatesfromwhichthegame neverloops. e) Theloopersareexactlythefollowinggraphs: … …

25 f) Letxdenotethevectoroftheinitialstateandletcdenotethevectorofthe numbersatthevertices 1 2 1 2 3 2 1 1 1 2 3 4 3 2 1 1 2 4 6 5 4 3 2 1 1 1 1 1 1 1 1 … 1 1 1 1 1 1 1 1 1 … 2 2 2 2 2 2 1 1 1 1 then 1) If cT x <0,thegameisnotperiodicalanddoesnotconverge, 2) If cT x =0,thegameloops, 3) If cT x <0,thegameloops(thisistheOlympicexample).

26 3. Stability ThissectionisbasedonChapter2of[HornandJohnson1991]. Considerthefirstorderlinearsystemofnordinarydifferentialequations dx =Axt(() − xˆ ), A ∈ R n× n dt Ifattime tˆ , x( tˆ ) = xˆ ,x(t)willceasechangingat t= tˆ ,so xˆ isanequilibriumforthe system.WhenAisnonsingular,x(t)willceasechangingonlywhenithasreachedthis equilibrium. Ifx(t)convergesto xˆ forallchoicesoftheinitialdatax(0),wesaythesystemis globally stable andAis negative stable .(Thetermnegativewillsoonbecomeclear.) Theuniquesolutionx(t)ofthesystemis Xt()= exAt ((0) − xˆ ) + x ˆ ∞ 1 where eAt= ∑ A k t k .(ThisseriesconvergesforalltandallA). k=0 k! e At 0iffeacheigenvalue λ ofAsatisfiesRe λ <0,ThusAisnegativestableiffallits eigenvalueslieintheopenlefthalfofthecomplexplane. Forthosewhopreferpositivity,wedefineAtobe positive stable ifRe λ >0forevery eigenvalue λ ofA. n× n The inertia i(A)of A∈ C isthetriple (i+ ( Ai ), − ( Ai ),0 ( A )) where i+ ( A ) isthenumberofeigenvalues,includingmultiplicities,withpositiverealpart, i− ( A ) isthenumberofeigenvalues,includingmultiplicities,withnegativerealpart, i0 ( A ) isthenumberofeigenvalues,includingmultiplicities,withzerorealpart. n× n Thus, A∈ C ispositivestableifi+ ( A ) = n ,orinotherwordstheinertiaofAis(n,0,0).

Sylvester's law of inertia. B=SAS*,forsomenonsingularmatrixSiffi(B)=i(A). If A∈ C n× n ispositivestablethensoare: a. aA+bI, a≥0, b ≥ 0, ab +> 0

27 b. A−1 c. A* d. AT If A∈ C n× n ispositivestable,thenRetrA>0, If A∈ R n× n ispositivestable,thentrA>0,detA>0(forn=2thisisiff). Matrixstabilityandtheproblemoflocationoftherootsofthepolynomialarerelated throughthecompanionmatrixofthepolynomial:Sincefisthecharacteristic(andthe minimal)polynomialof C f ,therootsofflieintheopenrighthalfplaneiff C f is positivestable.

Lyapunov’s Theorem A∈ C n× n ispositivestableifandonlyifthereexistsapositivedefinitematrixGsuchthat GA+ AG* ispositivedefinite. Furthermore,ifforsomepositivedefinitematrixH,thereexistsanHermitianmatrixG, suchthat: GA+ AG* = H ThenAispositivestableiffGispositivedefinite. GivenmatricesA , B∈ C n× n itisknownthatthematrixequation AX− XB = C HasauniquesolutionXforeveryCiffnoeigenvalueofAisaneigenvalueofB (()σA∩ σ () B = ∅ ) Thus GA+ AG* = H hasauniquesolutionGforeverygivenrighthandsideHiff σ()A* ∩ σ ( − A ) =∅ a conditionthatholdswhenAispositivestable,soifAispositivestable,thenforeveryH, thereisauniqueGsuchthat GA+ AG* = H Furthermore,ifHisHermitiansoisGandifHispositivedefinitethenGisalsopositive definite.Inparticular,HcanbechosenastheidentitymatrixandthenLyapunovtheorem canbestatedas AispositivestableiffthereisapositivedefinitematrixGsuchthat GA+ AG* = I IfAispositivestable,theaboveequationhasauniquesolutionGandGispositive definite.Conversely,ifforagivenA,thereexistsapositivedefinitesolutionG,thenAis positivestableandGistheuniquesolutiontotheequation.Sothereisawaytocheckthe stabilityofamatrixA: Solvetheequation GA+ AG* = I Ifasolutiondoesnotexistorifasolutionexistsbutis notpositivedefinite,Aisnotpositivestable.Ifthereisapositivedefinitesolutionthen(it isuniqueand)Aispositivestable. Thistheoremandcheckislovelybutcostly.Forrealmatricesthereisalesscostly algorithmgiventheRouthHurwitzconditions:

28 n× n n  Let A∈ R andlet Ek denotethesumofall   principalofA, k 

(E1 = trace A , En = det A ) .

TheRouthHurwitzmatrixofAisthe n× n matrix = (A ) where wii= E i ,inthe entriesabove Ei are wii−1,= E i + 1, w ii − 2, = E i + 2 ,..., uptothefirstrow w1, i orto En , whichevercomesfirst.Theentriesabove En arezero.Theentriesbelow Ei arethefirst nielementsofthesequence Ei−1, E i − 2 ,..., E 1 ,1,0,...,0 forexample,forn=5

E1 E 3 E 5 0 0    1E E 0 0 2 4  = 0E E E 0  1 3 5  0 1E2 E 4 0    0 0 E1 E 3 E 5 

The Routh-Hurwitz Theorem A∈ R n× n ispositivestableiffthenleadingprincipalminorsof (A ) arepositive. Example:

Weknowthata2x2realmatrixAispositivestableiff E1 and E2 arepositive.Indeed,by theRouthHurwitzconditions

E1 0  =   1 E2  andtheleadingprincipalminorsare E1 and E1 E 2

M- matrices A Z- Matrix isarealmatrixoftheform A=α I − B ,whereBisanonnegativematrix,i.e. amatrixwhoseoffdiagonalentriesarenonpositive. Amatrix A=α I − BB, ≥ 0 isan M- matrix (MforMinkowski)if α> ρ (B ) .(If α= ρ (B ) ,AisasingularMmatrix). BythePerronFrobeniustheorem,aZmatrixisanMmatrixiffitispositivestable. ThefollowingtheoremisapartiallistofconditionsaZmatrixthatareequivalentto beingMmatrix.Foralongerlistandsomeoftheproofs,see[BermanandPlemmons, 1979,1994,Chapter6] Theorem LetAbeaZmatrix, A=α I − B ; α real,Bnonnegative. Thenthefollowingconditionsareequivalent: a) α> ρ (B ) ,i.e.,AisanMmatrix b) Ais inverse positive ,i.e. A−1 existsandisnonnegative. c) Ais monotone ,i.e. Ax ≥ 0 ⇒ x ≥ 0 .

29 d) Ais diagonally stable ,i.e.thereexistsapositivediagonalmatrixDsuchthat DA+ AT D ispositivedefinite. e) Aispositivestable. f) AisaP-matrix ,i.e.alltheprincipalminorsofAarepositive. g) Adoesnotreversethesignofanyvector,i.e.,if x ≠ 0 andy=Ax,thenforsomei,

xi y i > 0 . h) EveryrealeigenvalueofaprincipalsubmatrixofAispositive. i) A+tIisnonsingularforall t ≥ 0. j) EveryrealeigenvalueofAispositive. Proof. Wewillshowthat 1) Forevery A∈ R n× n ()b⇔ () c and ()d⇒⇒⇒ () e ⇓⇓⇓ ()f⇒ () g ⇓

()h⇒ () i ⇔ () j 2) ()a⇒ () b ⇓ (d ) 3) ()c⇒ () a and ()i⇒ () a Soherewego: ()b⇒ () c :Ax ≥0⇒ A−1 Ax ≥0=> x ≥ 0 . (c) ⇒(b):ThenullspaceofAisasubspacesoifonlynonnegativevectorsaremappedto zero,Amustbenonsingular.Multiplyingbothsidesof(c)by A−1 yields x≥0 ⇒ A−1 x ≥ 0 ,so A−1 isnonnegative.

30 (d) ⇒(e) ⇒(i):trivial. (d) ⇒(f):IfAisdiagonallystablethensoareitsprincipalsubmatrices.Thusallthe principalsubmatricesofAarestableand,beingreal,havepositive. (f) ⇒(g):FirstweobservethatifAisaPmatrixandDisanonnegativediagonal matrix,then det(P+D) ≥ det(P)(ifDisnonzerotheinequalityisstrict). ThisfollowsfromthefactthatforanymatrixA

∂ i+ j detA= ( − 1) det A ij ,thei,jcofactorofA. ∂aij Nowsupposethat x ≠ 0 andthat xo Ax ≤ 0( odenotesthe Hadamard product ; Ao Bij= ab ij ij .Letsbethesetofindicesis.t. xi ≠ 0 ,andletA[s]andx[s]denotethe correspondingprincipalsubmatrixandsubvector. Then x[s]o(A[s]x[s]) ≤ 0 sothereisanonnegativediagonalmatrixDforwhich A[s]x[s]=Dx[s]so(A[s]+D)x[s]=0soA[s]+Dissingular.Thiscontradictsthefactthat A[s]isalsoaPmatrixandthus det(A[s]+D) ≥detA[s]>0.

(g) ⇒(h):Letkbeanindexsuchthat xk( Ax ) k > 0 .Thenthereexists ε >0suchthat xkk() Ax=ε∑ x ii ()0 Ax > . i≠ k

LetDbeadiagonalmatrixwith dk =1andallotherdiagonalentriesequalto ε .Then xT DAx > 0 . Nowlet λ bearealeigenvalueofaprincipalsubmatrixA[s]ofA, A[ s ] y=λ y , y ≠ 0, λ real . Wewanttoshowthat λ > 0 . Letxbeavectorsuchthatx[s]=yandallotherentriesofxarezeros,andletDbea nonnegativediagonalmatrixforwhich xT DAx > 0 . Then T T T TT 0<==xDAx () Dx Ax ([])[]([]) Dsy Asy = Dsyλ y = λ ( yDsy []) provingthat λ > 0 . (h) ⇒(f):Thespectrumofarealmatrixisclosedundercomplexconjugation,andsince therealeigenvaluesofeveryprincipalsubmatrixarepositive,alltheprincipalminorsare positive. (h) ⇒(i):trivial. (i) ⇒(j)since λ isaneigenvalueofAiff A− λ I issingular. −1 (a) ⇒(b):Since α> ρ (B ) ,Aisnonsingular. A isnonnegativesince

31 (/())AAρ−1 =+ IAA (/())(/()) ρ + AA ρ 2 + ...

(a) ⇒(d):Since ρ(B ) ≥ b ii , α > bii sothediagonalentriesofAarepositive. Since A−1 isnonnegative, x= A−1 e > 0 .LetE=diag(x).ThenAEe=Ax=e,andsincethe diagonalentriesofAEarepositive,itisstrictlyrowdiagonallydominant. (AE ) −1 isalso nonnegativeso yT= e T ( AE )−1 > 0 soforD=diag(y), eT DAE= y T AE = e T ,soDAEis strictlycolumndiagonallydominant.Itisalsostrictlyrowdiagonallydominantsinceit wasobtainedfromsuchamatrixbymultiplicationontheleftbyapositivediagonal matrix.ByGersgorin, DAE+ ( DAE ) T ispositivedefinite.BySylvesterLawofInertia E−1( DAE+ ( DAE ))T E − 1 isalsopositivedefinite,so (E−1 DA )+ AT ( E − 1 D ) ispositive definite,meaningthatAisdiagonallystable. (c) ⇒(a):LetvbeaPerronvectorforB, Bv= ρ( B ) v ; v ≥ 0 , v ≠ 0.If α≤ ρ (B ) then Av()(()−=ρ B − α ) v ≥ 0 ,but–visnotnonnegative,contradicting(c). (i) ⇒(a): α− ρ (B ) isarealeigenvalueofAsoby(i)itispositive. WeconcludethissectionwithfewadditionalremarksonMmatricesandstability.

D- stability Ais D-stable ifDAispositivestableforeverypositivediagonalmatrixD. Dstablematricesappearinmodelsineconomics,forexampleinstudyofstabilityof pricesinmultiplemarkets. DiagonalstabilityimpliesDstability,forifDandEarepositivediagonalmatricesand EA+ AT E = B ispositivedefinitethen −1T − 1 T ()ED DA+ DA () ED =+= EA A E B . + AmatrixAissaidtobea P0 matrix ifallitsprincipalminorsarenonnegativeandfor everyorder,oneofthemispositive. 1− 1  ThereareDstablematricesthatarenotPmatrices,forexample A =   butevery 1 0  + Dstablematrixis P0 .

DIAGONAL STABILITY DiagonallystablematricesappearinPredatorPreysystems.Theyarealsocalled Volterra-Lyapunov stable ) Theywerecharacterizedin[Barker,BermanandPlemmons1978]asfollows:

32 An n× n matrixisdiagonallystableiffforeverynonzero n× n positivesemidefinite matrixB,BAhasapositivediagonalentry.

H-matrices Aisan H-matrix ifitscomparisonmatrix,definedinthesectiononcompletelypositive matrices,isanMmatrix. AnHmatrixwithpositivediagonalentriesisdiagonallystableandthusalsoDstable.

Irreducible M-matrices IfAisanirreducibleMMatrixthenitsinverseispositive(notonlynonnegative). IfAisan n× n irreduciblesingularMmatrixthenrankA=n1,everyproperprincipal submatrixofAisa(nonsingular)MmatrixandAis almost monotone ,i.e. Ax ≥0⇒Ax=0. 4. Applications and Extensions

Operators that leave a proper cone invariant An n× n Anonnegativematrixcanbecharacterizedby n n x∈ R+ ⇒ Ax ∈ R + n n Where R+ isthenonnegativeorthantof R . Thisorthantisanexampleofapropercone(thatwewilldefinesoon)andthePerron Frobeniustheoryhasnaturalextensionstomapsthatleaveaproperconeinvariant.We concludethelectureswithsomeexamples(whereKisaconvexconein Rn ) Firstsomedefinitions: Aconvexconekis pointed iftheintersectionofKand–Kis{0}and solid ifintK,the interiorofKisnotempty,Aclosed,pointedandsolidconvexconeiscalleda proper cone. LetKbeaproperconein Rn ,AmatrixAis K-nonnegative ifAK ⊆ K;Ais K-positive ifA(K{0}) ⊆ intK;Ais K-irreducible ifitisKnonnegativeandnoeigenvectorofA liesonbdK(theboundaryofK);andAis K-primitive ifitisKnonnegativeandtheonly nonemptysubsetofbdKwhichisleftinvariantbyAis{0}. Theorem Let A∈ R n× n ofbdKbeaproperconein Rn .Then:

33 a. IfAisKnonnegative,then ρ(A ) isaneigenvectorandKcontainsa correspondingeigenvector; b. IfAisKpositive,then ρ(A ) isgreaterthantheabsolutevalueofanyother eigenvalueandaneigenvectorcorrespondingto ρ(A ) liesinintK. c. IfAisKirreduciblethen ρ(A ) isasimpleeigenvalueandanyothereigenvalue withthesamemodulusisalsosimple;thereisaneigenvectorcorrespondingto ρ(A ) inintK,andnoothereigenvector(uptoscalarmultiples)liesinK; d. AKnonnegativematrixisKprimitiveiffforsomenaturalnumberm, Am isK positive. ThetheoryofKnonnegativematricesismuchricher.Foranextensivestudyofthemthe readerisreferredto[TamandSchneider2006]. ThereareotherdirectionsinwhichthePerronFrobeniusTheorycanbeextended,for exampletomatricesthatarenotnecessarilyrealandtononlinearoperators.Thiswillnot bedoneintheselectures. Inthecoursewesawseveralapplicationsofthetheoryofnonnegativematrices.In particularweweremotivatedbytheapplicationtorankingofwebsites.Weconcludethe noteswithanotherapplicationtorankingandanotherinternetapplication. Tournaments Ina tournament everyplayerplaysanyotherplayer.Ineachgamethereisaclearwin.A tournamentcanbedescribedbya tournament digraph inwhichthereisanarcfromito jiffibeatsj.Thus,fortwodifferentplayers,thereisanarcfromitoj,iffthereisno arcfromjtoi. Thismeansthattheadjacencymatrix( tournament matrix )Aisa(0,1)matrixsatisfying A+ AT =I+J. Theideahereisthatplayerswhobeatplayerswithhighrankshouldhaveahighrank. ThevectorofscoresisAe. Thevectorthatsumsthescoresofthosedefeatedbytheplayersis A2 e,… Recallthatforprimitivematrices lim(A / (ρ ( A )) m≡ L = xy T ,where m→∞ Ax= ρ (A)x,x>0; AyT = ρ( Ay ) ,y>0; xT y =1,Thereforeiftheadjacencymatrixofthe tournamentisprimitive,LeisapositivemultipleofthePerronvectorofAthatnaturally givestherankingoftheplayers. Forthegeneralcaseweareluckytohavethefollowingtheorem.

34 Theorem An n× n irreducibletournamentisprimitiveiffnisgreaterthan3. Theirreduciblecasen=3happensonlywhenabeatsb,bbeatscandcbeatsa,andinthis caseitisnaturaltorankallthreeequally. Inthemoregeneralcasewhenthetournamentmatrixisreducible,lookatitsFrobenius normalform.Sinceitisatournamentmatrixallitsentriesabovethediagonalblocksare equalto1whichmeansthatfori>jtheplayersinblockishouldberankedlowerthan thoseinblockj.Anirreducibletournamentblockisatleastoforder3.Ifablockis3x3 allitsplayersarerankedequalandifithasmorethan3players,thePerronvectorcanbe used. Thisrankingisknownas the Kendall-Wei ranking.

TCP TCPstandsforTransmissionControlProtocol. Agoodreferenceoninternetcongestioncontrolisthebook[Srikant2003]wherethe modelsusedarefluiddynamicmodels.Recently,algebraicmodels,usingthetheoryof NonnegativeMatrices,weredevelopedintheHamiltonInstituteinIreland.HereIwill describethesemodels. Awirelinenetworkconsistsofsourcesandsinksthatcommunicatevianetworkslinks (wires)androuters(queues).Packetsareacknowledgedorlostbecauseofcongestion.

Sourceihasawindowsize wi whichisthenumberofpacketssenttillthefirstis acknowledgedoracongestionoccurs. TCPusesanAdditiveIncreaseMultiplicativeDecreasecongestionalgorithm(see,for example[Berman,ShortenandLeigh2004]: Whensourceireceivesanacknowledgementitincreasesitswindowsize ' wi→ w i +α iii/ w ; α > 0 . Whenapacketisdropped,thewindowsizeisdecreased wi→ β ii w ;0p β i p 1

InstandardTCP, αi =1, βi = 0.5 . ' Notation: αi= α i/(∑ α i ) .

35 Thus, αi ispositiveand ∑αi =1 . A synchronized model Underasynchronizationassumption,thatallthesourcessimultaneouslydecreasetheir windowsizesincaseofcongestion ω(k+ 1) = A ω ( k ) Where ω(k ) isthevectorofwindowsizesateventkand

β1  α 1   .  . A=+= D xy T .  +−− . (1β ,...,1 β )   1 n .  .   βn  α n n (0<αi , β i < 1;∑ α i = 1) i=1 ATCPmatrixispositivecolumnstochastic(PSC)sothepositivedynamicalsystem ω(k+ 1) = A ω ( k ) Possessesauniquestationarypoint T Cα Cα  1 ,...,n  ,C > 0 1−β1 1 − β n  WhichisamultipleofthePerronvectorofA. α Thus,allsourcesgetafairshareofthesystemiff i doesnotdependoni,i.e.when (1− βi ) Aissymmetric.

WhenAisPCS, ρ(A )= 1 = λ 1 andtherateofconvergencetothestationarypointis boundedby (A )< 1 .     yi  xi  ATCPmatrix A= D + xy T isdiagonallysimilartodiag   D+ xy T diag   xi  yi  whichisa(positive)symmetricrank1perturbationof D= diag {β1,..., β n}.Thusthe eigenvaluesofA,except1,interlacethe β ’s.Inparticular,theyarepositiveand (A ) liesbetweenthetwolargest β ’s. RecallthetradeoffinchoosingαintheGooglepagerankdiscussion.Herethereisa similartradeoff;higher β ’sgivebetteruseofthenetworkbutyieldaslower convergencetotheequilibriumstate.

36 Herewediscussedonlythesynchronizedmodelbutwemustadmitthatitisquite restrictive(itisvalidinsomelongdistancenetworks).Thematrixmodelcanbe generalizedalsototheunsynchronizedcase,seeforexample[Berman,Laffey, LeizarowitzandShorten2006].Amajordifferencebetweenthesynchronizedandthe unsynchronizedmodelsisthatwhileinthefirstonestudiesconvergenceofhomogeneous matrixproducts Ak whereAisanonnegativematrix,inthelatteronelooksat nonhomogeneousmatrixproducts Ak A k −1... A 1 where A1 A 2 ... A k arenonnegative matrices.Animportantreferenceonsuchproductsis[Hartfiel2002]. References R.B.BapatandT.E.S.Raghavan,NonnegativeMatricesandApplications, EncyclopediaofMathematicsanditsApplications64,CambridgeUniversityPress,1997. G.P.Barker,A.BermanandR.J.Plemmos,PositivediagonalsolutionstotheLyapunov equation,LinearandMultilinearAlgebra5:249256,1978. A. BermanandR.Grone,Completelypositivebipartitematrices,Math.Proc. CambridgePhilos.Soc.103:269276,1998. A. BermanandD.Hershkowitz,Combinatorialresultsoncompletelypositive matrices,LAA95:111125,1987. A.Berman,T.Laffey,A.LeizarowitzandR.Shorten,Onthesecondeigenvalueof matricesassociatedwithTCP,LAA416:175184,2006. A.Berman,M.NeumannandR.J.Stern,NonnegativeMatricesinDynamicSystems, WileyInterscienceSeriesinPureandAppliedMathematics,JohnWileyandSons,1989. A.BermanandR.J.Plemmons,NonnegativeMatricesintheMathematicalSciences, AcademicPress,1979. A.BermanandR.J.Plemmons,NonnegativeMatricesintheMathematicalSciences,2nd Edition,ClassicsinAppliedMathematics,SIAM,1994. A.BermanandN.ShakedMonderer,CompletelyPositiveMatrices,WorlsdScientific, 2003. A.BermanandN.ShakedMonderer,Nonnegativematricesanddigraphs,Encyclopedia ofComplexityandSystemScience,2008. A.Berman,R.ShortenandD.Leigh,Positivematricesassociatedwithsynchronized communicationnetworks,LAA393:4754,2004.

37 G.Birkhoff,Tresobservacionessobreelalgebralineal,Univ.Nac.TucumanRev.Ser. A5:147150,1946. A.Borobia,J.MoroandR.Soto,Negativitycompensationinthenonnegativeinverse eigenvalueproblem,LAA393:7389,2004. M.BoyleandD.Handelman,Thespectraofnonnegativematricesviasymbolic dynamics,Ann.Math.133:249316,1991. P.Diaconis,LectureinIMA,1994. J.H.Drew,C.R.JohnsonandR.Loewy,Completelypositivematrices associatedwithMmatrices,LinearandMultilinearAlgebra37:303310, 1994. G.P.Egorichev,ThesolutionofvanderWaerden'sproblemon permanents,Advances in Math., 42: 299-305, 1981.

K. Eriksson, Convergence of Mozes' game of numbers, LAA 166: 151-165, 1992.

D. I. Falikman, Proof of the van der Waerden's conjecture on the permanent of a doubly , Mat. Zametki 29, 6: 931-938, 957, 1981, (in Russian). G.Frobenius,Ubermatrizenausnichtnegativenelemente,SitzungsberKon PreussAcad.Wiss.Berlin,456457,1912. L.J.GrayandC.R.Wilson,Nonnegativefactorizationofpositivesemidefinite nonnegativematrices,LAA31:119127,1980. G.H.Hardy,J.E.LittlewoodandG.Polya,Somesimpleinequalitiessatisfiedbuconvex functions,MessengerofMath.58,145152,1929. D.J.Hatfiel,NonhomogeneousMatrixProducts,WorldScientific,2002. M.HallJr.,CombinatorialTheory,2 nd ed.Wiley,1986. R.HornandC.A.Johnson,MatrixAnalysis,CambridgeUniversityPress,1985. R.H.HornandC.A.Johnson,TopicsinMatrixAnalysis,CambridgeUniversityPress, 1991. C.A.Johnson,Rowstochasticmatricessimilartodoublystochasticmatrices,Linear MultilinearAlgebra10:113130,1981.

38 C.A.Johnson,T.LaffeyandR.Loewy,Therealandthesymmetricnonnegative eigenvalueproblemsaredifferent,Proc.AMS24:36473651,1996. M.Kaykobad,Onnonnegativefactorizationofmatrices,LAA241243:655657,1987 C.Kelly,AtestoftheMarkovianmodelofDNAevolution,Biometrics50:653664, 1994. N.KoganandA.Berman,Characterizationofcompletelypositivegraphs,DiscreteMath 114:298304,1993. T.LaffeyandH.Smigoc,Nonnegativerealizationofspectrahavingnegativerealparts, LAA416:m148159,2006 Y.Li,A.KummertandA.Frommer,Alinearprogrammingbasedanalysisofthecprank ofcompletelypositivematrices,Int.J.Appl.Math.Comut.Sci.1:2531,2004 N.Linial.Privatecommunication,1998. R.LoewyandD.London,Anoteonaninverseproblemfornonnegativematrices,Linear MultilinearAlgebra6:8390,1978 R.LoewyandJ.J.McDonald,Thesymmetricnonnegativeinverseeigenvalueproblem for5x5matrices,LAA393:275298,2004. J.E.MaxfieldandH.Minc,OntheMatrixequationX'X=A,Proc.EdinburghMath, Soc.13:125129,1962. M.E.Meehan,Someresultsonmatrixspectra,Ph.DThesis,UniversityCollegeDublin, 1998. H.Minc,NonnegativeMatrices,Wiley,1988. S.Mozes,ReflectionprocessesongraphsandWeylgroups,J.Com.Theory.Ser.A 53(1):128142,1990 O.Perron,Zurtheoriederubermatrizen,MathAnn.,64:248263,1907. V.Romanovsky,RecherchesurleschainsdeMarkoff,ActaMath66,147251,1936. U.Rothblum,Nonnegativematricesandstochasticmatrices,inL.Hogben,editor, HandbookofLinearAlgebra,CRCPress,2006. E.Senata,NonnegativeMatricesandMarkovChains,SpringerSeriesin, SpringerVerlag,1981.64,CambridgeUniversityPress,1997.

39 H.Smigoc,Theinverseeigenvalueproblemfornonnegativematrices,LAA393:365 374,2004. R.Srikant,TheMathematicsofInternetCongestionControl,Birkhauser,2003. B.S.TamandH.Schneider,Matricesthatleaveaconeinvariant,inL.Hogben,editor, HandbookofLinearAlgebra,CRCPress,2006. H.Wielandt,Unzerlegbare,nichtnegativeMatrizen,MathZ.52,642648,1950.

40