Map Units Properties Table

Total Page:16

File Type:pdf, Size:1020Kb

Map Units Properties Table Map Unit Properties Table Map Unit Erosion Suitability for Paleontologic Cultural Mineral Mineral Global Age Unit Description Hazards Karst Issues Habitat Recreation (Symbol) Resistance Development Resources Resources Specimens Resources Significance Wells in these units Unit Qcm report sufficient Unconsolidated gravel, sand, silt, and clay in represents the water for domestic floodplain deposits and along streams and low Unit is highly Habitat for cliff- Good for most paleolake levels of needs (high Fe and terraces, some cobbles present. Unit Qcm susceptible to slides, May contain Gravel, sand, dwelling birds use unless Ancient Lake Mn, low pH); acid Perched terraces record Alluvium (Qal); contains lacustrine deposits of unconsolidated rockfall, slumping, Native silt, clay, and burrowing undercut along a Monongahela and mine drainage may be paleolake levels and may None Carmichaels Formation clay, silt, sand, gravel, cobbles, and boulders of Low and mass movement American None cobbles, some animals on slope or records the glacial a concern for contain remains from documented. (Qcm. sandstone (silica- cemented quartzarenite), some if exposed on bare artifacts and sandstone terraces, adjacent to a setting during the development of wells. Pleistocene Ice Ages. small limonite nodules. Deposits in abandoned and/or undercut campsites. boulders. riparian habitat waterway; avoid Pleistocene; Avoid for waste QUATERNARY channels and on rock terraces in the eastern half slopes. along rivers. bare slopes. boulders in unit facility development of Fayette County. Qcm are from due to high Pottsville Group. permeability. Sold as May have been kimberlite; may Unit is the only Present on surface in Fayette County as the only Rockfall potential if source of stone Present only contain olivine, Jurassic Gates- Adah dike (Jk.) igneous rock found there, swarm of three or High Present only locally. unit is exposed on None prized for None Kimberlite None locally; good for pyroxene, (Mesozoic) rock more mica- peridotite dikes. slope. Native most uses. amphibole, and in the area. JURASSIC American trade. mica. Unit Pg consists of shale, sandstone, siltstone, thin limestone beds, claystone, carbonaceous Unit is suitable for Slides and slumps are shale, and impure coal interbeds (Ten Mile coal most development a hazard for claystone is less than 24 in. thick). Most units are Ten Mile coal is Low to medium unless exposed on and shale- rich Represent micaceous with variable thickness and Not enough impure and Good for most in shale- rich undercut or members; Siderite Units support Permian Period Greene Formation (Pg); crossbeds. Unit Pw contains an upper olive to Nodules may massive lenticular; uses unless beds, medium to unvegetated slope; heterogeneous Freshwater ostracodes, (ironstone) and forests in middle with dateable coal Washington Formation dark- gray limestone member; a middle shale, have provided carbonate Jollytown coal highly fractured high in massive poor aquifer with layering may prove Spirorbis, and fish remains. limestone to upper parts of horizons and (Pw) siltstone, and micaceous, olive- gray sandstone tool material. units present and Washington and exposed on sandstone- hard to very hard unstable on slopes; nodules. stream basins. fresh- water PERMIAN member; and a lower argillaceous limestone for karst. coals are bare slopes. limestone beds. water (high barium, rockfall hazard exists fossils. member that is 0.5−2 ft thick and contains shale impure. Fe, and Mn, when resistant beds interbeds. Jollytown coal beds are less than 24 in. moderate pH). are undercut. thick, and the Washington coal is impure and shaly and is close to 48 in. thick Mined areas pose Unit is between 85 and 210 ft thick. Upper Suitable for most Thin and impure safety hazards and member is predominantly gray to black shale development except Little acid- mine- drainage containing some calcareous layers and gray near unremediated Washington problems. Slides and Good for most Records sandstone interbeds, and a basal layer of impure mined areas. Several coal, thin and slumps are a hazard Not enough Units support uses unless near depositional Little Washington coal. Middle member consists wells record elevated Previously believed to be locally impure for shale- rich Nodules may massive forests and mine- altered environments Waynesburg Formation of medium- gray shale, sandstone, and light- gray Fe, Mn, chloride, and wholly Permian, but Waynesburg B Medium members; have provided Siderite nodules. carbonate riparian habitat areas, or highly during (PPNw). siltstone with the shaly, impure Waynesburg B hydrogen sulfide Pennsylvanian fossils were and A coals; heterogeneous tool material. units present in lower parts of fractured and Pennsylvanian to and A coals as much as 84 in. thick locally. Lower (10% of wells showed recently found in this unit. viable PERMIAN - layering may prove for karst. stream basins. exposed on bare Permian member comprises shale, light- gray, massive, high Ca, Mg, Pb, Al); Waynesburg unstable on slopes; slopes. transition. PENNSYLVANIAN crossbedded sandstone, and siltstone. The viable where mines are coal mined in rockfall hazard exists Waynesburg coal is at the base of the formation present, low pH and eastern map when resistant beds and is as much as 84 in. thick. high dissolved solids. areas. are undercut. Unit PNm consists of black to light- gray, Suitable for most Records massive limestone and some argillaceous development except Thin and impure depositional Rockfall hazard exists limestone containing thin- bedded to massive, near areas of Little environments in when resistant beds Some gray sandstone, carbonaceous shale, and coal extensive mining, Artifacts Waynesburg Good for most the long- standing (such as massive dissolution Unit supports interbeds. Unit is dominated by repetitive Medium to high, where subsidence is relevant to the coal, Uniontown uses unless Appalachian Monongahela Group limestone and None possible in forests on bluffs sequences (cyclothems) of shale, mudstone, lower in shale- possible. Ground- Pennsylvanian fossils. land- use history bony coal beds; highly fractured Basin. Source (PNm). sandstone) are documented. massive and low- level claystone, sandstone, coal, and limestone. rich beds. water is hard to very at the Gallatin massive and exposed on areas include the undercut by erosion limestone terraces. Continental (fresh- water) cyclothems are hard with dissolved House . limestone may bare slopes. equatorial of shale and friable units. present in this unit. Group contains the solids, Fe, Mn, Ca, provide building Allegheny PENNSYLVANIAN claystone. Uniontown and Pittsburgh formations, which Mn; chloride material. Mountains in an have well- documented coal horizons. commonly high. arid climate. FONE Geologic Resources Inventory Report 23 Map Unit Erosion Suitability for Paleontologic Cultural Mineral Mineral Global Age Unit Description Hazards Karst Issues Habitat Recreation (Symbol) Resistance Development Resources Resources Specimens Resources Significance Upper formations contain sequence of thin- bedded, green and red calcareous claystone; gray siltstone; massive, gray sandstone; and impure limestone. Scant coal beds are present locally. Four prominent clay, shale, or limestone marine Cyclothems in Marine fossils, plant fossils. horizons in Glenshaw (including Ames units represent Units yield very hard Unit PNcg contains vertical Native Limestone) with some coarse- grained sandstone Coal (Freeport, Good for most arid conditions Casselman Formation water with excessive Ledge- forming burrows, biogenic mounds, American sites, Dissolution and minor fresh- water limestone. Lower Low to medium Some Kittanning, and recreation with a river (PNcc); Glenshaw iron, manganese, and sandstone may be crinoids, trilobites, and artifacts Nodular features may formations include sequences of olive to dark- in upper beds, dissolution in Brookville- unless soft shale floodplain and Formation (PNcg); sulfate. undercut in softer foraminifera, fusulinids, relevant to the limestone, provide burrow gray claystone, thin to massive sandstone, medium in limestone Clarion), high- units are wetlands of a Allegheny Group (PNa); Heterogeneity of shale units, posing bryozoans, brachiopods, land- use history siderite. and nesting nodules of limestone, gray siltstone, and coal lower beds. interbeds. alumina clay exposed along foreland basin at Pottsville Group (PNp). layers may lead to rockfall hazard. fish fragments. Unit PNcc at the Gallatin habitat. beds. Unit is dominated by repetitive sequences deposits. slopes. equatorial instability on slopes. contains bivalves, House . PENNSYLVANIAN (cyclothems) of shale, mudstone, claystone, latitudes. Classic myriapods. sandstone, coal, and limestone. Fresh- water coal deposits. cyclothems are present in unit PNa. Lowermost unit is gray, crossbedded sandstone and quartz- pebble conglomerate containing some thin beds of carbonaceous black shale, siltstone, claystone, and thin, nonpersistent coal. Upper beds consist of grayish- red shale, siltstone, sandstone and several limestone Plant fossils. Unit Mmc members (Wymps Gap, Deer Valley, and highly Iron- rich ground contains fish fragments, Good for most crossbedded, gray, siliceous Loyalhanna), water from these Rockfall is possible if worm burrows, corals, Mauch Chunk Some recreation containing some conglomerate. Middle beds Medium, units. Suitable for units are undercut on conularids, bryozoans, Formation (Mmc); None None dissolution in None unless soft
Recommended publications
  • Knickzones in Southwest Pennsylvania Streams Indicate Accelerated Pleistocene Landscape Evolution
    Graduate Theses, Dissertations, and Problem Reports 2020 Knickzones in Southwest Pennsylvania Streams Indicate Accelerated Pleistocene Landscape Evolution Mark D. Swift West Virginia University, [email protected] Follow this and additional works at: https://researchrepository.wvu.edu/etd Part of the Geomorphology Commons Recommended Citation Swift, Mark D., "Knickzones in Southwest Pennsylvania Streams Indicate Accelerated Pleistocene Landscape Evolution" (2020). Graduate Theses, Dissertations, and Problem Reports. 7542. https://researchrepository.wvu.edu/etd/7542 This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. Knickzones in Southwest Pennsylvania Streams Indicate Accelerated Pleistocene Landscape Evolution Mark D. Swift Thesis Submitted to the Eberly College of Arts and Sciences at West Virginia University in partial fulfillment of the requirements for the degree of Master of Arts in Geography Jamison Conley, Ph.D., Co-Chair J. Steven Kite, Ph.D., Co-Chair Nicolas Zegre, Ph.D. Department of Geology and Geography Morgantown, West Virginia 2020 Keywords: landscape evolution, knickzone, southwest Pennsylvania Copyright 2020 Mark D.
    [Show full text]
  • Geological Investigations in Ohio
    INFORMATION CIRCULAR NO. 21 GEOLOGICAL INVESTIGATIONS IN OHIO 1956 By Carolyn Farnsworth STATE OF OHIO C. William O'Neill, Governor DEPARTMENT OF NATURAL RESOURCES A. W. Marion, Director NATURAL RESOURCES COMMISSION Milton Ronsheim, Chairman John A. Slipher, Bryce Browning, Vice Chairman Secretary C. D. Blubaugh Dean L. L. Rummell Forrest G. Hall Dr. Myron T. Sturgeon A. W. Marion George Wenger DIVISION OF GEOLOGICAL SURVEY Ralph J. Bernhagen, Chief STATI OF OHIO DIPAlTMIMT 011 NATUlAL llSOUlCH DIVISION OF &EOLO&ICAL SURVEY INFORMATION CIRCULAR NO. 21 'GEOLOG·ICAL INVESTIGATIONS IN OHIO 1956 by CAROLYN FARNSWORTH COLUMBUS 1957 Blank Page CONTENTS Page Introduction 1 Project listing by author 2 Project listing by subject . 22 Economic geology 22 Aggregates . 22 Coal . • 22 Ground water 22 Iron .. 22 Oil and gas 22 Salt . 22 Sand and gravel 23 General .. 23 Geomorphology 23 Geophysics 23 Glacial geology 23 Mineralogy and petrology . 24 Clay .. 24 Coal . 24 Dolomite 24 Limestone. 24 Sandstone •• 24 Shale. 24 Till 25 Others 25 Paleontology. 25 Stratigraphy and sedimentation 26 Structural geology . 27 Miscellaneous . 27 Geographic distribution. 27 Statewide 27 Areal. \\ 28 County 29 Miscellaneous . 33 iii Blank Page I INTRODUCTION In September 1956, letters of inquiry and questionnaires were sent to all Ohio geologists on the mailing list of the Ohio Geological Survey, and to other persons who might be working on geological problems in Ohio. This publication has been compiled from the information contained on the returned forms. In most eases it is assumed that the projects listed herein will culminate in reports which will be available to the profession through scientific journals, government publications, or grad- uate school theses.
    [Show full text]
  • Strophomenide and Orthotetide Silurian Brachiopods from the Baltic Region, with Particular Reference to Lithuanian Boreholes
    Strophomenide and orthotetide Silurian brachiopods from the Baltic region, with particular reference to Lithuanian boreholes PETRAS MUSTEIKIS and L. ROBIN M. COCKS Musteikis, P. and Cocks, L.R.M. 2004. Strophomenide and orthotetide Silurian brachiopods from the Baltic region, with particular reference to Lithuanian boreholes. Acta Palaeontologica Polonica 49 (3): 455–482. Epeiric seas covered the east and west parts of the old craton of Baltica in the Silurian and brachiopods formed a major part of the benthic macrofauna throughout Silurian times (Llandovery to Pridoli). The orders Strophomenida and Orthotetida are conspicuous components of the brachiopod fauna, and thus the genera and species of the superfamilies Plec− tambonitoidea, Strophomenoidea, and Chilidiopsoidea, which occur in the Silurian of Baltica are reviewed and reidentified in turn, and their individual distributions are assessed within the numerous boreholes of the East Baltic, particularly Lithua− nia, and attributed to benthic assemblages. The commonest plectambonitoids are Eoplectodonta(Eoplectodonta)(6spe− cies), Leangella (2 species), and Jonesea (2 species); rarer forms include Aegiria and Eoplectodonta (Ygerodiscus), for which the new species E. (Y.) bella is erected from the Lithuanian Wenlock. Eight strophomenoid families occur; the rare Leptaenoideidae only in Gotland (Leptaenoidea, Liljevallia). Strophomenidae are represented by Katastrophomena (4 spe− cies), and Pentlandina (2 species); Bellimurina (Cyphomenoidea) is only from Oslo and Gotland. Rafinesquinidae include widespread Leptaena (at least 11 species) and Lepidoleptaena (2 species) with Scamnomena and Crassitestella known only from Gotland and Oslo. In the Amphistrophiidae Amphistrophia is widespread, and Eoamphistrophia, Eocymostrophia, and Mesodouvillina are rare. In the Leptostrophiidae Mesoleptostrophia, Brachyprion,andProtomegastrophia are com− mon, but Eomegastrophia, Eostropheodonta, Erinostrophia,andPalaeoleptostrophia are only recorded from the west in the Baltica Silurian.
    [Show full text]
  • Chapter 1: Sequence Stratigraphy of the Glenshaw Formation
    Martino, R. L., 2004, Sequence stratigraphy of the Glenshaw Formation (middle–late Pennsylvanian) in the central Appalachian basin, in J. C. Pashin and R. A. Gastaldo, eds., Sequence stratigraphy, paleoclimate, and tectonics of coal-bearing strata: AAPG Studies 1 in Geology 51, p. 1–28. Sequence Stratigraphy of the Glenshaw Formation (Middle–Late Pennsylvanian) in the Central Appalachian Basin Ronald L. Martino Department of Geology, Marshall University, Huntington, West Virginia, U.S.A. ABSTRACT he Glenshaw Formation consists predominantly of sandstones and mud- rocks with thin limestones and coals, which are thought to have accumu- T lated in alluvial, deltaic, and shallow-marine environments. Analysis of 87 Glenshaw outcrops from southern Ohio, eastern Kentucky, and southern West Vir- ginia has revealed widespread, well-developed paleosols. These paleosols are used, along with marine units and erosional disconformities, to develop a high-resolution sequence-statigraphic framework. The tops of the paleosols constitute boundaries for nine allocycles, which are interpreted as fifth-order depositional sequences. Allocycles in this framework correlate with similar allocycles described from the northern Appalachian basin. A sequence-stratigraphic model is proposed that provides a framework for in- terpreting facies architecture in terms of base-level dynamics linked to relative sea level changes. Lowered base level caused valley incision along drainage lines and sediment bypassing of interfluves, which led to development of well-drained paleo- sols. Rising base level produced valley filling by fluvioestuarine systems (lowstand systems tract/transgressive systems tract), whereas pedogenesis continued on inter- fluves. As drainage systems aggraded, the coastal plain water table rose, and in- terfluvial paleosols were onlapped by paludal and lacustrine deposits.
    [Show full text]
  • Carboniferous Coal-Bed Gas Total Petroleum System
    U.S. Geological Survey Open-File Report 2004-1272 Assessment of Appalachian Basin Oil and Gas Resources: Carboniferous Coal-bed Gas Total Petroleum System Robert C. Milici U.S. Geological Survey 956 National Center Reston, VA 20192 1 Table of Contents Abstract Introduction East Dunkard and West Dunkard Assessment units Introduction: Stratigraphy: Pottsville Formation Allegheny Group Conemaugh Group Monongahela Group Geologic Structure: Coalbed Methane Fields and Pools: Assessment Data: Coal as a source rock for CBM: Gas-In-Place Data Thermal Maturity Generation and Migration Coal as a reservoir for CBM: Porosity and Permeability Coal Bed Distribution Cumulative Coal Thickness Seals: Depth of Burial Water Production Cumulative Production Data: Pocahontas basin and Central Appalachian Shelf Assessment Units Introduction: Stratigraphy: Pocahontas Formation New River Formation Kanawha Formation 2 Lee Formation Norton Formation Gladeville Sandstone Wise Formation Harlan Formation Breathitt Formation Geologic Structure: Coalbed Methane Fields: Coal as a Source Rock for CBM Gas-in-Place Data Thermal Maturity Generation and Migration Coal as a Reservoir for CBM: Porosity and Permeability Coal Bed Distribution Cumulative Coal Thickness Seals: Depth of Burial Water Production Cumulative Production Data: Assessment Results: Appalachian Anthracite and Semi-Anthracite Assessment Unit: Pennsylvania Anthracite Introduction: Stratigraphy: Pottsville Formation Llewellyn Formation Geologic Structure: Coal as a Source Rock for CBM: Gas-In-Place-Data Thermal
    [Show full text]
  • Table of Contents Page 4.0 Characterization of Regional And
    Table of Contents Page 4.0 Characterization of Regional and Local Geology, Hydrogeology, and Hydrology 4-1 4.1 Physiography 4-1 4.2 Regional Geology 4-1 4.2.1 Pennsylvanian System 4-2 4.2.1.1 Conemaugh Group 4-2 4.2.1.2 Monongahela Group 4-2 4.2.2 Permian System – Dunkard Group 4-3 4.2.2.1 Waynesburg Formation 4-3 4.2.2.2 Washington Formation 4-4 4.2.2.3 Greene Formation 4-5 4.2.3 Quaternary System 4-6 4.2.4 Coal Resources 4-6 4.3 Structural Geology 4-7 4.3.1 Appalachian Plateaus Physiographic Province 4-7 4.3.2 Prototypical Area of the Pittsburgh Low Plateau Section 4-7 4.3.3 Joint Systems 4-8 4.3.4 Lineaments 4-8 4.3.5 Very Low Frequency Survey 4-9 4.4 Soils 4-10 4.4.1 Washington County Soil Survey 4-10 4.4.2 Colluvial Deposits 4-12 4.5 Hydrogeology 4-12 4.5.1 General 4-12 4.5.2 Aquifer Characteristics 4-13 4.5.3 Washington County Hydrogeology 4-14 4.6 Hydrology 4-14 4.6.1 Drainage Basin Characteristics 4-14 4.6.2 Upper Ohio – Wheeling Watershed 4-14 4.7 Climatology 4-15 4.0 Characterization of Regional and Local Geology, Hydrogeology, and Hydrology 4.1 Physiography The study area is situated within the Appalachian Plateaus Physiographic Province, a region that extends from Alabama into New York. The Appalachian Plateaus Physiographic Province in Pennsylvania is currently divided into seven sections based on characteristic geomorphic features unique to each.
    [Show full text]
  • DEPT. of EARTH SCIENCES B.Sc. Theses – by Author (Page 1 of 17)
    BROCK UNIVERSITY – DEPT. OF EARTH SCIENCES B.Sc. Theses – by Author (page 1 of 17) Abu Hassan, R. Composition of Glacial and Post-Glacial Sediments in 20 Mile Creek, near Jordan Harbour, 1986. Aichele, S. Sub-watershed Study of the Upper Twelve Mile Creek: background conditions of stream water quality and chemistry, 2005. Ainslie, A. Volcanism and Hydrothermal Activity - McAras Brook, Nova Scotia, 1986. Ainsworth, B.H. The Sedimentation and Stratigraphy of the Walkerton Clay Banks, 1978. Allen, J. Stratigraphy and Sedimentology of the Dundee Member, Sarnia-Lambton Townships, Southern Ontario, Canada, 1988. Alley, D. Rock Particle Transport Distances in the Norwood Esker , 1972. Alther, G. The Effects of a Farmyard on the Geochemistry of Nearby Streams, 1973. Anderson, M. Structure, Petrography and Chemistry of A Zones Migmatite Complex, Bancroft Region, Ontario: Relationship to Uraniferous Pegmatites, 1981. Anderson, R.J. Environmental Effects on an Emanometric Survey, 1977. Arbour, J. Determination of the Runoff Response Functions for the Soper Creek Basin, Ontario, 1973. Artinian, D. J. A Petrological and Geochemical Study of the Catherine Sills: Catherine TWP. Timiskaming District, Ontario, 1980. Atherton, P.G. Hydrology and Sediment Distribution in the Fifteen, Sixteen and Twenty Mile Creeks, 1975. Atherton, P.J. Some Engineering Properties of Three Glacio-Lacustrine Deposits in the Niagara Peninsula , 1972. Atkinson, D. A Textural and Petrological Study of Igneous Rocks of Uncertain Origin from the Adel Lake - Klob Lake Area, Northern Ontario, 1985. Atkinson, J. Petrofabric Analysis Using the Quantimet Image Analysis Computer, 1972. Axtmann, M. Interpretation of Point-Dilution Experiments in a single fracture involving a new technique using a Conductivity Electrode, 1996.
    [Show full text]
  • Bulletin 19 of the Department of Geology, Mines and Water Resources
    COMMISSION OF MARYLAND GEOLOGICAL SURVEY S. JAMES CAMPBELL Towson RICHARD W. COOPER Salisbury JOHN C. GEYER Baltimore ROBERT C. HARVEY Frostburg M. GORDON WOLMAN Baltimore PREFACE In 1906 the Maryland Geological Survey published a report on "The Physical Features of Maryland", which was mainly an account of the geology and min- eral resources of the State. It included a brief outline of the geography, a more extended description of the physiography, and chapters on the soils, climate, hydrography, terrestrial magnetism and forestry. In 1918 the Survey published a report on "The Geography of Maryland", which covered the same fields as the earlier report, but gave only a brief outline of the geology and added chap- ters on the economic geography of the State. Both of these reports are now out of print. Because of the close relationship of geography and geology and the overlap in subject matter, the two reports were revised and combined into a single volume and published in 1957 as Bulletin 19 of the Department of Geology, Mines and Water Resources. The Bulletin has been subsequently reprinted in 1961 and 1966. Some revisions in statistical data were made in the 1961 and 1968 reprints. Certain sections of the Bulletin were extensively revised by Dr. Jona- than Edwards in this 1974 reprint. The Introduction, Mineral Resources, Soils and Agriculture, Seafood Industries, Commerce and Transportation and Manu- facturing chapters of the book have received the most revision and updating. The chapter on Geology and Physiography was not revised. This report has been used extensively in the schools of the State, and the combination of Geology and Geography in one volume allows greater latitude in adapting it to use as a reference or textbook at various school levels.
    [Show full text]
  • Washington County, Pennsylvania Retrospective Case Study Characterization Report
    Technical Memo 1: Battelle Contract No. CON00011206 Washington County, Pennsylvania Retrospective Case Study Characterization Report Submitted to: American Petroleum Institute (API) 1220 L Street NW, Suite 900 Washington, DC 20005 America’s Natural Gas Alliance (ANGA) 701 Eighth Street, NW Suite 800 Washington, DC 20001 February 2013 NOTICE The content of this document is based on information available to Battelle at the time of preparation. Battelle exercised due and customary care within the time available to prepare the document but did not independently verify information provided by others. Any use that a third party makes of this document, or reliance on, or any decision to be made based on it, is the sole responsibility of such third party. Battelle accepts no responsibility for damages suffered by any third party as a result of decisions made or actions taken based on this document. Battelle does not engage in research for advertising, sales promotion, or endorsement of our clients’ interests including raising investment capital or recommending investments decisions. 505 King Avenue Columbus, Ohio 43201-2696 800.201.2011 [email protected] www.battelle.org EXECUTIVE SUMMARY The U.S. Environmental Protection Agency (EPA) is conducting a retrospective case study in Washington County, PA to determine if there is a relationship between hydraulic fracturing and drinking water resources. EPA selected this site “in response to complaints about appearance, odors and taste associated with water in domestic wells. To investigate these complaints, EPA is collecting data on groundwater, surface water, and spring water quality (EPA, 2012b). An understanding of background water quality conditions prior to or in the absence of hydraulic fracturing is required to determine if a relationship exists between hydraulic fracturing and drinking water resources.
    [Show full text]
  • Pennsylvania
    GENERAL AND NATURAL GAS GEOLOGY OF THE CALIFORNIA QUADRANGLE WASHINGTON COUNTY~ PENNSYLVANIA Senior Thesis submitted in partial £ul£illment 0£ the requirement £or the degree 0£ Bachelor 0£ Science in Geology. by Mark VerMeulen The Ohio State University, 1985 Thesis Advisor: D . R. J. Anderson Dept. 0£ Geology and Mineralogy ACKNOWLEDGMENTS The author thanks Pominex, Inc. for the loan of a great deal of material. Especially Bruce Dean, Exploration Geologist for Pominex, who gave much information and advise which helped make this a better paper. My advisor, Dr. R. J. Anderson, also deserves great thanks £or his advice~ patience and proo£ reading. And finally I would like to thank my mother and father proo£ reading sections of my paper, and my brother Dave for his help in educating me in the art of word processing. iii TABLE OF CONTENTS ACKNOWLEDGEMENTS ... iii I. INTRODUCTION. 1 II. PALEOGEOGRAPHY AND GEOLOGIC HISTORY. 2 Cambrian .•. 2 Ordovician .. 2 Silurian •. 4 Devonian. .............. 5 Mississippian •• 6 Pennsylvanian and Permian .. 7 Appalachian Revolution. 7 III. STRATIGRAPHY .• 8 Qua ternary .. 8 Permian and Pennsylvanian. 9 Mississippian. • •.••• 13 Devonian •• 15 Silurian .•• 19 IV. STRUCTURE •. 21 v. OIL AND GAS HISTORY •• 22 VI. PRODUCING HORIZONS •.. 23 Lower Mississippian and Upper DevonianProduction. 23 Deeper production ••. 30 Shallow production. 32 VII. CONCLUSION. 34 VIII. FIGURES •....•••• 36 IX. APPENDIX .. 49 BIBLIOGRAPHY ••...•.. 51 I. INTRODUCTION The area of study in this report is a quadrangle located in southwestern Pennsylvania. Specifically, the California Quadrangle is located in the eastern part of Washington County, but also includes small areas west of the Monongahela River in Fayette and Westmoreland Counties <figures 1 & 2>.
    [Show full text]
  • Synoptic Taxonomy of Major Fossil Groups
    APPENDIX Synoptic Taxonomy of Major Fossil Groups Important fossil taxa are listed down to the lowest practical taxonomic level; in most cases, this will be the ordinal or subordinallevel. Abbreviated stratigraphic units in parentheses (e.g., UCamb-Ree) indicate maximum range known for the group; units followed by question marks are isolated occurrences followed generally by an interval with no known representatives. Taxa with ranges to "Ree" are extant. Data are extracted principally from Harland et al. (1967), Moore et al. (1956 et seq.), Sepkoski (1982), Romer (1966), Colbert (1980), Moy-Thomas and Miles (1971), Taylor (1981), and Brasier (1980). KINGDOM MONERA Class Ciliata (cont.) Order Spirotrichia (Tintinnida) (UOrd-Rec) DIVISION CYANOPHYTA ?Class [mertae sedis Order Chitinozoa (Proterozoic?, LOrd-UDev) Class Cyanophyceae Class Actinopoda Order Chroococcales (Archean-Rec) Subclass Radiolaria Order Nostocales (Archean-Ree) Order Polycystina Order Spongiostromales (Archean-Ree) Suborder Spumellaria (MCamb-Rec) Order Stigonematales (LDev-Rec) Suborder Nasselaria (Dev-Ree) Three minor orders KINGDOM ANIMALIA KINGDOM PROTISTA PHYLUM PORIFERA PHYLUM PROTOZOA Class Hexactinellida Order Amphidiscophora (Miss-Ree) Class Rhizopodea Order Hexactinosida (MTrias-Rec) Order Foraminiferida* Order Lyssacinosida (LCamb-Rec) Suborder Allogromiina (UCamb-Ree) Order Lychniscosida (UTrias-Rec) Suborder Textulariina (LCamb-Ree) Class Demospongia Suborder Fusulinina (Ord-Perm) Order Monaxonida (MCamb-Ree) Suborder Miliolina (Sil-Ree) Order Lithistida
    [Show full text]
  • Structure of the Berea Oil Sand in the Flushing Quadrangle
    DEPARTMENT OF THE INTERIOR UNITED STATES GEOLOGICAL SURVEY GEORGE OTIS SMITH, DIRECTOR 346 STRUCTURE OF THE BEREA OIL SAND IN THE FLUSHING QUADRANGLE HAKRISON, BELMONT, AND GUERNSEY COUNTIES, OHIO BY W. T. GRISWOLD WASHINGTON GOVERNMENT 'PRINTING OFFICE 1908 CONTENTS. Page. Introduction.............................................................. ' 5 Location, drainage, and culture.........................'................... 6 1 Geology.............................................................:.... 7 Rocks showing at the surface........................ '.................... 7 Monongahela formation............................................ 7 1 Pittsburg coal.................................................. 7 Rocks between Pittsburg coal and Meigs Creek coal.............. 7 Meigs Creek coal............................................... 8 Rocks between Meigs Creek coal and Uniontown coal............. 9 Uniontown coal............................................... 9 Rocks between Uniontown coal and Waynesburg coal............ 9 Waynesburg coal............................................:.. 9 Washington formation............................................. 10 Rocks between Waynesburg coal and Washington coal............ 10 Washington coal................................................ 10 Section from Washington coal to Upper Washington limestone..... 11 Upper Washington limestone.. ................................... 11 Conemaugh formation. ............................................. 12 Pittsburg limestone..............:.............................
    [Show full text]