Recent Faulting and Active Shortening of the Middle Atlas Mountains, Morocco, Within the Diffuse African-Eurasian Plate Boundary

Total Page:16

File Type:pdf, Size:1020Kb

Recent Faulting and Active Shortening of the Middle Atlas Mountains, Morocco, Within the Diffuse African-Eurasian Plate Boundary RECENT FAULTING AND ACTIVE SHORTENING OF THE MIDDLE ATLAS MOUNTAINS, MOROCCO, WITHIN THE DIFFUSE AFRICAN-EURASIAN PLATE BOUNDARY _______________________________________ A Thesis presented to the Faculty of the Graduate School University of Missouri-Columbia _______________________________________________________ In Partial Fulfillment Of the Requirements for the Degree Master of Science _____________________________________________________ by Michael Rigby Dr. Francisco Gomez, Thesis Supervisor MAY 2008 The undersigned, appointed by the Dean of the Graduate School, have examined the thesis entitled: RECENT FAULTING AND ACTIVE SHORTENING OF THE MIDDLE ATLAS MOUNTAINS, MOROCCO, WITHIN THE DIFFUSE AFRICAN-EURASIAN PLATE BOUNDARY Presented by Michael Rigby A candidate for the degree of Master of Science And hereby certify that in their opinion it is worthy of acceptance. Dr. Francisco Gomez Dr. Robert Bauer Dr. Brent Rosenblad ACKNOWLEDGEMENTS I would like to thank my thesis advisor, Dr. Francisco Gomez, for all of his help throughout the research process. I would also like to thank my thesis committee members, Dr. Robert Bauer and Dr. Brent Rosenblad, for their assistance during the writing process. Also, I want to thank Yousuef Hahou, Zakir Abdelali, Nacer Jabour, and Abdelali Fadil for their assistance during the completion of field work. I would also like to thank the National Science Foundation of the funding of this project (EAR-0408661) and Dr. Rick Allmendinger for the use of his structural programs. Lastly, I would like to thank my family and friends for their continuous support. ii TABLE OF CONTENTS ACKNOWLEDGEMENTS................................................................................ ii LIST OF FIGURES ..........................................................................................v LIST OF TABLES .......................................................................................... vii ABSTRACT ...................................................................................................viii CHAPTER 1 INTRODUCTION AND TECTONIC BACKGROUND..................1 Introduction ..................................................................................................1 Objectives and Justification......................................................................4 Tectonic Setting ...........................................................................................5 Tectonic Evolution of the Atlas Mountains ...................................................6 Triassic through Early Tertiary..................................................................6 Cenozoic Tectonics ................................................................................10 CHAPTER 2 - MIDDLE ATLAS STRUCTURE ..............................................19 Introduction ................................................................................................19 Geologic Mapping of the Folded Middle Atlas............................................22 Stratigraphy............................................................................................23 Triassic ...............................................................................................23 Lower Liassic ......................................................................................23 Middle Liassic .....................................................................................24 Cretaceous .........................................................................................24 Neogene .............................................................................................24 Quaternary..........................................................................................24 Remote Sensing Analysis and Interpretation..........................................24 Data Types .........................................................................................24 Analyses .............................................................................................27 Stereo Photogrammetry ..................................................................27 Multi-spectral image processing and interpretation .........................27 Geologic Map of the Folded Middle Atlas...............................................33 Structural Analyses ....................................................................................35 Balanced Cross-Section of the Folded Middle Atlas ..................................40 Discussion..................................................................................................42 CHAPTER 3 ACTIVE TECTONISM IN THE FOLDED MIDDLE ATLAS MOUNTAINS.................................................................................................45 Longitudinal Stream and Stream Terrace Profiles .....................................46 Quaternary Fault Scarps............................................................................49 Microtopographic Mapping .....................................................................49 Radiocarbon Age Dating ........................................................................57 Fault Scarp Degradation Modeling .........................................................58 Single Event Fault Scarp Degradation Model .....................................59 Composite Fault Scarp Degradation Model ........................................66 iii Discussion..................................................................................................70 Conclusion .................................................................................................72 REFERENCES CITED ..................................................................................74 iv LIST OF FIGURES Figure Page 1.1. Simplified tectonic map of the western Mediterranean. ...........................2 1.2. Topography map of the western Mediterranean. .....................................3 1.3. Tectonic evolution of the western Mediterranean from 200 - 30 Ma. .......7 1.4. Paleotectonic reconstructions of the western Mediteranean..................12 1.5. GPS velocity vector map. ......................................................................15 1.6. Seismicity Map. ....................................................................................16 2.1. Geologic map of the Middle Atlas Mountains..........................................20 2.2. ASTER band combination image with bands 7-3-1. ..............................29 2.3. Shortwave infrared spectral reflectance curves.....................................30 2.4. ASTER image composed of principal components 4, 5, and 6..............31 2.5. Geologic map of the Middle Atlas study area. .......................................34 2.6. Bedding Measurements.........................................................................36 2.7. Exposure of the Ait Oufella Fault in a road cut. .....................................38 2.8. Fault kinematic data ..............................................................................39 2.9. Balanced cross section..........................................................................41 3.1 Longitudinal Stream and terrace profiles ...............................................48 3.2. Field photograph of the composite scarp...............................................51 3.3. Field photograph of the singe event scarp.............................................52 3.4. 1 meter digital elevation model of the composite scarp. ........................54 3.5. 0.5 meter digital elevation model of the single event fault scarp............56 3.6. Single event fault scarp profile 1............................................................62 v 3.7. Single event fault scarp profile 2............................................................63 3.8. Single event fault scarp profile 3............................................................64 3.9. Single event fault scarp profile 4............................................................65 3.10. Root mean square analysis for D variable...........................................68 3.11. Composite fault scarp degradation model ...........................................69 vi LIST OF TABLES Table 2.1 Performance parameters for the ASTER radiometer....................26 Table 3.1 Radiocarbon age data ..................................................................57 vii RECENT FAULTING AND ACTIVE SHORTENING OF THE MIDDLE ATLAS MOUNTAINS, MOROCCO, WITHIN THE DIFFUSE AFRICAN-EURASIAN PLATE BOUNDARY Michael Rigby Dr. Francisco Gomez Thesis Supervisor ______________________________________________________________ Abstract The intracontinental Atlas Mountains of northwest Africa are prominent tectonic elements in the broader, diffuse plate boundary zone between the converging African and Eurasian plates in the western Mediterranean. Cenozoic geology, as well as present-day seismicity, document co-eval tectonism across a zone more than 500 kilometers in width. Hence, quantifying the rates of deformation in the Atlas Mountains is necessary in understanding the distribution of crustal deformation across the entire plate boundary zone. This study focuses on constraining the recent shortening rate across the NE-SW striking Middle Atlas Mountains, which are obliquely oriented to the NNW-SSE direction of Late Cenozoic plate convergence. Both strike-slip and contractional structures are exhibited with apparent slip partitioning: folding and thrusting is concentrated in the Folded Middle Atlas, whereas strike-slip dominates
Recommended publications
  • FAO-GIAHS: Globally Important Agricultural Heritage Systems a Legacy for the Future!
    FAO-GIAHS: Globally Important Agricultural Heritage Systems A LEGACY FOR THE FUTURE! Our Efforts on Biodiversity in Our Strategy on Biodiversity Do you believe in the role of Development Cooperation Our Aichi Priorities family farming communities espe- FACT 1 goal cially women in conservation and A sustainable use of biodiversity ? Leverage global and national recognition of Mainstreaming the importance of agricultural heritage systems 2 3 and its biodiversity for their institutional support Integration 1 4 Awareness Place your post-its with and safeguard 5 Jane dela Cruz ©FAO/Mary 0 Incentives 2 Resource Mobilization your answer below: Resources 6 Photo: FACT 2 Sustainable Use Use of Natural goal 1 to 20 The Aichi 9 Supporting active and informed participation of Biodiversity B 1 Loss of Habitats 7 Knowledge E Targets goal The GIAHS Initiative in China have brought significant indigenous and local communities in biodiversity Sustainable Fisheries Enhancing Areas Under Sust. Management 8 Implementation 8 Pollution development in Qingtian, our government and local management and conservation Traditional Knowledge 1 9 Invasive Alien Species community have come to understand the value of our V FACT 3 Short Term ulnerable Ecosystems National Biodiversity 1 7 Strategies traditional rice fish culture and biodiversity. Agriculture is 0 1 Coordination and harmonization of activities to a way of our lives and to live in harmony with nature... Protected Areas Agricultural Biodiversity Preventing Extinctions promote efficient management of resources and 1 Access and 1 6 Benefit Sharing “Traditional rice fish provides us organic food products, which sells higher than 1 encourage multi-stakeholder participation Medium Term non-organic, and making our annual higher than before.
    [Show full text]
  • Durham Research Online
    Durham Research Online Deposited in DRO: 13 April 2015 Version of attached le: Published Version Peer-review status of attached le: Peer-reviewed Citation for published item: Kaislaniemi, L. and van Hunen, J. (2014) 'Dynamics of lithospheric thinning and mantle melting by edge-driven convection : application to Moroccan Atlas mountains.', Geochemistry, geophysics, geosystems., 15 (8). pp. 3175-3189. Further information on publisher's website: http://dx.doi.org/10.1002/2014GC005414 Publisher's copyright statement: c 2014. The Authors. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modications or adaptations are made. Additional information: Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full DRO policy for further details. Durham University Library, Stockton Road, Durham DH1 3LY, United Kingdom Tel : +44 (0)191 334 3042 | Fax : +44 (0)191 334 2971 https://dro.dur.ac.uk PUBLICATIONS Geochemistry,
    [Show full text]
  • The Geology of England – Critical Examples of Earth History – an Overview
    The Geology of England – critical examples of Earth history – an overview Mark A. Woods*, Jonathan R. Lee British Geological Survey, Environmental Science Centre, Keyworth, Nottingham, NG12 5GG *Corresponding Author: Mark A. Woods, email: [email protected] Abstract Over the past one billion years, England has experienced a remarkable geological journey. At times it has formed part of ancient volcanic island arcs, mountain ranges and arid deserts; lain beneath deep oceans, shallow tropical seas, extensive coal swamps and vast ice sheets; been inhabited by the earliest complex life forms, dinosaurs, and finally, witnessed the evolution of humans to a level where they now utilise and change the natural environment to meet their societal and economic needs. Evidence of this journey is recorded in the landscape and the rocks and sediments beneath our feet, and this article provides an overview of these events and the themed contributions to this Special Issue of Proceedings of the Geologists’ Association, which focuses on ‘The Geology of England – critical examples of Earth History’. Rather than being a stratigraphic account of English geology, this paper and the Special Issue attempts to place the Geology of England within the broader context of key ‘shifts’ and ‘tipping points’ that have occurred during Earth History. 1. Introduction England, together with the wider British Isles, is blessed with huge diversity of geology, reflected by the variety of natural landscapes and abundant geological resources that have underpinned economic growth during and since the Industrial Revolution. Industrialisation provided a practical impetus for better understanding the nature and pattern of the geological record, reflected by the publication in 1815 of the first geological map of Britain by William Smith (Winchester, 2001), and in 1835 by the founding of a national geological survey.
    [Show full text]
  • Marie Tharp: Mapping the Seafloor of Back-Arc Basins, Mid-Ocean Ridges, Continental Margins & Plate Boundaries Vienna (Austria), EGU 2020-3676, 7/5/2020
    A Tribute to Marie Tharp: Mapping the seafloor of back-arc basins, mid-ocean ridges, continental margins & plate boundaries Vienna (Austria), EGU 2020-3676, 7/5/2020 Eulàlia Gràcia, Sara Martínez Loriente, Susana Diez, Laura Gómez de la Peña*, Cristina S. Serra, Rafael Bartolome, Valentí Sallarès, Claudio Lo Iacono, Hector Perea**, Roger Urgeles, Ingo Grevemeyer* and Cesar R. Ranero B-CSI at Institut de Ciències del Mar – CSIC, Barcelona *GEOMAR, Kiel, Germany **Universidad Complutense de Madrid, Facultad de Geologia, Madrid 1 The first steps of Marie Tharp • Marie Tharp, July 30, 1920 (Ypsilanti, Michigan) – August 23, 2006 (Nyack, New York) was an American geologist & oceano- graphic cartographer who, in partnership with Bruce Heezen, created the first scientific map of the Atlantic Ocean floor. • Tharp's work revealed the detailed topography and multi-dimensional geographical landscape of the ocean bottom. • Her work revealed the presence of a continuous rift-valley along the axis Fig. 1. A young Marie in the field helping his father, William E. of the Mid- Atlantic Ridge, causing a Tharp, a soil surveyor for United States Dpt. of Agriculture. Marie often paradigm shift in Earth Sciences that helped him with this task, which gave her an introduction to map- led to acceptance of Plate Tectonics making. From book “Soundings” by Hali Felt (2012). and Continental Drift. 2 Working at Columbia University Lamont Geological Observatory (NY) Fig. 2. Marie Fig. 3. at streets of Bruce New York, Heezen after she looking at a was hired to fathogram work by Dr. being Maurice produced by Ewing’, at an early the newly- echosounder formed (year 1940).
    [Show full text]
  • Morocco): Clues from Trace Elements and Sr–Nd–Pb–Hf Isotopes
    Lithos 205 (2014) 247–265 Contents lists available at ScienceDirect Lithos journal homepage: www.elsevier.com/locate/lithos Lithospheric origin for Neogene–Quaternary Middle Atlas lavas (Morocco): Clues from trace elements and Sr–Nd–Pb–Hf isotopes Delphine Bosch a,⁎, René C. Maury b,M'hammedElAzzouzib,c,ClaireBollingerd, Hervé Bellon b, Patrick Verdoux e a UMR-UM2-CNRS 5243 Géosciences Montpellier, Université de Montpellier II, place E. Bataillon, c.c. 060, 34095 Montpellier, France b UMR-CNRS 6538 Domaines océaniques, Institut Universitaire Européen de la Mer (IUEM), IUEM, Université de Brest, Université Européenne de Bretagne, place Nicolas Copernic, 29280 Plouzané, France c Faculté des Sciences, Université Mohammed-V, av. Ibn Batouta, BP 1014, 10100 Rabat, Maroc d UMS-CNRS 3113 Pôle de spectrométrie océan, IUEM, Université de Brest, Université Européenne de Bretagne, place Nicolas Copernic, 29280 Plouzané, France e Laboratoire de Géochimie Isotopique environnementale, Université de Nîmes/Site GIS, UMR-CNRS 7330, rue Georges Besse, 30035 Nîmes Cedex 1, France article info abstract Article history: This study presents new geochemical data on 26 mafic lavas from the Middle Atlas and Central Morocco volcanic Received 17 April 2014 provinces, including Miocene nephelinites and Pliocene–Quaternary (3.9–0.6 Ma) nephelinites, basanites, alkali Accepted 11 July 2014 and subalkaline basalts. Most of them represent near-primary magmas, although some alkali basalts were derived Available online 21 July 2014 from the minor fractionation of olivine and diopside phenocrysts. These evolved samples and the subalkaline basalt display higher 207Pb/204Pb and Zr/Nb ratios and lower εNd consistent with their contamination by lower crustal Keywords: Intraplate alkali basalts granulites during an open fractionation process.
    [Show full text]
  • Geology and Petroleum Systems of the Eastern Meseta and Atlas Domains of Morocco
    258 Paper 22 Geology and petroleum systems of the Eastern Meseta and Atlas Domains of Morocco FATIMA CHARRAT\ MOHAMAD ELALTI\ MoHO HAMIDI M. NOR2, NG TONG SAN2, SUPIAN SUNTEK2 AND TJIA, H.D.2 10ttice National de Recherches et d'Exploitations Petrolieres Rabat, Maghreb 2PETRONAS Carigali, Tower 1, Petronas Twin Towers 50088 Kuala Lumpur, Malaysia Morocco (Maghreb), located in Northwest Africa, has three main structural domains: The (a) RifDomain, the (b) Atlas Domain comprising two different structural regions, the relatively stable eastern and western Meseta, (characterized by mildly deformed Mesozoic strata) and the active Middle-High Atlas Belts, where the Meso­ Cenozoic section was highly folded during the Alpine orogeny; and finally, the (c) Sahara-Anti Atlas Domain at the south, marks the stable margin of the West African Craton. The eastern Meseta, with the Middle and the High Atlas chains (Atlas Domain ss.) is the objective of our study; it extends eastward through Algeria. The Middle Atlas and the High Atlas tectonic belts frame the Meseta. The Cambrian marine transgression over the northwestern African continental platform allowed deposition of shales, silts and sands over a faulted land surface. Folding at the Late Cambrian generated an irregular angular unconformity with the Ordovician sequence. This sequence, dominantly argillaceous at the beginning, ended with a regressive phase of glacio-marine sedimentation that developed coarse sandstones and micro-conglomerate. Volcanic eruptions caused localised metamorphism. The Ordovician ended with regression due to the emergence of the area (Taconic phase). Glacio-eustatism followed, leading to the widespread Silurian deposits of graptolite­ bearing black clays in shallow marine, confined (euxinic) troughs.
    [Show full text]
  • Alpine Orogeny the Geologic Development of the Mediterranean
    Alpine Orogeny The geologic development of the Mediterranean region is driven by the Alpine-Himalayan orogeny, a suturing of Gondwana-derived terranes with the Eurasion craton. In broad terms, this is a Mesozoic and Cenozoic convergent zone that extends from the Spain to Southeastern Asia and may extend along the southwest Pacific as far as New Zealand (Rosenbaum and Lister, 2002). The Alpine orogeny was caused by the convergence of the African and European plates (Frisch, 1979; Tricart, 1984; Haas et al., 1995) with peak collisional phases occurring at different times: Cretaceous in the Eastern Alps and Tertiary in the Western Alps (Schmid et al., 2004). Note: prior to the opening of the Paleotethys sea, the Variscan orogenic belt developed in central Europe then the Laurussian and Gondwana converged in the Devonian and Late Carboniferous. Although the location of the suture Extent of the Alpine-Himalayan orogenic belt is not clear, the orogenic belt was extensive, (Rosenbaum and Lister, 2002). running from the Bohemian Massif to the Alpine-Carpathian-Dinarides belt (). The Paleotethys sea existed in the Triassic but closed in the early Mesozoic due to convergence along the Cimmerian (and Indosinian) suture zone. The Paleotethys (or Tethys I) has been described as a wedge- shaped ocean that opened to the east, separating Eurasia from Africa, India, and Australia (Laurasia and Gondwana). Very little evidence of the Paleotethys exists today which has caused some to question its existence (Meyerhoff and Eremenko, 1976) The Tethys opened as Pangea broke up in the Early Jurassic and Africa moved east relative to Europe.
    [Show full text]
  • REGIONAL GEOGRAPHY of AFRICA. Uganda Certificate of Education
    REGIONAL GEOGRAPHY OF AFRICA. Uganda Certificate of Education. GEOGRAPHY Code: 273/2, Paper 2 2 hours 30 minutes PART I : THE REST OF AFRICA. INSTRUCTIONS TO CANDIDATES: This paper consists of two sections: Part I Rest of Africa. Answer two questions from part I @ question carry 25marks. Any additional question (s) answered will not be marked. Four questions are set and a candidate is required to answer only two questions. This region covers 50% of paper 273/2. 1) Download and print out a hard copy then copy this notes in a fresh book for Rest of Africa paper2. 2) If You need a copy of this work organized by the teacher for Rest of Africa. Call 0775 534057 for a book of Africa and it will be delivered. Emihen – Utec 1 SIZE, SHAPE AND POSITION. POSITION OF AFRICA. Africa is one of the largest continents of the world. It’s the second to the largest landmass combined of Eurasia i.e. Europe and Asia continents. LOCATION: Africa lies between latitudes 37.51’N just West of Cape Blanc in Tunisia to Cape Aghulhas at Latitude 34.51’S a distance of 8,000kms. Africa also lies between Cape Ras Hagun 51.50’E and Cape Verde 17.32’W. SIZE: Africa covers land area of about 30,300,300km2. THE SHAPE: Africa’s shape is unbalanced; with her northern part being bulky and wide, while the southern part being thinner and narrower in appearance. Emihen-Utec 2 The Latitude EQUATOR divides the continent into TWO HALVES, there being approximately; 3800kms between the Cape Agulhas in the south and Equator while between Tunisia and Equator in the North is 4,100kms.
    [Show full text]
  • Reasonable Plans. the Story of the Kasbah Du Toubkal
    The Story of the Kasbah du Toubkal MARRAKECH • MOROCCO DEREK WORKMAN The Story of the Kasbah du Toubkal Marrakech • Morocco Derek WorkMan Second edition (2014) The information in this booklet can be used copyright free (without editorial changes) with a credit given to the Kasbah du Toubkal and/or Discover Ltd. For permission to make editorial changes please contact the Kasbah du Toubkal at [email protected], or tel. +44 (0)1883 744 392. Discover Ltd, Timbers, Oxted Road, Godstone, Surrey, RH9 8AD Photography: Alan Keohane, Derek Workman, Bonnie Riehl and others Book design/layout: Alison Rayner We are pleased to be a founding member of the prestigious National Geographic network Dedication Dreams are only the plans of the reasonable – dreamt by Discover realised by Omar and the Worker of Imlil (Inscription on a brass plaque at the entrance to the Kasbah du Toubkal) his booklet is dedicated to the people of Imlil, and to all those who Thelped bring the ‘reasonable plans’ to reality, whether through direct involvement with Discover Ltd. and the Kasbah du Toubkal, or by simply offering what they could along the way. Long may they continue to do so. And of course to all our guests who contribute through the five percent levy that makes our work in the community possible. CONTENTS IntroDuctIon .........................................................................................7 CHAPTER 1 • The House on the Hill .......................................13 CHAPTER 2 • Taking Care of Business .................................29 CHAPTER 3 • one hand clapping .............................................47 CHAPTER 4 • An Association of Ideas ...................................57 CHAPTER 5 • The Work of Education For All ....................77 CHAPTER 6 • By Bike Through the High Atlas Mountains .......................................99 CHAPTER 7 • So Where Do We Go From Here? ..........
    [Show full text]
  • Africa: Physical Geography
    R E S O U R C E L I B R A R Y E N C Y C L O P E D I C E N T RY Africa: Physical Geography Africa has an array of diverse ecosystems, from sandy deserts to lush rain forests. G R A D E S 6 - 12+ S U B J E C T S Biology, Ecology, Earth Science, Geology, Geography, Physical Geography C O N T E N T S 10 Images For the complete encyclopedic entry with media resources, visit: http://www.nationalgeographic.org/encyclopedia/africa-physical-geography/ Africa, the second-largest continent, is bounded by the Mediterranean Sea, the Red Sea, the Indian Ocean, and the Atlantic Ocean. It is divided in half almost equally by the Equator. Africas physical geography, environment and resources, and human geography can be considered separately. Africa has eight major physical regions: the Sahara, the Sahel, the Ethiopian Highlands, the savanna, the Swahili Coast, the rain forest, the African Great Lakes, and Southern Africa. Some of these regions cover large bands of the continent, such as the Sahara and Sahel, while others are isolated areas, such as the Ethiopian Highlands and the Great Lakes. Each of these regions has unique animal and plant communities. Sahara The Sahara is the worlds largest hot desert, covering 8.5 million square kilometers (3.3 million square miles), about the size of the South American country of Brazil. Defining Africa's northern bulge, the Sahara makes up 25 percent of the continent. The Sahara has a number of distinct physical features, including ergs, regs, hamadas, and oases.
    [Show full text]
  • Seismic Velocity Structure of the Continental Lithosphere from Controlled Source Data
    Seismic Velocity Structure of the Continental Lithosphere from Controlled Source Data Walter D. Mooney US Geological Survey, Menlo Park, CA, USA Claus Prodehl University of Karlsruhe, Karlsruhe, Germany Nina I. Pavlenkova RAS Institute of the Physics of the Earth, Moscow, Russia 1. Introduction Year Authors Areas covered J/A/B a The purpose of this chapter is to provide a summary of the seismic velocity structure of the continental lithosphere, 1971 Heacock N-America B 1973 Meissner World J i.e., the crust and uppermost mantle. We define the crust as 1973 Mueller World B the outer layer of the Earth that is separated from the under- 1975 Makris E-Africa, Iceland A lying mantle by the Mohorovi6i6 discontinuity (Moho). We 1977 Bamford and Prodehl Europe, N-America J adopted the usual convention of defining the seismic Moho 1977 Heacock Europe, N-America B as the level in the Earth where the seismic compressional- 1977 Mueller Europe, N-America A 1977 Prodehl Europe, N-America A wave (P-wave) velocity increases rapidly or gradually to 1978 Mueller World A a value greater than or equal to 7.6 km sec -1 (Steinhart, 1967), 1980 Zverev and Kosminskaya Europe, Asia B defined in the data by the so-called "Pn" phase (P-normal). 1982 Soller et al. World J Here we use the term uppermost mantle to refer to the 50- 1984 Prodehl World A 200+ km thick lithospheric mantle that forms the root of the 1986 Meissner Continents B 1987 Orcutt Oceans J continents and that is attached to the crust (i.e., moves with the 1989 Mooney and Braile N-America A continental plates).
    [Show full text]
  • An Evaporite-Bearing Accretionary Complex in the Northern Front of The
    PUBLICATIONS Tectonics RESEARCH ARTICLE An evaporite-bearing accretionary complex in the northern 10.1002/2016TC004414 front of the Betic-Rif orogen Special Section: Fernando Pérez-Valera1,2 , Mario Sánchez-Gómez1,3 , Alberto Pérez-López4,5 , fi Orogenic cycles: from eld and Luis Alfonso Pérez-Valera1 observations to global geodynamics 1Centro de Estudios Avanzados en Ciencias de la Tierra (Universidad de Jaén), Jaén, Spain, 2Departamento de Ciencias de la Tierra y del Medio Ambiente, Universidad de Alicante, Alicante, Spain, 3Departamento de Geología, Facultad de Ciencias Key Points: Experimentales (Universidad de Jaén), Jaén, Spain, 4Departamento de Estratigrafía y Paleontología, Facultad de Ciencias • Evaporite-bearing units form an (Universidad de Granada), Granada, Spain, 5Instituto Andaluz de Ciencias de la Tierra (CSIC-Universidad de Granada), accretional complex in Betics Armilla, Spain north end • Evaporites display a suite of ductile structures with coherent kinematics • Kinematics indicate westward motion, Abstract The Guadalquivir Accretionary Complex forms a largely oblique prism at the northern edge of with subordinate N-S contraction the Betic-Rif orogen, where Miocene sediments plus allochthonous evaporite-bearing units were accreted during the displacement of the Alborán Domain toward the west. Traditional interpretations end the tectonic structuring of the Betic Cordillera at the present topographic front, beyond which gravitational and/or Correspondence to: diapiric processes would predominate. However, this study shows pervasive tectonic deformation in the F. Pérez-Valera, outer prism with coherent oblique shortening kinematics, which is achieved through an alternation of [email protected] roughly N-S arcuate thrust systems connected by E-W transfer fault zones. These structures accord well with the geophysical models that propose westward rollback subduction.
    [Show full text]