Fabella Prevalence Rate Increases Over 150 Years, and Rates of Other Sesamoid Bones Remain Constant: a Systematic Review Michael A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Original Article Pictorial Atlas of Symptomatic Accessory Ossicles by 18F-Sodium Fluoride (Naf) PET-CT
Am J Nucl Med Mol Imaging 2017;7(6):275-282 www.ajnmmi.us /ISSN:2160-8407/ajnmmi0069278 Original Article Pictorial atlas of symptomatic accessory ossicles by 18F-Sodium Fluoride (NaF) PET-CT Sharjeel Usmani1, Cherry Sit2, Gopinath Gnanasegaran2, Tim Van den Wyngaert3, Fahad Marafi4 1Department of Nuclear Medicine & PET/CT Imaging, Kuwait Cancer Control Center, Khaitan, Kuwait; 2Royal Free Hospital NHS Trust, London, UK; 3Antwerp University Hospital, Belgium; 4Jaber Al-Ahmad Molecular Imaging Center, Kuwait Received August 7, 2017; Accepted December 15, 2017; Epub December 20, 2017; Published December 30, 2017 Abstract: Accessory ossicles are developmental variants which are often asymptomatic. When incidentally picked up on imaging, they are often inconsequential and rarely a cause for concern. However, they may cause pain or discomfort due to trauma, altered stress, and over-activity. Nuclear scintigraphy may play a role in the diagnosis and localizing pain generators. 18F-Sodium Fluoride (NaF) is a PET imaging agent used in bone imaging. Although commonly used in imaging patients with cancer imaging malignancy, 18F-NaF may be useful in the evaluation of benign bone and joint conditions. In this article, we would like to present a spectrum of clinical cases and review the potential diagnostic utility of 18F-NaF in the assessment of symptomatic accessory ossicles in patients referred for staging cancers. Keywords: 18F-NaF PET/CT, accessory ossicles, hybrid imaging Introduction Accessory ossicles are developmental variants which are often asymptomatic. When inciden- Bone and joint pain is a common presentation tally picked up on imaging, they are often incon- in both primary and secondary practice. -
Musculoskeletal Morphing from Human to Mouse
Procedia IUTAM Procedia IUTAM 00 (2011) 1–9 2011 Symposium on Human Body Dynamics Musculoskeletal Morphing from Human to Mouse Yoshihiko Nakamuraa,∗, Yosuke Ikegamia, Akihiro Yoshimatsua, Ko Ayusawaa, Hirotaka Imagawaa, and Satoshi Ootab aDepartment of Mechano-Informatics, Graduate School of Information and Science and Technology, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, Japan bBioresource Center, Riken, 3-1-1 Takanodai, Tsukuba-shi, Ibaragi, Japan Abstract The analysis of movement provides various insights of human body such as biomechanical property of muscles, function of neural systems, physiology of sensory-motor system, skills of athletic movements, and more. Biomechan- ical modeling and robotics computation have been integrated to extend the applications of musculoskeletal analysis of human movements. The analysis would also provide valuable means for the other mammalian animals. One of current approaches of post-genomic research focuses to find connections between the phenotype and the genotype. The former means the visible morphological or behavioral expression of an animal, while the latter implies its genetic expression. Knockout mice allows to study the developmental pathway from the genetic disorders to the behavioral disorders. Would musculoskeletal analysis of mice also offer scientific means for such study? This paper reports our recent technological development to build the musculoskeletal model of a laboratory mouse. We propose mapping the musculoskeletal model of human to a laboratory mouse based on the morphological similarity between the two mammals. Although the model will need fine adjustment based on the CT data or else, we can still use the mapped musculoskeletal model as an approximate model of the mouse’s musculoskeletal system. -
Little Bones the Sesamoids
Erica Chu 3/7/2014 Foot . Hallucal sesamoids . Lesser metatarsal sesamoids . Interphalangeal joint sesamoid of great toe . Os peroneum . Sesamoid within tibialis anterior tendon . Sesamoid within the posterior tibialis tendon Hand . Pollicis sesamoids . Second and fifth metacarpal sesamoids . Interphalangeal joint sesamoid of thumb . Pisiform Patella Fabella Small round or ovoid bones embedded in certain tendons Usually related to joint surfaces Osseous surfaces covered by cartilage Intimate with synovial- lined cavity Resnick D, Niwayama G, Feingold ML. The sesamoid bones of the hands and feet: participators in arthritis. Radiology 1977; 123:57- 62. Two types . Type A: Sesamoid located adjacent to articulation ▪ Patella ▪ Hallucis sesamoids ▪ Pollicis sesamoids . Type B: Bursa separates sesamoid from adjacent bone Type A Type B ▪ Sesamoid of peroneus longus Resnick D, Niwayama G, Feingold ML. The tendon sesamoid bones of the hands and feet: participators in arthritis. Radiology 1977; 123:57-62. Function . Protect tendons from damage . Increase efficiency or mechanical advantage of their associated muscle ▪ Part of gliding mechanism ▪ Modify pressure ▪ Decrease friction ▪ Alter muscle pull “in proportion as the pastern is oblique or slanting, two consequences will follow, less weight will be thrown on the pastern, and more on the sesamoid…and in that proportion concussion will be prevented.” Located in tendons that wrap around bony or fibrous pulleys . Peroneus longus tendon . Posterior tibialis tendon Adaptation to help maintain tendon structure . Resists compression or shear . Fibrous tissue ▪ Flexibility ▪ Toughness . Cartilaginous tissue ▪ Elasticity Can alter tendon appearance on MR Didolkar MM, Malone AL, Nunley JA, et al. Pseudotear of the peroneus longus tendon on MRI, secondary to a fibrocartilaginous node. -
WHO Manual of Diagnostic Imaging Radiographic Anatomy and Interpretation of the Musculoskeletal System
The WHO manual of diagnostic imaging Radiographic Anatomy and Interpretation of the Musculoskeletal System Editors Harald Ostensen M.D. Holger Pettersson M.D. Authors A. Mark Davies M.D. Holger Pettersson M.D. In collaboration with F. Arredondo M.D., M.R. El Meligi M.D., R. Guenther M.D., G.K. Ikundu M.D., L. Leong M.D., P. Palmer M.D., P. Scally M.D. Published by the World Health Organization in collaboration with the International Society of Radiology WHO Library Cataloguing-in-Publication Data Davies, A. Mark Radiography of the musculoskeletal system / authors : A. Mark Davies, Holger Pettersson; in collaboration with F. Arredondo . [et al.] WHO manuals of diagnostic imaging / editors : Harald Ostensen, Holger Pettersson; vol. 2 Published by the World Health Organization in collaboration with the International Society of Radiology 1.Musculoskeletal system – radiography 2.Musculoskeletal diseases – radiography 3.Musculoskeletal abnormalities – radiography 4.Manuals I.Pettersson, Holger II.Arredondo, F. III.Series editor: Ostensen, Harald ISBN 92 4 154555 0 (NLM Classification: WE 141) The World Health Organization welcomes requests for permission to reproduce or translate its publications, in part or in full. Applications and enquiries should be addressed to the Office of Publications, World Health Organization, CH-1211 Geneva 27, Switzerland, which will be glad to provide the latest information on any changes made to the text, plans for new editions, and reprints and translations already available. © World Health Organization 2002 Publications of the World Health Organization enjoy copyright protection in accordance with the provisions of Protocol 2 of the Universal Copyright Convention. All rights reserved. -
Parts of the Body 1) Head – Caput, Capitus 2) Skull- Cranium Cephalic- Toward the Skull Caudal- Toward the Tail Rostral- Toward the Nose 3) Collum (Pl
BIO 3330 Advanced Human Cadaver Anatomy Instructor: Dr. Jeff Simpson Department of Biology Metropolitan State College of Denver 1 PARTS OF THE BODY 1) HEAD – CAPUT, CAPITUS 2) SKULL- CRANIUM CEPHALIC- TOWARD THE SKULL CAUDAL- TOWARD THE TAIL ROSTRAL- TOWARD THE NOSE 3) COLLUM (PL. COLLI), CERVIX 4) TRUNK- THORAX, CHEST 5) ABDOMEN- AREA BETWEEN THE DIAPHRAGM AND THE HIP BONES 6) PELVIS- AREA BETWEEN OS COXAS EXTREMITIES -UPPER 1) SHOULDER GIRDLE - SCAPULA, CLAVICLE 2) BRACHIUM - ARM 3) ANTEBRACHIUM -FOREARM 4) CUBITAL FOSSA 6) METACARPALS 7) PHALANGES 2 Lower Extremities Pelvis Os Coxae (2) Inominant Bones Sacrum Coccyx Terms of Position and Direction Anatomical Position Body Erect, head, eyes and toes facing forward. Limbs at side, palms facing forward Anterior-ventral Posterior-dorsal Superficial Deep Internal/external Vertical & horizontal- refer to the body in the standing position Lateral/ medial Superior/inferior Ipsilateral Contralateral Planes of the Body Median-cuts the body into left and right halves Sagittal- parallel to median Frontal (Coronal)- divides the body into front and back halves 3 Horizontal(transverse)- cuts the body into upper and lower portions Positions of the Body Proximal Distal Limbs Radial Ulnar Tibial Fibular Foot Dorsum Plantar Hallicus HAND Dorsum- back of hand Palmar (volar)- palm side Pollicus Index finger Middle finger Ring finger Pinky finger TERMS OF MOVEMENT 1) FLEXION: DECREASE ANGLE BETWEEN TWO BONES OF A JOINT 2) EXTENSION: INCREASE ANGLE BETWEEN TWO BONES OF A JOINT 3) ADDUCTION: TOWARDS MIDLINE -
On the Development of Sesamoid Bones
bioRxiv preprint doi: https://doi.org/10.1101/316901; this version posted May 8, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. On the Development of Sesamoid Bones Shai Eyal1*, Sarah Rubin1, Sharon Krief1, Lihi Levin1 and Elazar Zelzer1 1 Weizmann Institute of Science, Department of Molecular Genetics, PO Box 26, Rehovot 76100, Israel * Current address: University of California at San Diego, Department of Cellular and Molecular Medicine, La Jolla, CA 92093, USA Corresponding author: [email protected] Keywords: Sesamoid bone, Patella, Fabella, Digits, Sox9, Scleraxis, Tgfβ, Bmp2, Bmp4, Joint, Mouse bioRxiv preprint doi: https://doi.org/10.1101/316901; this version posted May 8, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. ABSTRACT Sesamoid bones are a special group of small auxiliary bones that form in proximity to joints and contribute to their stability and function. Sesamoid bones display high degree of variability in size, location, penetrance and anatomical connection to the main skeleton across vertebrate species. Therefore, providing a comprehensive developmental model or classification system for sesamoid bones is challenging. Here, we examine the developmental mechanisms of three anatomically different sesamoid bones, namely patella, lateral fabella and digit sesamoids. Through a comprehensive comparative analysis at the cellular, molecular and mechanical levels, we demonstrate that all three types of sesamoid bones originated from Sox9+/Scx+ progenitors under the regulation of TGFβ and independent of mechanical stimuli from muscles. -
Sesamoid Bone of the Medial Collateral Ligament of the Knee Joint
CASE REPORT Eur. J. Anat. 21 (4): 309-313 (2017) Sesamoid bone of the medial collateral ligament of the knee joint Omar M. Albtoush, Konstantin Nikolaou, Mike Notohamiprodjo Department of Diagnostic and Interventional Radiology, Karls Eberhard Universität Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany SUMMARY tomical relations and the exclusion of other possi- bilities. The variable occurrence of the sesamoid bones This article supports the theory stating that the supports the theory stating that the development development and evolution of the sesamoid bones and evolution of these bones are controlled are controlled through the interaction between in- through the interaction between intrinsic genetic trinsic genetic factors and extrinsic epigenetic stim- factors and extrinsic stimuli. In the present article uli, which can explain their variable occurrence. we report a sesamoid bone at the medial collateral ligament of the knee joint, a newly discovered find- CASE REPORT ing in human and veterinary medicine. We present a case of a 51-year-old female pa- Key words: Sesamoid – MCL – Knee – Fabella – tient, who presented with mild pain at the medial Cyamella aspect of the left knee. No trauma has been re- ported. An unenhanced spiral CT-Scan was per- INTRODUCTION formed with 2 mm thickness, 120 kvp and 100 mAs, which showed preserved articulation of the New structural anatomical discoveries are not so knee joint with neither joint effusion, nor narrowing often encountered. However, their potential occur- of the joint space nor articulating cortical irregulari- rence should be kept in mind, which can eventually ties (Fig. 1). Mild subchondral sclerosis was de- help in a better understanding of patients’ symp- picted at the medial tibial plateau as a sign of early toms and subsequently improve the management osteoarthritis. -
Palpation Techniques
Palpation Techniques Bearbeitet von Wolfgang Stelzenmüller, Michelle Hertrich, Gertrud Graubart Champe, Bernhard Reichert 1. Auflage 2010. Taschenbuch. 500 S. Paperback ISBN 978 3 13 146341 8 Format (B x L): 19,5 x 27 cm Weitere Fachgebiete > Medizin > Komplementäre Medizin, Asiatische Medizin (TCM), Heilpraktiker Zu Inhaltsverzeichnis schnell und portofrei erhältlich bei Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte. 140 6 Knee Joint Iliotibial tract Gerdy tubercle Fig. 6.49 Palpation of the iliotibial tract—anterior edge. Fig. 6.51 Palpation of the Gerdy tubercle. With the knee in slight flexion, the patient is instructed to isometrically contract the quadriceps. The hip is also flexed, abducted, and medially rotated. Using a perpendicular palpation technique, the edges of the tract can be identified slightly proximal to the level of the base of the patella (Fig. 6.50). Note • The tract is found directly over the lateral epicondyle when the knee is in 30−40° flexion. Less flexion shifts the tract so that it is then anterior to the epicondyle, while more flexion moves it posteriorly. It now be- comes apparent that the iliotibial tract must slide over the epicondyle during the gait cycle. This can oc- casionally cause symptoms. • A significant number of tract fibers extend down to the lateral edge of the patella and insert slightly distal to the vastus lateralis tendon. -
Anatometric Point Guide for Canine Cranial Cruciate Ligament Suture Repair
Anatometric Point Guide for Canine Cranial Cruciate Ligament Suture Repair A Major Qualifying Project Report Submitted to the Faculty of WORCESTER POLYTECHNIC INSTITUTE In partial fulfillment of the requirements for Degree of Bachelor of Science Submitted by: Roman Gutierrez _____________________ Brittany Rhodes _____________________ Aimee St. Germain _____________________ Elliott Wiegman _____________________ Submitted to: Glenn Gaudette _____________________ Date of Submission: April 27, 2015 1 Contents Authorship............................................................................................................................................. 4 Table of Figures .................................................................................................................................... 5 Table of Tables ..................................................................................................................................... 6 Chapter 1: Introduction ......................................................................................................................... 7 Chapter 2: Literature Review .............................................................................................................. 11 2.1 Cranial Cruciate Ligament ........................................................................................................ 11 Biomechanics of the CCL ............................................................................................................ 13 2.2 Cranial Cruciate Ligament -
Axial Skeleton- Skull, Spinal Column Appendicular Skeleton – Limbs and Girdle
How many bones do humans have? • When you were born you had over 300 bones. As you grew, some of these bones began to fuse together. The result? An adult has only 206 bones! Factoids: • The human hand has 27 bones; your face has 14! • The longest bone in your body? Your thigh bone, the femur -- it's about 1/4 of your height. The smallest is the stirrup bone in the ear which can measure 1/10 of an inch. • Did you know that humans and giraffes have the same number of bones in their necks? Giraffe neck vertebrae are just much, much longer! • You have over 230 moveable and semi-moveable joints in your body. The Skeletal System Parts of the skeletal system Bones (skeleton) Joints Cartilages Ligaments (bone to bone)(tendon=bone to muscle) Divided into two divisions Axial skeleton- skull, spinal column Appendicular skeleton – limbs and girdle Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Functions of Bones Support of the body Protection of soft organs Movement due to attached skeletal muscles Storage of minerals and fats Blood cell formation Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Bones of the Human Body The skeleton has 206 bones Two basic types of bone tissue Compact bone Homogeneous Spongy bone Small needle-like pieces of bone Figure 5.2b Many open spaces Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Bones are classified by their shape: 1. Long- bones are longer than they are wide (arms, legs) 2. Short- usually square in shape, cube like (wrist, ankle) 3. -
Injuries and Normal Variants of the Pediatric Knee
Revista Chilena de Radiología, año 2016. ARTÍCULO DE REVISIÓN Injuries and normal variants of the pediatric knee Cristián Padilla C.a,* , Cristián Quezada J.a,b, Nelson Flores N.a, Yorky Melipillán A.b and Tamara Ramírez P.b a. Imaging Center, Hospital Clínico Universidad de Chile, Santiago, Chile. b. Radiology Service, Hospital de Niños Roberto del Río, Santiago, Chile. Abstract: Knee pathology is a reason for consultation and a prevalent condition in children, which is why it is important to know both the normal variants as well as the most frequent pathologies. In this review a brief description is given of the main pathologies and normal variants that affect the knee in children, not only the main clinical characteristics but also the findings described in the different, most used imaging techniques (X-ray, ultrasound, computed tomography and magnetic resonance imaging [MRI]). Keywords: Knee; Paediatrics; Bone lesions. Introduction posteromedial distal femoral metaphysis, near the Pediatric knee imaging studies are used to evaluate insertion site of the medial twin muscle or adductor different conditions, whether traumatic, inflammatory, magnus1. It is a common finding on radiography and developmental or neoplastic. magnetic resonance imaging (MRI), incidental, with At a younger age the normal evolution of the more frequency between ages 10-15 years, although images during the skeletal development of the distal it can be present at any age until the physeal closure, femur, proximal tibia and proximal fibula should be after which it resolves1. In frontal radiography, it ap- known to avoid diagnostic errors. Older children and pears as a radiolucent, well circumscribed, cortical- adolescents present a higher frequency of traumatic based lesion with no associated soft tissue mass, with and athletic injuries. -
(AMIC) and Microfractures for Focal Chondral Defects of the Knee: a Medium-Term Comparative Study
life Communication Autologous Matrix-Induced Chondrogenesis (AMIC) and Microfractures for Focal Chondral Defects of the Knee: A Medium-Term Comparative Study Filippo Migliorini 1 , Jörg Eschweiler 1, Nicola Maffulli 2,3,4,* , Hanno Schenker 1, Alice Baroncini 1 , Markus Tingart 1 and Björn Rath 1,5 1 Department of Orthopedics and Trauma Surgery, University Clinic Aachen, RWTH Aachen University Clinic, 52064 Aachen, Germany; [email protected] (F.M.); [email protected] (J.E.); [email protected] (H.S.); [email protected] (A.B.); [email protected] (M.T.); [email protected] (B.R.) 2 Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy 3 School of Pharmacy and Bioengineering, Keele University School of Medicine, Thornburrow Drive, Stoke-on-Trent ST5 5BG, UK 4 Centre for Sports and Exercise Medicine, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Mile End Hospital, 275 Bancroft Road, London E1 4DG, UK 5 Department of Orthopedics, Klinikum Wels-Grieskirchen, A-4600 Wels, Austria * Correspondence: [email protected] Abstract: Introduction: The potential of autologous matrix-induced chondrogenesis (AMIC) to restore unipolar focal chondral defects of the knee is promising. However, the outcome compared to Citation: Migliorini, F.; Eschweiler, J.; microfracturing (MFx) for certain defect sizes (2–3 cm2) is still uncertain. Therefore, the present study Maffulli, N.; Schenker, H.; Baroncini, compared primary isolated AMIC versus MFx in a cohort of patients with borderline sized focal A.; Tingart, M.; Rath, B. Autologous unipolar chondral defects of the knee at midterm follow-up.