Copyrighted Material
1 Elastic Domains: Yield Conditions 1.1. Introductory remarks Figure 1.1. Henri Tresca (1814–1885)1 honored on the North pillar of the Eiffel Tower One hundred and fifty years ago, Henri Tresca (Figure 1.1), then a Professor of applied mechanics at the Conservatoire des arts et métiers in Paris, submitted a series of memoirs to The French Academy of Sciences (Tresca 1864a, 1867a, 1867c, 1869a, 1870). They were devoted to recording the extensive series of experiments he had carried out investigating punching, rolling, forging, stamping and extruding processes of metals, where he had definitely identified a phenomenon; heCOPYRIGHTED called it the “fluidity” of metals MATERIAL subjected to very high pressures (Figure 1.2). 1 Archives of The French Academy of Sciences, Paris. 2 Elastoplastic Modeling Figure 1.2. “Flow of two iron slices, hot, under the action of a forging-hammer” In addition to the precise description of the experiments that were initially performed on various lead specimens and, afterwards, on other metals (copper, iron, tin and zinc) or materials (ceramics and modeling wax), Tresca had proposed a mechanical theory for the observed phenomena with his “Fundamental assumption as to the resistance to fluidity”, which he stated as follows (Figure 1.3): “Beyond this limit, we propose to consider, for the state of fluidity, that the forces that are developed are absolutely constant and entirely independent of the relative displacements, which amounts to admitting that they can always be evaluated by means of a resistance coefficient K per square meter or per square centimeter, this coefficient K remaining the same for the assessment of any molecular deformation developed during the fluidity period.” Elastic Domains: Yield Conditions 3 Figure 1.3.
[Show full text]