Samsung Galaxy Next Release
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Texting on a Smartwatch Versus a Smartphone: a Comparison of Their Effects on Driving Performance
TEXTING ON A SMARTWATCH VERSUS A SMARTPHONE: A COMPARISON OF THEIR EFFECTS ON DRIVING PERFORMANCE A Dissertation by Joel Persinger Master of Arts, Wichita State University, 2014 Bachelor of Science, Eastern Kentucky University, 2005 Submitted to the Department of Psychology and the faculty of the Graduate School of Wichita State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy December 2017 ©Copyright 2017 by Joel A. Persinger All Rights Reserved TEXTING ON A SMARTWATCH VERSUS A SMARTPHONE: A COMPARISON OF THEIR EFFECTS ON DRIVING PERFORMANCE The following faculty members have examined the final copy of this dissertation for form and content, and recommend that it be accepted in partial fulfillment of the requirement for the degree of Doctor of Philosophy, with a major in Psychology. _____________________________________________ Rui Ni, Committee Chair _____________________________________________ Alex Chaparro, Committee Member _____________________________________________ Barbara Chaparro, Committee Member _____________________________________________ Jibo He, Committee Member _____________________________________________ Jeremy Patterson, Committee Member Accepted for the College of Liberal Arts and Sciences _______________________________________________ Ron Matson, Dean Accepted for the Graduate School _______________________________________________ Dennis Livesay, Dean iii DEDICATION To my beautiful wife, who has pushed me to go further than I ever thought I could. She has truly carried me though graduate school with love and encouragement. iv ABSTRACT The National Safety Council reports that 6 percent or more car crashes involved text messaging from a smartphone. In addition, many studies have found that cell phone while driving increases crash risk by 2.8–5 times (Klauer et al. 2006; Redelmeier and Tibshirani 1997; Violanti 1998; Violanti and Marshall 1996). -
Classifying and Separating Messages, Alerts, and Notifications Yameng Lee Thorp
Technical Disclosure Commons Defensive Publications Series October 10, 2019 Classifying and Separating Messages, Alerts, and Notifications Yameng Lee Thorp Hideaki Matsui Follow this and additional works at: https://www.tdcommons.org/dpubs_series Recommended Citation Thorp, Yameng Lee and Matsui, Hideaki, "Classifying and Separating Messages, Alerts, and Notifications", Technical Disclosure Commons, (October 10, 2019) https://www.tdcommons.org/dpubs_series/2559 This work is licensed under a Creative Commons Attribution 4.0 License. This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for inclusion in Defensive Publications Series by an authorized administrator of Technical Disclosure Commons. Thorp and Matsui: Classifying and Separating Messages, Alerts, and Notifications Classifying and Separating Messages, Alerts, and Notifications Abstract: This publication describes techniques and apparatuses that allow a user to classify messages, alerts, and/or notifications based on their significance to the user and allow the user to separate them to be displayed in a first or a second part of a display screen of a smartphone. A machine-learned (ML) model aids the user by classifying and separating messages, alerts, and/or notifications of little or significant interest. By doing so, the user can better-manage their amount of time the user spends in front of the display screen of the smartphone and the user can utilize their smartphone more effectively. Keywords: Sort, segregate, classify, notification, message, alert, short message service, SMS, smartphone, mobile phone, mobile device, user equipment, tablet, personal digital assistant, PDA, motion, swipe, foldable display, foldable device, machine learning, ML, artificial intelligence, AI. -
Display, Telecom and Software
INDUSTRY REPORT KB RESEARCH Jeff Kim Analyst / IT Display, Telecom and 82-2-6114-2913 [email protected] Joonsop Kim Analyst Telecom Services/Holdings 82-2-6114-2935 [email protected] Software Danny Lee Analyst Internet, Game, Media, Leisure 82-2-6114-2960 [email protected] 5G, OLED and Content to Stand Out in 2019 Changmin Lee Analyst / IT 82-2-6114-2917 [email protected] Goun Whang RA 82-2-6114-2932 [email protected] MWC19: More immersive fun at faster speeds and on larger screens Caleb Kim RA 82-2-6114-2977 [email protected] We visited the Mobile World Congress 2019 (MWC19 held from Feb 25-28), in Sukyung Lee RA Barcelona, Spain. MWC19 provided us with valuable insight into the hot topics of the 82-2-6114-2914 [email protected] display & consumer electronics, communication and software industries by offering a Jeonghoon Son RA 82-2-6114-2910 [email protected] glimpse of how immersive content can be accessed through smartphones that operate on 5G, the platform for Industry 4.0, without any time or space constraints. This contrasted with IT exhibitions up to this point that only presented abstract concepts March 4, 2019 focusing on self-driving cars. Considering the dawning era of immersive content accessed via 5G foldable handsets, our top picks are Samsung Electronics (SEC), SEMCO, SK Telecom (SKT), NCSOFT, SFA Engineering and Hansol Chemical. We also Positive maintain believe AfreecaTV deserves attention. Recommendations March 4, 2019 Samsung Electronics (005930) Buy Foldable handsets to create added value in various industries Current price KRW44,850 Target price KRW52,000 When connected with other industries through 5G networks, the portability and convenience of foldable smartphones will create added value in numerous industries SEMCO (009150) Buy Current price KRW100,700 throughout the world. -
Securing and Managing Wearables in the Enterprise
White Paper: Securing and Managing Wearables in the Enterprise Streamline deployment and protect smartwatch data with Samsung Knox Configure White Paper: Securing and Managing Wearables in the Enterprise 2 Introduction: Smartwatches in the Enterprise As the wearable device market heats up, wrist-worn devices Industries as varied as healthcare, such as smartwatches are leading the pack. According to CCS Insight, forecasts for global sales of smart wearable devices finance, energy, transportation, will grow strongly over the next five years, with the global public safety, retail and hospitality market reaching nearly $30 billion by 2023.1 are deploying smartwatches for While smartwatches for fitness and activity tracking are popular, consumer demand is only part of the equation. added business value. Enterprises are also seeing business value in wearable devices. In a report by Robert Half Technology, 81 percent of CIOs surveyed expect wearable devices like smartwatches to Samsung has been working to address these concerns and become common tools in the workplace.2 has developed the tools to make its Galaxy and Galaxy Active smartwatches customizable, easily manageable and highly secure for enterprise users. This white paper will look at how these tools address key wearable security and manageability challenges, as well as considerations for smartwatch 81% deployments. of CIOs surveyed expect wearable devices like smartwatches to become common tools in the workplace. Industries as varied as healthcare, finance, energy, transportation, public safety, retail and hospitality are deploying smartwatches for added business value, such as hands-free communication for maintenance workers, task management, as well as physical monitoring of field workers in dangerous or remote locations. -
Motorola Set for Better Traction with Its Second Foldable Razr
Publication date: 10 Sep 2020 Author: Gerrit Schneemann Senior Analyst, Smartphones Motorola set for better traction with its second foldable razr Brought to you by Informa Tech Motorola set for better traction with its second 1 foldable razr Table of Figures: michellewhitcombinformacom_2020_9_10_18_41_35_capturejpg1 ..............................................3 © 2020 Omdia. All rights reserved. Unauthorized reproduction prohibited. Motorola set for better traction with its second 2 foldable razr Motorola set for better traction with its second foldable razr Motorola hoped the re-birth of the razr brand would facilitate its re-entry into the premium smartphone price segment. Instead, launch delays, a global pandemic and limited carrier reach conspired a meaningful launch of this high-end device. However, now the company is ready to launch the follow-up to the razr 2019. Razr 2020 improves on some of the shortcomings of last year’s device. It also launches into a market where Samsung has released two versions of its own foldable flip phone, in addition to the larger Fold devices. And while the latest razr should immediately be more available to more potential buyers, the device, again, launches into markets dealing with a pandemic. Design and hardware Multiple hardware aspects of the latest razr have been updated from the 2019 model. Chief among them is 5G connectivity. Where the 2019 version of the device was powered by a Qualcomm Snapdragon 710 chip, the latest version is powered by a Snapdragon 765 G processor. RAM and memory have also been upgraded to 8GB, from 6GB, of RAM and 256GB storage, from 128GB. The main display is still 6.2 inches. -
Apple and Nokia: the Transformation from Products to Services
9 Apple and Nokia: The Transformation from Products to Services In the mid- to late 2000s, Nokia flourished as the world’s dominant mobile phone – and mobile phone operating software – producer. Founded in 1871 originally as a rubber boots manufacturer, by 2007 Nokia produced more than half of all mobile phones sold on the planet, and its Symbian mobile operating system commanded a 65.6 percent global market share. 1 But within half a decade, Nokia would falter and be surpassed in the smartphone market not only by Apple’s revolu- tionary iPhone but also by competitors including Google and Samsung. And in September 2013, Nokia would sell its mobile phone business to Microsoft for $7 billion. 2 Apple literally came out of nowhere – it sold exactly zero mobile phones before the year 2007 (the year Nokia held more than half of the global market share) – but by the first quarter of 2013, Apple had captured almost 40 percent of the US smartphone market and over 50 percent of the operating profit in the global handset industry.3 In fiscal year 2013, Apple would sell five times more smart- phones than Nokia: 150 million iPhones compared to Nokia’s sales of 30 million Lumia Windows phones. 4 In contrast to Nokia, Apple real- ized it wasn’t just about the mobile device itself, it was about leveraging software to create a platform for developing compelling mobile experi- ences – including not just telephony but also music, movies, applica- tions, and computing – and then building a business model that allows partners to make money alongside the company (e.g., Apple’s iTunes and AppStore) and, in so doing, perpetuate a virtuous cycle of making the iPhone attractive to customers over multiple life cycles through ever-ex- panding feature sets. -
UI Design for Wearable Devices
FACULTY OF ENGINEERING UNIVERSITY OF PORTO UI Design for Wearable Devices Vitor Mota Master in Informatics and Computing Engineering Supervised by: Miguel Pimenta Monteiro (Assistant professor) Pedro Rocha (GlinttHS) January 2015 2 Abstract Smartwatches have been around for some time now (Ranger 2015), but 2015 is the year this wearable technology will finally get its boom in terms of popularity and growth. Technology giants like Apple, Google and Samsung are betting on their own-line of products such as the Apple Watch, Android Wear and Gear respectively (Apple Inc 2015a; Google Inc 2015b; SAMSUNG 2015). All of these devices are computation capable electronics with very small touch capacitive screens, limited number of hardware buttons with varying screen sizes and even shapes. Our research focused mainly on these constraints and how to successfully develop user friendly GUI’s for such small screens. The goal was to develop a model with guidelines to help developers provide easy to use and user friendly applications at a visual and interaction level to end users. To successfully achieve this, we first took a deep look at the available technology within these devices, including the framework each of the major platforms provide and the underlying hardware capabilities such as sensors like GPS, gyroscope, the use of the touch screen or microphone for user input and whether the shape of the device (round or squared) can have different effects on the design and usability. We also analyzed the impact of placement and arrangement of interface components having in mind that this technology, since it is a wearable watch, can be worn on both wrists and therefore will be used with only one hand that may obscure a different portion of the interface depending on which wrist the user uses it (Chandra and Raghunath 2000). -
Characterizing Smartwatch Usage in the Wild
Characterizing Smartwatch Usage In The Wild Xing Liu1 Tianyu Chen1 Feng Qian1 Zhixiu Guo23 Felix Xiaozhu Lin4 Xiaofeng Wang1 Kai Chen25 1Indiana University Bloomington 2SKLOIS, Institute of Information Engineering, Chinese Academy of Sciences 3Beijing Jiaotong University 4Purdue ECE 5School of Cyber Security, University of Chinese Academy of Sciences ABSTRACT participants, we conduct an in-depth characterization of three key Smartwatch has become one of the most popular wearable aspects of smartwatch usage “in the wild”: usage patterns, energy computers on the market. We conduct an IRB-approved consumption, and network traffic characteristics. This is to our measurement study involving 27 Android smartwatch users. Using knowledge the most comprehensive and in-depth crowd-sourced a 106-day dataset collected from our participants, we perform in- study of smartwatches. Our key measurement results consist of depth characterization of three key aspects of smartwatch usage “in the following. the wild”: usage patterns, energy consumption, and network traffic. • We characterize the smartwatch usage patterns. An Android Based on our findings, we identify key aspects of the smartwatch watch can stay in one of the four states with diverse power ecosystem that can be further improved, propose recommendations, characteristics: fully awake, dozing (with dimmed watch face and point out future research directions. display and restricted system activity), sleeping (screen further turned off), and charging. We find that smartwatch’s wake-up CCS Concepts period accounts for only 2% of the overall usage period among • → the four states. The wake-up sessions are not only short, but Human-centered computing Ubiquitous and mobile also frequent (72 times per day on average). -
Ergonomic Design Guidelines for Non-Flexible, Foldable, and Rollable Mobile Devices
저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게 l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다. 다음과 같은 조건을 따라야 합니다: 저작자표시. 귀하는 원저작자를 표시하여야 합니다. 비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다. 변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다. l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건 을 명확하게 나타내어야 합니다. l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다. 저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다. 이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다. Disclaimer Doctoral Thesis Ergonomic Design Guidelines for Non-flexible, Foldable, and Rollable Mobile Devices Songil Lee Department of Human Factors Engineering Graduate School of UNIST 2019 Ergonomic Design Guidelines for Non-flexible, Foldable, and Rollable Mobile Devices Songil Lee Department of Human Factors Engineering Graduate School of UNIST Ergonomic Design Guidelines for Non-flexible, Foldable, and Rollable Mobile Devices A dissertation submitted to the Graduate School of UNIST in partial fulfillment of the requirements for the degree of Doctor of Philosophy Songil Lee 28. 12. 2018 Approved by Advisor Gyouhyung Kyung Ergonomic Design Guidelines for Non-flexible, Foldable, and Rollable Mobile Devices Songil Lee This certifies that the dissertation of Songil Lee is approved. 28. 12. 2018 ABSTRACT Smartphones are mobile devices used daily by people of almost all ages. Therefore, improving these devices from an ergonomic perspective can benefit many people. Similarly, future mobile devices with new displays must be designed from an ergonomic perspective. The purpose of this thesis was to develop ergonomic design guidelines for current non-flexible smartphones as well as future flexible display devices, considering perceived grip comfort, user preference, attractive design, and/or muscle activity. -
Digital Forensic Analysis of Smart Watches
TALLINN UNIVERSITY OF TECHNOLOGY School of Information Technologies Kehinde Omotola Adebayo (174449IVSB) DIGITAL FORENSIC ANALYSIS OF SMART WATCHES Bachelor’s Thesis Supervisor: Hayretdin Bahsi Research Professor Tallinn 2020 TALLINNA TEHNIKAÜLIKOOL Infotehnoloogia teaduskond Kehinde Omotola Adebayo (174449IVSB) NUTIKELLADE DIGITAALKRIMINALISTIKA Bachelor’s Thesis Juhendaja: Hayretdin Bahsi Research Professor Tallinn 2020 Author’s declaration of originality I hereby certify that I am the sole author of this thesis. All the used materials, references to the literature and the work of others have been referred to. This thesis has not been presented for examination anywhere else. Author: Kehinde Omotola Adebayo 30.04.2020 3 Abstract As wearable technology is becoming increasingly popular amongst consumers and projected to continue to increase in popularity they become probable significant source of digital evidence. One category of wearable technology is smart watches and they provide capabilities to receive instant messaging, SMS, email notifications, answering of calls, internet browsing, fitness tracking etc. which can be a great source of digital artefacts. The aim of this thesis is to analyze Samsung Gear S3 Frontier and Fitbit Versa Smartwatches, after which we present findings alongside the limitations encountered. Our result shows that we can recover significant artefacts from the Samsung Gear S3 Frontier, also more data can be recovered from Samsung Gear S3 Frontier than the accompanying mobile phone. We recovered significant data that can serve as digital evidence, we also provided a mapping that would enable investigators and forensic examiners work faster as they are shown where to look for information in the course of an investigation. We also presented the result of investigating Fitbit Versa significant artefacts like Heart rate, sleep, exercise and personal data like age, weight and height of the user of the device, this shows this device contains artefacts that might prove useful for forensic investigators and examiners. -
API Diagrams
Devices Applications 1 motion history (walking, running, stationary, vehicle) step counting Core Motion API Apple M7 chip developer program apps iPhone 5s This covers the facilities provided by the M7 only, and not the gyroscope, accelerometer, magnetometer, and gps as independent sensors. Apple M7 Devices Applications Services 2 Runkeeper Argus Fitbit bluetooth 4.0 Withings LifeTrak Move C300 iOS Argus uses each New Balance LifeTRNr Watches services’ Pebble SmartWatch Sleep Time respective API. Mio Alpha Data is only viewable in the Wahoo Blue HR Heart Rate Strap iOS/Android Argus app, not in the website Stress Check iOS/Android Instant Heart Rate CSV Azumio cloud CSV premium feature or text iOS/Android/Windows table Phone/Windows 8 Cardio Buddy Data is not available for for Argus (steps only), iOS viewing from website, but Instant Heart Rate, Stress can sync to multiple Check and Sleep Time devices. Instant Fitness iOS CSV or text Fitness Buddy table iOS/Android text Glucose Buddy CSV table Glucose Buddy iOS/Android Azumio Devices Applications Services 3 Viera is Panasonic’s Smart TV platform that runs 3rd- party apps App requires Link Armband armband and API is active to subscription current developers but closed off to activity Bluetooth 2.0 new development heart rate food sleep BodyMedia FIT nutrients steps iOS/Android/Viera BodyMedia FIT API partner Armband Advantage Activity Manager program USB web dashboard BodyMedia SYNC Jawbone UP API apps Windows/Mac The desktop software only location CORE Armband transfers data to the registered image “Activity Manager” developers cardiac service. It does not allow oauth 2.0 food users to view data json goals mood activity sleep RF workout Since the armbands do not have displays, the Display Device is a Display way to show the data. -
Factors Influencing the Adoption of Smart Wearable Devices
Scholars' Mine Masters Theses Student Theses and Dissertations Spring 2016 Factors influencing the adoption of smart wearable devices Apurva Adapa Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses Part of the Technology and Innovation Commons Department: Recommended Citation Adapa, Apurva, "Factors influencing the adoption of smart wearable devices" (2016). Masters Theses. 7492. https://scholarsmine.mst.edu/masters_theses/7492 This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. FACTORS INFLUENCING THE ADOPTION OF SMART WEARABLE DEVICES by APURVA ADAPA A THESIS Presented to the faculty of the Graduate School of the MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY In Partial Fulfillment of the Requirements for the Degree MASTER OF SCIENCE IN INFORMATION SCIENCE AND TECHNOLOGY 2016 Approved by Dr. Fiona Fui Hoon Nah, Advisor Dr. Keng L. Siau Dr. Richard Hall Copyright 2016 Apurva Adapa All Rights Reserved iii ABSTRACT This study aims to examine the factors and issues in adoption of smart wearable devices. Wearable devices have many functions to offer which make them very useful in our daily lives. However, factors influencing the adoption of these devices are not well understood. This research explores the inhibiting and contributing factors influencing the adoption of wearable devices by employing the laddering approach. Qualitative data were collected through in-depth interviews using the laddering technique in order to understand these factors.