National Aeronautics and Space Administration I

Total Page:16

File Type:pdf, Size:1020Kb

National Aeronautics and Space Administration I National Aeronautics and Space Administration i This collection of activities is based on a weekly series of space science problems distributed to thousands of teachers during the 2009- 2010 school year. They were intended for students looking for additional challenges in the math and physical science curriculum in grades 5 through 12. The problems were created to be authentic glimpses of modern science and engineering issues, often involving actual research data. The problems were designed to be ‘one-pagers’ with a Teacher’s Guide and Answer Key as a second page. This compact form was deemed very popular by participating teachers. For more weekly classroom activities about astronomy and space visit the NASA website, http://spacemath.gsfc.nasa.gov Add your email address to our mailing list by contacting Dr. Sten Odenwald at [email protected] Front and back cover credits: Lagrange points (WMAP/NASA); Saturn hexagon clouds (Cassini/NASA); Gravity waves from binary black hole system (LISA); Eta Carina Nebula (Hubble/NASA) Interior Illustrations:6) Chandra/NASA; 7)JPL/NASA; 8)SOHO/ESA/NASA; 9)Author; Fermilab; 11)Aqua/NASA; 12)Deep Impact/NASA; 13)GeoEye; 16)Chandra/NASA; 17)HST/NASA; 18)SOHO/ESA/NASA; 21)Chandra/NASA; 22)NASA Orbital Debris Program Office; NASA Photo 125e006995; 24)HST/NASA; 25)HST/NASA; 27)NASA; 31)Palomar Digital Sky Survey; Carnegie Institution; 34)Digital Globe Inc; 39) NASA/JPL-Caltech; 40)ESO/L.Calcada; 41) Robert Rhodr-Global Warming Art; 48) LHC-Peter Limon; 53) Webb Space Telescope; NASA; 55) NIAID/RML; 71)USDoI/USGS; 83) BP Image from Public Domain Video; 89-91) NASA/Ares; 93) NASA/Sonoma State/Aurore Simonnet; 94-95)NASA/Chandra; 110) LRO/NASA This booklet was created through an education grant NNH06ZDA001N- EPO from NASA's Science Mission Directorate. Space Math http://spacemath.gsfc.nasa.gov Table of Contents ii Grade Page Acknowledgments i Table of Contents ii Mathematics Topic Matrix v How to use this Book ix Alignment with Standards x Teacher Comments x Counting Atoms in Molecules 3-5 1 Planetary Conjunctions 3-5 2 Parts Per Hundred 3-5 3 Star Cluster Math 3-5 4 Atoms – How sweet they are! 3-5 5 The Hand of Chandra 6-8 6 The Martian Dust Devils 6-8 7 Solar Storms – Fractions and Percentages 6-8 8 Energy at Home 6-8 9 Carbon Dioxide Increases 6-8 10 NASA Sees Carbon Dioxide 6-8 11 Tempel-1 : Close-up of a Comet 6-8 12 Exploring a High-Resolution Satellite Photo 6-8 13 Some Famous Unit Conversion Errors 6-8 14 Identifying Materials by their Reflectivity 6-8 15 Chandra Spies the Longest Sound Wave in the Universe 6-8 16 Details from an Exploding Star 6-8 17 Changing Perspectives on the Sun’s Diameter 6-8 18 Earth’s Changing Rotation Rate and Length of the Day 6-8 19 Planetary Alignments 6-8 20 Chandra Studies an Expanding Supernova Shell 6-8 21 Counting Craters on the Hubble Space Telescope 6-8 22 Satellite Drag and the Hubble Space Telescope 9-11 23 Counting Galaxies with the Hubble Space Telescope 9-11 24 The Eagle Nebula Close-up 9-11 25 Angular Size and Similar Triangles 9-11 26 ISS Orbit Altitude Changes 9-11 27 Solid Rocket Boosters 9-11 28 Evaluating Secondary Physical Constants 9-11 29 Space Mobile Puzzle 9-11 30 Spotting an Approaching Asteroid or Comet 9-11 31 The Most Important Equation in Astronomy 9-11 32 Solar Insolation Changes and the Sunspot Cycle 9-11 33 Mare Nubium and Las Vegas 9-11 34 Ice or Water? 9-11 35 Space Math http://spacemath.gsfc.nasa.gov Table of Contents (contd) iii Grade Page Water on Planetary Surfaces 9-11 36 Modeling the Keeling Curve with Excel 9-11 37 The Deep Impact Comet Encounter 9-11 38 Spitzer Studies the Distant Planet Osiris 9-11 39 How Hot is That Planet 9-11 40 Scientists Track the Rising Tide 9-11 41 Getting an Angle on the Sun and Moon 9-11 42 Seeing Solar Storms in STEREO 9-11 43 How to Build a Planet from the Inside Out 9-11 44 Unit Conversions: Energy, Power and Flux 9-11 45 The Elementary Particle Masses 9-11 46 Energy and Mass – Same things but different. 9-11 47 Exploring the Large Hadron Collider 9-11 48 Exploring the Big Bang with the LHC 9-11 49 The Global Warming Debate and the Arctic Ice Cap 9-11 50 Star Light…Star Bright 9-11 51 Fermi Detects Gamma-rays from the Galaxy Messier-82 9-11 52 Webb Space Telescope: Detecting dwarf planets 9-11 53 Computing the Orbit of a Comet 9-11 54 Estimating Maximum Cell Sizes 12 55 A Simple Model for Atmospheric Carbon Dioxide 12 56 From Dust Grains to Dust Balls 12 57 From Dust Balls to Asteroids 12 58 From Asteroids to Planets 12 59 The Higgs Boson and the Mystery of Mass 12 60 The Energy of Empty Space 12 61 The Volume of a Hypersphere 12 62 The Internal Density and Mass of the Sun 12 63 How Many Stars are in the Sky 12 64 Lunar Crater Frequency Distribution 12 65 The Rotation Velocity of a Galaxy 12 66 How Many Quasars are There? 12 67 Deep Impact Comet Fly-by 12 68 In the News… Kepler Spies Five New Planets 3-5 69 LRO Sees Apollo 11 on the Moon 6-8 70 LRO and the Apollo-11 Landing Site 6-8 71 LRO’s First Image of Mare Nubium 6-8 72 LRO- Searching for Lunar boulders 6-8 73 LRO Explores Lunar Surface Cratering 6-8 74 IBEX Creates an Unusual Image of the Sky 6-8 75 The Mysterious Hexagon on Saturn 6-8 76 Scientific Data – The gift that keeps on giving! 6-8 77 Space Math http://spacemath.gsfc.nasa.gov Table of Contents (contd) iv Grade Page Methane Lakes on Titan 6-8 78 SDO: Measuring the Speed of an Eruptive Prominence 6-8 79 SDO Reveals Details on the Surface of the Sun 6-8 80 The Terra Satellite Spies the Gulf Oil Catastrophe of 2010 6-8 81 Recent Events: A Perspective on Carbon Dioxide 6-8 82 The Rate of Oil Leakage in the Gulf Oil Spill of 2010 6-8 83 LRO-The Apollo-11 Landing Area at High Resolution 9-11 84 Spitzer Telescope Discovers New Ring of Saturn 9-11 85 IBEX Uses Fast-moving Particles to Map the Sky 9-11 86 Chandra Sees the Most Distant Cluster in the Universe 9-11 87 Solid Rocket Boosters and Thrust 9-11 88 Exploring the Ares-1X Launch: Downrange Distance 9-11 89 Exploring the Ares-1X Launch: Parametrics 9-11 90 Exploring the Ares-1X Launch: Energy Changes 9-11 91 Exploring the Ares-1X Launch: The Hard Climb to Orbit 9-11 92 Fermi Observatory Measures the Lumps in Space 9-11 93 Calculating the Thickness of a Neutron Star Atmosphere 9-11 94 Chandra Sees the Atmosphere of a Neutron Star 9-11 95 Water on the Moon! 9-11 96 LCROSS Sees Water on the Moon 9-11 97 Seeing Solar Storms in STEREO 9-11 98 STEREO Watches the Sun Kick Up a Storm 9-11 99 Calculating Black Hole Power 9-11 100 WISE, Hubble, Power Functions: A question of magnitude 9-11 101 Hubble: Seeing a dwarf planet clearly 9-11 102 SDO: Working with Giga, Tera and Peta 9-11 103 Asteroids and Ice 9-11 104 Hubble: The Changing Atmosphere of Pluto 9-11 105 WISE; F(x)G(x) – A tale of two functions 12 106 Exploring Power-law Functions using WISE Data 12 107 The Ares-V Cargo Rocket 12 108 Hubble Spies Colliding Asteroids 12 109 LRO Spots A Rolling Boulder on the Moon 12 110 Useful Links 111 Author Comments 112 Space Math http://spacemath.gsfc.nasa.gov Mathematics Topic Matrix v Topic Problem Numbers 1 2 3 4 5 6 7 8 9 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 Inquiry Technology, X X X X X X X X X rulers Numbers, X X X X X X X X X X X X X patterns, percentages Averages X X Time, X X X X X distance,speed Areas and X X volumes Scale X X X X X X X X X X drawings Geometry X X X X X Scientific X X X Notation Unit X X Conversions Fractions X Graph or Table X X X X Analysis Solving for X X X Evaluating Fns X Modeling X X X X Probability X X Rates/Slopes X Logarithmic Fns X Polynomials Power Fns Conics Piecewise Fns Trigonometry X Integration Differentiation Limits Space Math http://spacemath.gsfc.nasa.gov Mathematics Topic Matrix (cont'd) vi Topic Problem Numbers 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 6 6 6 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 Inquiry Technology, X X rulers Numbers, patterns, percentages Averages Time, distance,speed Areas and volumes X X X X X X X X X Scale drawings X X Geometry X X X X X X X X X X X X X Scientific Notation X X X X X X X X X X X X X Unit Conversions X X X X X X X X X X X Fractions Graph or Table Analysis X X X X Solving for X X X X X X X X X X X X X Evaluating Fns X X X X X X X X X X X X X Modeling X X X X X X X X X X Probability Rates/Slopes X X Logarithmic Fns Polynomials X X X X Power Fns X Exponential Fns Conics X Piecewise Fns Trigonometry X X Integration X X X Differentiation Limits Space Math http://spacemath.gsfc.nasa.gov Mathematics Topic Matrix (cont'd) vii Topic Problem Numbers 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 9 9 9 9 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 Inquiry Technology, X X X X X X X X X X X X X rulers Numbers, patterns, X X percentages Averages Time, distance,speed X X X X X X Areas and volumes X X X X X X X X X Scale drawings X X X X X X X X X X X X X X X Geometry X X X X X X X X X X X X Scientific X Notation X X X X X X X X Unit Conversions X X X X X X X X X X X X X X X X Fractions Graph or Table Analysis X Solving for X X X X X X X X X X X X Evaluating Fns X X X X X X X X X X X Modeling X X X X X X X X X X X X X X X X Probability Rates/Slopes Logarithmic Fns X Polynomials X Power Fns X Exponential Fns Conics Piecewise Fns Trigonometry X Integration X X Differentiation X X X Limits X Space Math http://spacemath.gsfc.nasa.gov Mathematics Topic Matrix (cont'd) viii Topic Problem Numbers 9 9 9 9 9 9 1 1 1 1 1 1 1 1 1 1 1 4 5 6 7 8 9 0 0 0 0 0 0 0 0 0 0 1 0
Recommended publications
  • Is the Universe Expanding?: an Historical and Philosophical Perspective for Cosmologists Starting Anew
    Western Michigan University ScholarWorks at WMU Master's Theses Graduate College 6-1996 Is the Universe Expanding?: An Historical and Philosophical Perspective for Cosmologists Starting Anew David A. Vlosak Follow this and additional works at: https://scholarworks.wmich.edu/masters_theses Part of the Cosmology, Relativity, and Gravity Commons Recommended Citation Vlosak, David A., "Is the Universe Expanding?: An Historical and Philosophical Perspective for Cosmologists Starting Anew" (1996). Master's Theses. 3474. https://scholarworks.wmich.edu/masters_theses/3474 This Masters Thesis-Open Access is brought to you for free and open access by the Graduate College at ScholarWorks at WMU. It has been accepted for inclusion in Master's Theses by an authorized administrator of ScholarWorks at WMU. For more information, please contact [email protected]. IS THEUN IVERSE EXPANDING?: AN HISTORICAL AND PHILOSOPHICAL PERSPECTIVE FOR COSMOLOGISTS STAR TING ANEW by David A Vlasak A Thesis Submitted to the Faculty of The Graduate College in partial fulfillment of the requirements forthe Degree of Master of Arts Department of Philosophy Western Michigan University Kalamazoo, Michigan June 1996 IS THE UNIVERSE EXPANDING?: AN HISTORICAL AND PHILOSOPHICAL PERSPECTIVE FOR COSMOLOGISTS STARTING ANEW David A Vlasak, M.A. Western Michigan University, 1996 This study addresses the problem of how scientists ought to go about resolving the current crisis in big bang cosmology. Although this problem can be addressed by scientists themselves at the level of their own practice, this study addresses it at the meta­ level by using the resources offered by philosophy of science. There are two ways to resolve the current crisis.
    [Show full text]
  • Cosmic Infrared Background and Early Galaxy Evolution
    Cosmic Infrared Background and Early Galaxy Evolution A. Kashlinsky Laboratory for Astronomy and Solar Physics, Goddard Space Flight Center, Greenbelt, MD 20771, and SSAI e-mail address: [email protected] ABSTRACT The Cosmic Infrared Background (CIB) reflects the sum total of galactic luminosi- ties integrated over the entire age of the universe. From its measurement the red-shifted starlight and dust-absorbed and re-radiated starlight of the CIB can be used to deter- mine (or constrain) the rates of star formation and metal production as a function of time and deduce information about objects at epochs currently inaccessible to telescopic studies. This review discusses the state of current CIB measurements and the (mostly space-based) instruments with which these measurements have been made, the obstacles (the various foreground emissions) and the physics behind the CIB and its structure. Theoretical discussion of the CIB levels can now be normalized to the standard cos- mological model narrowing down theoretical uncertainties. We review the information behind and theoretical modeling of both the mean (isotropic) levels of the CIB and their fluctuations. The CIB is divided into three broad bands: near-IR, mid-IR and far-IR. For each of the bands we review the main contributors to the CIB flux and the epochs at which the bulk of the flux originates. We also discuss the data on the various quanti- ties relevant for correct interpretation of the CIB levels: the star-formation history, the present-day luminosity function measurements, resolving the various galaxy contribu- tors to the CIB, etc. The integrated light of all galaxies in the deepest near-IR galaxy counts to date fails to match the observed mean level of the CIB, probably indicating arXiv:astro-ph/0412235v1 9 Dec 2004 a significant high-redshift contribution to the CIB.
    [Show full text]
  • The New Vision for Space Exploration
    Constellation The New Vision for Space Exploration Dale Thomas NASA Constellation Program October 2008 The Constellation Program was born from the Constellation’sNASA Authorization Beginnings Act of 2005 which stated…. The Administrator shall establish a program to develop a sustained human presence on the moon, including a robust precursor program to promote exploration, science, commerce and U.S. preeminence in space, and as a stepping stone to future exploration of Mars and other destinations. CONSTELLATION PROJECTS Initial Capability Lunar Capability Orion Altair Ares I Ares V Mission Operations EVA Ground Operations Lunar Surface EVA EXPLORATION ROADMAP 0506 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 LunarLunar OutpostOutpost BuildupBuildup ExplorationExploration andand ScienceScience LunarLunar RoboticsRobotics MissionsMissions CommercialCommercial OrbitalOrbital Transportation ServicesServices forfor ISSISS AresAres II andand OrionOrion DevelopmentDevelopment AltairAltair Lunar LanderLander Development AresAres VV and EarthEarth DepartureDeparture Stage SurfaceSurface SystemsSystems DevelopmentDevelopment ORION: NEXT GENERATION PILOTED SPACECRAFT Human access to Low Earth Orbit … … to the Moon and Mars ORION PROJECT: CREW EXPLORATION VEHICLE Orion will support both space station and moon missions Launch Abort System Orion will support both space stationDesigned and moonto operate missions for up to 210 days in Earth or lunar Designedorbit to operate for up to 210 days in Earth or lunar orbit Designed for lunar
    [Show full text]
  • " All That Matter... in One Big Bang...," & Other Cosmological Singularities
    “All that matter ... in one Big Bang ...,” & other cosmological singularities∗ Emilio Elizalde 1,2,3,† 1 Spanish National Higher Council for Scientific Research, ICE/CSIC and IEEC Campus UAB, C/ Can Magrans s/n, 08193 Bellaterra (Barcelona) Spain 2 International Laboratory for Theoretical Cosmology, TUSUR University, 634050 Tomsk, Russia 3 Kobayashi-Maskawa Institute, Nagoya University, Nagoya 464-8602, Japan e-mail: [email protected] February 23, 2018 Abstract The first part of this paper contains a brief description of the beginnings of modern cosmology, which, the author will argue, was most likely born in the Year 1912. Some of the pieces of evidence presented here have emerged from recent research in the history of science, and are not usually shared with the general audiences in popular science books. In special, the issue of the correct formulation of the original Big Bang concept, according to the precise words of Fred Hoyle, is discussed. Too often, this point is very deficiently explained (when not just misleadingly) in most of the available generalist literature. Other frequent uses of the same words, Big Bang, as to name the initial singularity of the cosmos, and also whole cosmological models, are then addressed, as evolutions of its original meaning. Quantum and inflationary additions to the celebrated singular- ity theorems by Penrose, Geroch, Hawking and others led to subsequent results by Borde, Guth and Vilenkin. And corresponding corrections to the Einstein field equations have originated, in particular, R2, f(R), and scalar-tensor gravities, giving rise to a plethora of new singularities. For completeness, an updated table with a classification of the same is given.
    [Show full text]
  • Annual Report
    The 2008 Annual Report of the International Space Exploration Coordination Group Released March 2009 International Space Exploration Coordination Group (ISECG) – Annual Report:2008 THIS PAGE INTENTIONALLY BLANK 1 International Space Exploration Coordination Group (ISECG) – Annual Report:2008 CONTENTS Introduction …………………………………………………………………………… 4 Part 1: The Role of the ISECG 1.1 Overview …………………………………………………………………………. 6 1.2 Working Groups of the ISECG …………………………………………………… 7 1.2.1 Enhancement of Public Engagement …………………………………………… 7 1.2.2 Establishment of Relationships with Existing International Working Groups …. 7 1.2.3 The International Space Exploration Coordination Tool (INTERSECT) ……. 8 1.2.4 The Space Exploration Interface Standards Working Group (ISWG) ………….. 8 1.2.5 Mapping the Space Exploration Journey ………………………………………... 8 Part 2: Current and Near-Term Activities of ISECG Members 2.1 Low Earth Orbit (LEO) …………………………………………………………… 10 2.1.1 The International Space Station (ISS) …………………………………………… 10 2.1.2 Emerging Government Capabilities …………………………………………….. 10 2.1.3 Emerging Commercial Providers ……………………………………………….. 11 2.2 Beyond LEO – The Moon and Mars ……………………………………………….. 11 2.2.1 Moon ……………………………………………………………………………… 11 2.2.2 Mars ………………………………………………………………………………. 12 Part 3: Progress in 2008 towards Opportunities for Integrated and Collaborative Space Exploration 3.1 Robotic Network Science – The International Lunar Network ……………………… 16 3.2 Joint Development for Robotic Exploration – Mars Sample Return ………………………… 17 3.3 Collaborative
    [Show full text]
  • FY10 Agency Mission Planning Model Acronyms
    Version 6-11-09 Mission Data Sources Science Mission Directorate (SMD) submit; 5-4-09 Exploration Systems Mission Directorate (ESMD) submit; 6-11-09 Space Operations Mission Directorate (SOMD) submit; 5-27-09 Aeronautics Research Mission Directorate (ARMD) response; 5-28-09 Mission Acronyms & Definitions Mission Directorate Altair-x Lunar descent stage aka: LSAM = Lunar Surface Access Module (x-mission #) ESMD Ares 1 Crew Launch Vehicle (aka CLV) ESMD Ares V Cargo Launch Vehicle (aka CaLV) ESMD Astro-H SXS Instrument (Explorer Program Mission of Opportunity) [JAXA launch] SMD X-Air Estimated number of Aircraft Earth Science Flights SMD X-Bal Estimated number of Scientific Balloon Flights SMD BARREL Balloon Array for RBSP Relativistic Electron Losses (Two balloon campaigns of 20 flights each) SMD CaLV Cargo Launch Vehicle (aka CaLV) ESMD Chndraayn1 Discovery MoO instrument to be flown on Indian satellite Chandraayan [ELV launch] SMD CLARREO Climate Absolute Radiance and Reflectivity Observatory (see ESDS-x below) SMD CLV Crew Launch Vehicle (aka Ares I) ESMD COR-Lx Cosmic Origins Program Large class mission (x-mission #) (Flagship missions to be defined by Decadal Survey) SMD COR-Mx Cosmic Origins Program Medium class mission (x-mission #) SMD dB decibels ARMD DESDynl Deformation, Ecosystem Structure and Dynamics of Ice (see ESDS-x below) SMD Disc-xx Discovery Mission (xx- mission #) SMD ESDS-x Earth Science Decadal Survey Mission (x- mission #) Likely CLARREO and DESDynI first, order TBD SMD EX-xx Explorer mission (class undefined: Could
    [Show full text]
  • Ares V Cargo Launch Vehicle
    National Aeronautics and Space Administration Constellation Program: America’s Fleet of Next-Generation Launch Vehicles The Ares V Cargo Launch Vehicle Planning and early design are under way for hard- NASA’s Constellation Program to carry human ware, propulsion systems and associated techno- explorers back to the moon, and then onward to logies for NASA’s Ares V cargo launch vehicle — the Mars and other destinations in the solar system. “heavy lifter” of America’s next-generation space fleet. The Ares V effort includes multiple hardware and Ares V will serve as NASA’s primary vessel for safe, propulsion element teams at NASA centers and facts reliable delivery of large-scale hardware to space — contractor organizations around the nation, and is from the lunar landing craft and materials for estab- led by the Ares Projects Office at NASA’s Marshall lishing a moon base, to food, fresh water and other Space Flight Center in Huntsville, Ala. These teams staples needed to extend a human presence beyond rely on nearly a half century of NASA spaceflight Earth orbit. experience and aerospace technology advances. Together, they are developing new vehicle hard- Under the goals of NASA’s exploration mission, ware and flight systems and matur ing technologies Ares V is a vital part of the cost-effective space evolved from powerful, proven Saturn rocket and transportation infrastructure being developed by space shuttle propulsion elements and knowledge. NASA Concept image of Ares V in Earth orbit. (NASA MSFC) The versatile, heavy-lifting Ares V is a two-stage, vertically- stacked launch vehicle. It can carry nearly 414,000 pounds (188 metric tons) to low-Earth orbit.
    [Show full text]
  • Black Hole Math Is Designed to Be Used As a Supplement for Teaching Mathematical Topics
    National Aeronautics and Space Administration andSpace Aeronautics National ole M a th B lack H i This collection of activities, updated in February, 2019, is based on a weekly series of space science problems distributed to thousands of teachers during the 2004-2013 school years. They were intended as supplementary problems for students looking for additional challenges in the math and physical science curriculum in grades 10 through 12. The problems are designed to be ‘one-pagers’ consisting of a Student Page, and Teacher’s Answer Key. This compact form was deemed very popular by participating teachers. The topic for this collection is Black Holes, which is a very popular, and mysterious subject among students hearing about astronomy. Students have endless questions about these exciting and exotic objects as many of you may realize! Amazingly enough, many aspects of black holes can be understood by using simple algebra and pre-algebra mathematical skills. This booklet fills the gap by presenting black hole concepts in their simplest mathematical form. General Approach: The activities are organized according to progressive difficulty in mathematics. Students need to be familiar with scientific notation, and it is assumed that they can perform simple algebraic computations involving exponentiation, square-roots, and have some facility with calculators. The assumed level is that of Grade 10-12 Algebra II, although some problems can be worked by Algebra I students. Some of the issues of energy, force, space and time may be appropriate for students taking high school Physics. For more weekly classroom activities about astronomy and space visit the NASA website, http://spacemath.gsfc.nasa.gov Add your email address to our mailing list by contacting Dr.
    [Show full text]
  • NASA Launch Services Manifest
    Launch Options - Future Options • Constellation Architecture • Commercial Alternatives – SpaceX – Orbital Sciences • EELV Options • DIRECT • Side-Mount Shuttle Derived • Space (or “Senate”) Launch System • Recent Developments © 2012 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu U N I V E R S I T Y O F U.S. Future Launch Options MARYLAND 1 ENAE 791 - Launch and Entry Vehicle Design Attribution • Slides shown are from the public record of the deliberations of the Augustine Commission (2009) • Full presentation packages available at http:// www.nasa.gov/ofces/hsf/meetings/index.html U N I V E R S I T Y O F U.S. Future Launch Options MARYLAND 2 ENAE 791 - Launch and Entry Vehicle Design Review of Human Spaceflight Plans Constellation Overview June 17, 2009 Doug Cooke www.nasa.gov Jeff Hanley Constellation Architecture Earth Departure Stage Altair Lunar Lander Orion Ares I Crew Exploration Crew Launch Vehicle Vehicle Ares V Cargo Launch Vehicle Constellation is an Integrated Architecture National Aeronautics and Space Administration 2 Key Exploration Objectives 1. Replace Space Shuttle capability, with Shuttle retirement in 2010 2. To ensure sustainability, development and operations costs must be minimized 3. Develop systems to serve as building blocks for human exploration of the solar system using the Moon as a test bed 4. Design future human spaceflight systems to be significantly safer than heritage systems 5. Provide crew transport to ISS by 2015, to the lunar surface for extended durations by 2020, and to Mars by TBD 6. Separate crew from cargo delivery to orbit 7. Maintain and grow existing national aerospace supplier base 8.
    [Show full text]
  • ASTROPHYSICS from the MOON Jack Burns
    ASTROPHYSICS FROM THE MOON Jack Burns LUNAR Lead Scientists: Center for Astrophysics & Space Astronomy J. Burns, Principal Investigator University of Colorado at Boulder E. Hallman, U. Colorado J. Lazio, NRL J. Hewitt, MIT C. Carilli, NRAO T. Murphy, UCSD D. Currie, U. Maryland S. Merkowitz, GSFC J. Kasper, CfA R. MacDowall, GSFC and D. Duncan (E/PO) J. Darling J. Stocke JILA Astrophysics Lunch Seminar September 26, 2008 National Space Exploration Policy, Authorized by Congress • Complete the International Space Station • Safely fly the Space Shuttle until 2010 • Develop and fly the Crew Exploration Vehicle (Orion) no later than 2014 • Return to the Moon no later than 2020 • Extend human presence across the solar system and beyond • Implement a sustained and affordable human and robotic program • Develop supporting innovative technologies, knowledge, and infrastructures • Promote international and commercial participation in exploration NASA Authorization Act of 2005 TheThe AdministratorAdministrator shallshall establishestablish aa programprogram toto developdevelop aa sustainedsustained humanhuman presencepresence onon thethe Moon,Moon, includingincluding aa robustrobust precursorprecursor programprogram toto promotepromote exploration,exploration, science,science, commercecommerce andand U.S.U.S. preeminencepreeminence inin space,space, andand asas aa steppingstepping stonestone toto futurefuture explorationexploration ofof MarsMars andand otherother destinations.destinations. ComponentsComponents of the Constellation of Program Program Constellation EarthEarth DepartureDeparture OrionOrion -- StageStage CrewCrew ExplorationExploration VehicleVehicle AresAres VV -- HeavyHeavy LiftLift LaunchLaunch VehicleVehicle LunarLunar LanderLander AresAres II -- CrewCrew LaunchLaunch VehicleVehicle Exploring the Cosmos From the Moon Comments from NRC Study (2007) • “Extraordinary radio-quiet of lunar farside” would be a “powerful tool to investigate the Dark Ages of the Universe … in highly redshifted signals from neutral hydrogen”.
    [Show full text]
  • Ares V Cargo Launch Vehicle
    National Aeronautics and Space Administration Constellation Program: America's Fleet of Next-Generation Launch Vehicles The Ares V Cargo Launch Vehicle Planning and early design are under way for being developed by NASA’s Constellation hardware, propulsion systems and associated Program to carry human explorers back to technologies for NASA’s Ares V cargo launch the moon, and then onward to Mars and other vehicle — the “heavy lifter” of America’s next- destinations in the solar system. generation space fleet. facts The Ares V effort includes multiple project Ares V will serve as NASA’s primary vessel for element teams at NASA centers and contract safe, reliable delivery of resources to space organizations around the nation, and is led — from large-scale hardware and materials by the Exploration Launch Projects Office for establishing a permanent moon base, to at NASA’s Marshall Space Flight Center in food, fresh water and other staples needed to Huntsville, Ala. These teams rely on nearly a extend a human presence beyond Earth orbit. half a century of NASA spaceflight experience and aerospace technology advances. Together, Under the goals of the Vision for Space they are developing new vehicle hardware Exploration, Ares V is a vital part of the cost- and flight systems and maturing technologies effective space transportation infrastructure evolved from powerful, reliable Apollo-era and space shuttle propulsion elements. NASA Concept image of Ares V in Earth orbit. (NASA/MSFC) www.nasa.gov The versatile, heavy-lifting Ares V is a two-stage, vertically stacked launch system. The launch vehicle can carry about 287,000 pounds to low Earth orbit and 143,000 pounds to the moon.
    [Show full text]
  • Ares V Cargo Launch Vehicle Will Work in Tandem with the Ares I Crew Launch Vehicle to Deliver the Power to Explore the Moon and Beyond
    National Aeronautics and Space Administration The Ares V Cargo Launch Vehicle will work in tandem with the Ares I Crew Launch Vehicle to deliver the power to explore the Moon and beyond. www.nasa.gov NASA’s Ares Projects — Ares V Cargo Launch Vehicle The Ares V will provide unprecedented capability to explore orbit by the Ares I. Orion will dock with Altair, and the Earth the Moon and establish a permanent outpost there in the Departure Stage will ignite again to send the coupled space- next decade. NASA is designing the Ares V to send more craft to the Moon. Once the astronauts arrive in lunar orbit, than 40 percent more mass to the Moon than the Apollo-era they will check out systems, transfer to Altair, and descend Saturn V rocket. That increase in payload mass, as well as to the Moon, while Orion remains in orbit. On the Moon, astro- Payload Shroud an increase in volume, will open the door to exciting new nauts will explore the terrain and conduct experiments. After (Exploded view) possibilities for exploration, science, and discovery. completing their mission, the crewmembers will return in Altair to lunar orbit and dock with Orion for the return to Earth. Altair Lunar Lander Ares V will work in tandem with the Ares I crew launch vehicle. By separating the crew and cargo rockets while sharing similar With a capability of sending more than 156,000 pounds to the Earth Departure propulsion elements — and by building on proven hardware Moon, the Ares V also is expected to be used in a fully auto- Stage while using modern engineering practices — NASA is building mated mode to deliver habitats, rovers, scientific equipment, LOX/LH2 One J-2X Engine a safe, reliable, cost-efficient transportation system for explo- and other supplies to the lunar outpost.
    [Show full text]