Supporting Information

Total Page:16

File Type:pdf, Size:1020Kb

Supporting Information Supporting Information The deubiquitinase USP38 promotes NHEJ repair through regulation of HDAC1 activity and regulates cancer cell response to genotoxic insults Yongfeng Yang1,2, Chuanzhen Yang1,2, Tingting Li3, Shuyu Yu1,2,Tingting Gan4, Jiazhi Hu4, Jun Cui5,6, and Xiaofeng Zheng1,2,* 1 State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China. 2Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, China. 3State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Institute of Basic Medical Sciences, Beijing, China. 4Department of Cell Biology, School of Life Sciences, Peking University, Beijing, China. 5Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China. 6Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University, Guangzhou, China. *To whom correspondence should be addressed. Xiaofeng Zheng, School of Life Sciences, Peking University, Beijing 100871, China. Tel: +86 10-6275-5712; Email: [email protected] Supplementary Materials and Methods: Antibodies and reagents Mouse monoclonal anti-Flag (F3165, RRID: AB_259529) antibodies, anti-HA (H9658, RRID: AB_260092) antibodies, and etoposide (E1383) were purchased from Sigma-Aldrich. Mouse monoclonal anti-Myc (M047-3, RRID: AB_591112), anti-histidine (D291–3, RRID: AB_10597733), and rabbit polyclonal anti-β-actin (PM053, RRID: AB_10598196) antibodies were purchased from MBL. Mouse monoclonal anti-H3 (BE3015) antibodies were purchased from EASYBIO. Mouse monoclonal anti-γH2AX (05–636, RRID: AB_309864) antibodies and MG132 (2772605) were purchased from Millipore. Mouse monoclonal anti-HDAC1 (sc-81598, RRID: AB_2118083) antibodies were purchased from Santa Cruz Biotechnology. Anti-USP38 antibodies (17767-1-AP, RRID: AB_2213383) were purchased from Proteintech. Monoclonal anti-ubiquitin (P4D1, RRID: AB_10998070) antibodies were purchased from ENZO. Anti- K48-linkage specific polyubiquitin (D9D5, RRID: AB_10859893) and anti-K63-linkage specific polyubiquitin (D7A11, RRID: AB_10827985) antibodies were purchased from Cell Signaling Technology. Anti-H3K56Ac polyclonal antibodies (PTM118) were purchased form PTM Bio. Anti-SIN3A polyclonal antibodies (A1577, RRID: AB_2763188), anti-MTA1 polyclonal antibodies (A16085, RRID: AB_2763526), and anti-RCOR1 polyclonal antibodies (A12845, RRID: AB_2759686) were purchased from ABclonal. LPS (055: B5) were purchased from Sigma-Aldrich. TGF-β (240-B), IL-4(204-IL) and IL-5(205-IL) were purchased from R&D Systems. Anti-δ dextran (mouse) was purchased form Fina Biosolutions. FITC Rat Anti- Mouse IgG1 (553443, RRID: AB_394862), FITC Rat Anti-Mouse IgG3 (553403, RRID: AB_394840), FITC Rat Anti-Mouse IgA (559354, RRID: AB_397235), PE-Cy™5 Anti-IgM PE (551079, RRID: AB_394036), Rat Anti-Mouse B220 (553089, RRID: AB_394619), FITC Rat Anti-Mouse CD43 (561856, RRID: AB_10895376), and APC Rat Anti-Mouse CD19 (561738, RRID: AB_10893995) were purchased from BD Biosciences. Plasmids The cDNA of USP38 was kindly provided by Dr. Lingqiang Zhang at the Beijing Institute of Radiation Medicine. USP38 WT, USP38 C454A (USP38 CA) and USP38C454A/H857A (USP38 CAHA) were constructed and cloned into the pcDNA3 Myc vector. HDAC1 was cloned into the pcDNA3 Flag vector. His-HDAC1 was amplified by PCR and cloned into the pET-28a vector. GST-USP38 was cloned into the pGEX-4T-1 vector. All plasmids were verified by DNA sequencing. Cell culture and transfection HEK293T, HeLa, A498 and 786-O cells were cultured in DMEM (Gibco) supplemented with 10% FBS (Gibco). USP38WT and USP38-/- MEF cells were cultured in DMEM (Gibco) supplemented with 10% FBS (Gibco) and 1× MEM Non-Essential Amino Acids (Gibco). HEK293T cells were transfected with PEI (Polyscience) according to the manufacturer’s instructions. HeLa cells were transfected with X-tremeGENE™ HP DNA Transfection Reagent according to the manufacturer’s instructions (Sigma). Generation of USP38-/- cell lines by CRISPR-Cas9 A paired-guide sgRNA CRISPR-Cas9 system was used as described previously (1). Briefly, three pairs of single-guide RNAs (Supplementary table S1) targeting different regions in the first exon of the human USP38 gene were designed and cloned into a lentiviral sgRNA vector containing the mCherry selection marker using the Golden Gate method (2). Next, cells were co-transfected with the sgRNA vector and Cas9 vector. After 48 h of transfection, mCherry- positive cells were selected by FACS (MOFLO, Cytomation). Single clones were obtained after 10 days of selection. The knockout efficiency was confirmed by immunoblotting. USP38 gene mutations were verified by PCR and sequencing. Generation of USP38 or HDAC1 knockdown cells by shRNA lentivirus shRNA oligos (Supplementary table S1) were cloned into the pLKO.1 plasmid and verified by sequencing. The shRNA pLKO.1 plasmid was transfected into HEK293T cells with the pLP1 and pLP2 packaging plasmids and the pLP/VSVG envelope plasmid. After 48 h of transfection, the viruses were collected and stored at -80°C. During transfection, the lentiviral particle solution (MOI: 108 pfu) was added to the cells with polybrene at a ratio of 1:1000. The cell media were changed to fresh media 48 hours after infection. To select infected cells, 1 μg/mL puromycin was added to the media until the USP38 or HDAC1 protein level was stably knocked down. The knockdown efficiency was confirmed by immunoblotting. IR treatment IR treatment was performed following procedures described previously (2,3). After treatment with irradiation at the indicated dose, cells were incubated at 37 °C for 1 h or 24 h. Mass spectrometry (MS) HEK293T cells were lysed in modified RIPA buffer, sonicated and precleared with protein G beads. The supernatants were incubated with anti-FLAG affinity beads at 4°C for 4 h and eluted with FLAG peptide. The eluates were precipitated with TCA and subjected for mass spectrometric analysis. The MS data were aligned with Human Reviewed Swiss-Port database by Proteome Discoverer 2.2 software. Proteins were considered as major hits (positive) when matching the following criteria: 1) not found in negative control group; 2) the Protein FDR Confidence is high (FDR<0.01); 3) peptides≥5. Co-immunoprecipitation (Co-IP) Cell lysate preparation, immunoprecipitation and immunoblotting were performed as described previously (2,3) with slightly modifications. Briefly, cells were lysed in modified RIPA buffer and sonicated. After preclearing with protein G beads, the supernatants were incubated with the indicated antibody or IgG at 4°C for 4 h or overnight, followed by incubation with 30 μL protein G beads for 3 h. Finally, the beads were washed 3 times using modified RIPA buffer and denatured with 2× SDS loading buffer. His-ubiquitin pulldown assay His-ubiquitin pulldown assays were performed following a method described in a previous study (4). Briefly, HEK293T cells were transfected with his-ubiquitin and the indicated plasmids. After 48 h, the cells were harvested and lysed in His-pulldown buffer. The lysate was incubated with 60 µl of Ni2+ beads for 4 h and then washed 4 times with wash buffer. The beads were denatured with 2× SDS loading buffer and ubiquitin was assessed using indicated antibodies. Clonogenic survival assay First, 150–750 cells were seeded in 6-well plates in triplicate. After 24 h, cells were cultured in medium containing a different concentration of etoposide for 1 h and washed twice with DMEM or treated with the indicated doses of IR. After 12 days, cells were washed with PBS, fixed in precooled methanol for 10 min at -20°C and stained with crystal violet (0.1% wt/vol) for 15 min. The number of clones was counted. The survival fraction was normalized to the number of untreated cells. NHEJ assays and homologous recombination (HR) assays NHEJ assays were performed following a procedure described previously (2,5). USP38WT and USP38-/- HEK293T cells were cotransfected with a linear pEGFP-Pem1- Ad2 plasmid digested with HindIII and a dsRED plasmid. For the HR assay, USP38WT and USP38-/- HEK293T cells were cotransfected with DR-GFP, an I-SceI expression vector, and a dsRED plasmid. At the indicated time after transfection (36 h for NHEJ assays and 48 h for HR assays), cells were harvested and washed with PBS. Green (EGFP) and red (dsRED) fluorescence was measured by FACS on an LSRFortessa instrument (BD Biosciences). The repair efficiency is given by calculating the percentage of EGFP and dsRED double-positive cells in dsRED positive cells. The results are normalized to those of the USP38WT cells. Immunofluorescence microscopy HeLa cells were transfected with the indicated plasmids using PEI and treated with 10 Gy IR or 20 μM etoposide. At 24 h after transfection, cells were collected and fixed in precooled methanol for 10 min at -20°C following a procedure described previously (4). Images were obtained using a confocal microscope (Zeiss LSM-710 NLO & DuoScan, Germany) with a 40× objective lens or 63× oil objective. Quantification analysis was performed using Imaris 7.6 software (Bitplane, UK). Neutral comet assays Comet assays were performed with the Single Cell Gel Electrophoresis Assay-kit (Trevigen). Briefly, cells were treated as indicated, trypsinized and counted. Approximately 1 × 105 cells were mixed with low-melting agarose at a 1:10 ratio (v/v), after which 70 μL of the resulting mixture was transferred onto Gel Bond film. Samples were incubated at 4°C in the dark for 30 min to solidify. Cells were lysed by incubation with lysis solution for 60 min. The slides were immersed in neutral electrophoresis buffer (100 mM Tris Base, pH 9.0, 300 mM sodium acetate) for 30 min, after which they were subjected to 21 volts for 45 min on a horizontal electrophoresis apparatus in neutral electrophoresis buffer, fixed in 70% (v/v) ethanol for 30 min and allowed to dry overnight. Cells were visualized with propidium iodide. Images were collected using a standard Olympus epifluorescence microscope. Analysis of comets was performed with Comet Score software (TriTek).
Recommended publications
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Supplemental Information
    Supplemental information Dissection of the genomic structure of the miR-183/96/182 gene. Previously, we showed that the miR-183/96/182 cluster is an intergenic miRNA cluster, located in a ~60-kb interval between the genes encoding nuclear respiratory factor-1 (Nrf1) and ubiquitin-conjugating enzyme E2H (Ube2h) on mouse chr6qA3.3 (1). To start to uncover the genomic structure of the miR- 183/96/182 gene, we first studied genomic features around miR-183/96/182 in the UCSC genome browser (http://genome.UCSC.edu/), and identified two CpG islands 3.4-6.5 kb 5’ of pre-miR-183, the most 5’ miRNA of the cluster (Fig. 1A; Fig. S1 and Seq. S1). A cDNA clone, AK044220, located at 3.2-4.6 kb 5’ to pre-miR-183, encompasses the second CpG island (Fig. 1A; Fig. S1). We hypothesized that this cDNA clone was derived from 5’ exon(s) of the primary transcript of the miR-183/96/182 gene, as CpG islands are often associated with promoters (2). Supporting this hypothesis, multiple expressed sequences detected by gene-trap clones, including clone D016D06 (3, 4), were co-localized with the cDNA clone AK044220 (Fig. 1A; Fig. S1). Clone D016D06, deposited by the German GeneTrap Consortium (GGTC) (http://tikus.gsf.de) (3, 4), was derived from insertion of a retroviral construct, rFlpROSAβgeo in 129S2 ES cells (Fig. 1A and C). The rFlpROSAβgeo construct carries a promoterless reporter gene, the β−geo cassette - an in-frame fusion of the β-galactosidase and neomycin resistance (Neor) gene (5), with a splicing acceptor (SA) immediately upstream, and a polyA signal downstream of the β−geo cassette (Fig.
    [Show full text]
  • WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT (51) International Patent Classification: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, C12Q 1/68 (2018.01) A61P 31/18 (2006.01) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, C12Q 1/70 (2006.01) HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, (21) International Application Number: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, PCT/US2018/056167 OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (22) International Filing Date: SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 16 October 2018 (16. 10.2018) TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, (30) Priority Data: UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, 62/573,025 16 October 2017 (16. 10.2017) US TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, ΓΕ , IS, IT, LT, LU, LV, (71) Applicant: MASSACHUSETTS INSTITUTE OF MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TECHNOLOGY [US/US]; 77 Massachusetts Avenue, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, Cambridge, Massachusetts 02139 (US).
    [Show full text]
  • Screen for Multi-SUMO–Binding Proteins Reveals a Multi-SIM–Binding Mechanism for Recruitment of the Transcriptional Regulator ZMYM2 to Chromatin
    Screen for multi-SUMO–binding proteins reveals a multi-SIM–binding mechanism for recruitment of the transcriptional regulator ZMYM2 to chromatin Elisa Aguilar-Martineza, Xi Chena, Aaron Webbera, A. Paul Moulda, Anne Seifertb, Ronald T. Hayb, and Andrew D. Sharrocksa,1 aFaculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom; and bCentre for Gene Regulation and Expression, University of Dundee, Dundee DD1 5EH, United Kingdom Edited by James L. Manley, Columbia University, New York, NY, and approved July 17, 2015 (received for review May 20, 2015) Protein SUMOylation has emerged as an important regulatory human proteins containing two or more motifs corresponding event, particularly in nuclear processes such as transcriptional to the extended negatively charged amino acid-dependent control and DNA repair. In this context, small ubiquitin-like modifier SUMOylation motif (NDSM) (13) Thus, there is a huge poten- (SUMO) often provides a binding platform for the recruitment of tial for widespread multi-SUMOylation of proteins to occur. proteins via their SUMO-interacting motifs (SIMs). Recent discoveries Indeed, several of these proteins have been shown to be point to an important role for multivalent SUMO binding through SUMOylated on multiple sites, including megakaryoblastic leu- multiple SIMs in the binding partner as exemplified by poly- kemia (translocation) 1 (MKL1) (14), CREB-binding protein SUMOylation acting as a binding platform for ubiquitin E3 ligases (CBP) (15), and PEA3/ETV4 (16). Furthermore, two recent such as ring finger protein 4. Here, we have investigated whether proteomic studies emphasize the potential for more widespread other types of protein are recruited through multivalent SUMO multi-SUMOylation as they found that a large proportion of all interactions.
    [Show full text]
  • Expression Profiling of RE1-Silencing Transcription Factor (REST), REST
    JBUON 2016; 21(4): 964-972 ISSN: 1107-0625, online ISSN: 2241-6293 • www.jbuon.com E-mail: [email protected] ORIGINAL ARTICLE Expression profiling of RE1-silencing transcription factor (REST), REST corepressor 1 (RCOR1), and Synapsin 1 (SYN1) genes in human gliomas Musteyde Yucebas1, Sunde Yilmaz Susluer1, Hasan Onur Caglar2, Tugce Balci1, Z. Ozlem Dogan Sigva1, Taner Akalin3, Nezih Oktar4, Tayfun Dalbasti4, Cigir Biray Avci1, Cumhur Gunduz1 1Ege University Medical Faculty, Department of Medical Biology, Bornova, Izmir; 2Ege University, Health Science Institute, Department of Stem Cell, Bornova, Izmir; 3Ege University Medical Faculty, Department of Pathology, Bornova, Izmir; 4Ege University, Medical Faculty, Department of Neurosurgery, Bornova, Izmir, Turkey Summary Purpose: The repressor element 1 (RE-1) silencing tran- Results: Means of relative expression for REST were as scription factor (REST) is a transcription factor which re- follows: 0.7898, 0.7606, and 0.7318 in DA, AO, and GBM presses the expression of neuronal differentiation-related groups, respectively. For RCOR1, expression means in DA, genes including SYN1 gene. CoREST, encoded by RCOR1 AO, and GBM groups were 0.7203, 0.7334, and 0.7230, re- gene, binds to the REST protein for remodeling of chroma- spectively. SYN1 expression means were as follows: 0.3936, tin structure. Although there is a relation among REST, 0.3192, and 0.3197 in DA, AO, and GBM groups, respective- RCOR1, and SYN1 genes, the role of these genes in glioma ly. Neither gain nor loss of copy numbers were detected for tumors is still unclear. In this study, expressions of REST, REST and RCOR1 genes in all groups.
    [Show full text]
  • Whole Transcriptomic Expression Differences in EBV Immortalized Versus Primary B-Cells
    W&M ScholarWorks Undergraduate Honors Theses Theses, Dissertations, & Master Projects 12-2010 Whole Transcriptomic Expression Differences in EBV Immortalized versus Primary B-Cells Dolores Huberts College of William and Mary Follow this and additional works at: https://scholarworks.wm.edu/honorstheses Part of the Biology Commons Recommended Citation Huberts, Dolores, "Whole Transcriptomic Expression Differences in EBV Immortalized versus Primary B- Cells" (2010). Undergraduate Honors Theses. Paper 347. https://scholarworks.wm.edu/honorstheses/347 This Honors Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Undergraduate Honors Theses by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Whole Transcriptomic Expression Differences in EBV Immortalized versus Primary B-Cells A thesis submitted in partial fulfillment of the requirement for the degree of Bachelor of Science with Honors in Biology from the College of William and Mary in Virginia By Dolores Huberts Accepted for Honors ________________________________________ Lizabeth A. Allison, Director ________________________________________ Matthew Wawersik ________________________________________ Drew LaMar ________________________________________ Beverly Sher Williamsburg, Virginia December 17, 2010 ABSTRACT The Epstein–Barr Virus (EBV) is a human gamma herpes virus that infects more than 90% of the human population worldwide. It is commonly known in the US as the cause of Infectious Mononucleosis, and around the world as the cause of nasopharyngeal carcinoma and malignant lymphomas such as non-Hodgkin lymphoma, endemic Burkett’s lymphoma and Hodgkin lymphoma. Additionally, the EBV is used to immortalize cells to create cell lines for in-vitro studies.
    [Show full text]
  • Characterization of the Zinc Finger Proteins ZMYM2 and ZMYM4 As
    www.nature.com/scientificreports OPEN Characterization of the zinc fnger proteins ZMYM2 and ZMYM4 as novel B-MYB binding proteins Hannah Cibis, Abhiruchi Biyanee, Wolfgang Dörner, Henning D. Mootz & Karl-Heinz Klempnauer✉ B-MYB, a highly conserved member of the MYB transcription factor family, is expressed ubiquitously in proliferating cells and plays key roles in important cell cycle-related processes, such as control of G2/M- phase transcription, cytokinesis, G1/S-phase progression and DNA-damage reponse. Deregulation of B-MYB function is characteristic of several types of tumor cells, underlining its oncogenic potential. To gain a better understanding of the functions of B-MYB we have employed afnity purifcation coupled to mass spectrometry to discover novel B-MYB interacting proteins. Here we have identifed the zinc-fnger proteins ZMYM2 and ZMYM4 as novel B-MYB binding proteins. ZMYM4 is a poorly studied protein whose initial characterization reported here shows that it is highly SUMOylated and that its interaction with B-MYB is stimulated upon induction of DNA damage. Unlike knockdown of B-MYB, which causes G2/M arrest and defective cytokinesis in HEK293 cells, knockdown of ZMYM2 or ZMYM4 have no obvious efects on the cell cycle of these cells. By contrast, knockdown of ZMYM2 strongly impaired the G1/S-phase progression of HepG2 cells, suggesting that ZMYM2, like B-MYB, is required for entry into S-phase in these cells. Overall, our work identifes two novel B-MYB binding partners with possible functions in the DNA-damage response and the G1/S-transition. Te highly conserved MYB proto-oncogene family member B-MYB is ubiquitously expressed in proliferat- ing cells where it acts as an essential cell cycle-regulated transcription factor1,2.
    [Show full text]
  • VHL Inactivation Without Hypoxia Is Sufficient to Achieve Genome Hypermethylation
    bioRxiv preprint doi: https://doi.org/10.1101/093310; this version posted December 12, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. VHL inactivation without hypoxia is sufficient to achieve genome hypermethylation Artem V. Artemov1*, Nadezhda Zhigalova1, Svetlana Zhenilo1, Alexander M. Mazur1 and Egor B. Prokhortchouk1 1 Institute of Bioengineering, Research Center of Biotechnology RAS, Moscow, Russian Federation * [email protected] Abstract VHL inactivation is a key oncogenic event for renal carcinomas. In normoxia, VHL suppresses HIF1a-mediated response to hypoxia. It has previously been shown that hypoxic conditions inhibit TET-dependent hydroxymethylation of cytosines and cause DNA hypermethylation at gene promoters. In this work, we performed VHL inactivation by CRISPR/Cas9 and studied its effects on gene expression and DNA methylation. We showed that even without hypoxia, VHL inactivation leads to hypermethylation of the genome which mainly occurred in AP-1 and TRIM28 binding sites. We also observed promoter hypermethylation of several transcription regulators associated with decreased gene expression. Keywords DNA methylation; VHL; hypoxia; HIF1a; JUN; FOS Introduction Sequencing of cancer genomes was initially aimed to find cancer drivers, or genes, that, once mutated, give a selective advantage to a cancer cell, such as increased proliferation, suppression of apoptosis or the ability to avoid immune response. VHL is a key oncosuppressor gene for kidney cancer. Inactivation of the VHL gene is the most common event in renal carcinomas, accounting for 50{70% of sporadic cases (Scelo et al. 2014; Cancer Genome Atlas Research Network 2013; Thomas et al.
    [Show full text]
  • REST Upregulates Gremlin to Modulate Diffuse Intrinsic Pontine Glioma Vasculature
    www.impactjournals.com/oncotarget/ Oncotarget, 2018, Vol. 9, (No. 4), pp: 5233-5250 Research Paper REST upregulates gremlin to modulate diffuse intrinsic pontine glioma vasculature Shavali Shaik1,*, Bridget Kennis1,*, Shinji Maegawa1, Keri Schadler1, Yang Yanwen1, Keri Callegari1, Rishi R. Lulla3, Stewart Goldman3, Javad Nazarian4, Veena Rajaram5, Jason Fangusaro3 and Vidya Gopalakrishnan1,2,6,7 1Department of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, Texas, USA 2Department of Molecular and Cellular Oncology, University of Texas, MD Anderson Cancer Center, Houston, Texas, USA 3Department of Pediatrics, Northwestern Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA 4Department of Integrative Systems Biology, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA 5Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA 6Center for Cancer Epigenetics, University of Texas, MD Anderson Cancer Center, Houston, Texas, USA 7Brain Tumor Center, University of Texas, MD Anderson Cancer Center, Houston, Texas, USA *These authors have contributed equally to this work Correspondence to: Vidya Gopalakrishnan, email: [email protected] Keywords: DIPG; REST; vasculature; gremlin; VEGFR2 Received: August 29, 2017 Accepted: December 16, 2017 Published: December 28, 2017 Copyright: Shaik et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Diffuse intrinsic pontine glioma (DIPG) is a highly aggressive glial tumor that occurs in children. The extremely poor median and 5-year survival in children afflicted with DIPG highlights the need for novel biology-driven therapeutics.
    [Show full text]
  • ZNF750 Interacts with KLF4 and RCOR1, KDM1A, and CTBP1/2 Chromatin Regulators to Repress Epidermal Progenitor Genes and Induce Differentiation Genes
    Downloaded from genesdev.cshlp.org on September 27, 2021 - Published by Cold Spring Harbor Laboratory Press ZNF750 interacts with KLF4 and RCOR1, KDM1A, and CTBP1/2 chromatin regulators to repress epidermal progenitor genes and induce differentiation genes Lisa D. Boxer,1,2 Brook Barajas,1 Shiying Tao,1 Jiajing Zhang,1 and Paul A. Khavari1,3 1Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California 94305, USA; 2Department of Biology, Stanford University, Stanford, California 94305, USA; 3Veterans Affairs Palo Alto Healthcare System, Palo Alto, California 94304, USA ZNF750 controls epithelial homeostasis by inhibiting progenitor genes while inducing differentiation genes, a role underscored by pathogenic ZNF750 mutations in cancer and psoriasis. How ZNF750 accomplishes these dual gene regulatory impacts is unknown. Here, we characterized ZNF750 as a transcription factor that binds both the progenitor and differentiation genes that it controls at a CCNNAGGC DNA motif. ZNF750 interacts with the pluripotency transcription factor KLF4 and chromatin regulators RCOR1, KDM1A, and CTBP1/2 through conserved PLNLS sequences. ChIP-seq (chromatin immunoprecipitation [ChIP] followed by high-throughput sequencing) and gene depletion revealed that KLF4 colocalizes ~10 base pairs from ZNF750 at differentiation target genes to facilitate their activation but is unnecessary for ZNF750-mediated progenitor gene repression. In contrast, KDM1A colocalizes with ZNF750 at progenitor genes and facilitates their repression but is unnecessary for ZNF750-driven differentiation. ZNF750 thus controls differentiation in concert with RCOR1 and CTBP1/2 by acting with either KDM1A to repress progenitor genes or KLF4 to induce differentiation genes. [Keywords: stem cell; differentiation; ZNF750; KLF4; chromatin regulator] Supplemental material is available for this article.
    [Show full text]
  • NRF1) Coordinates Changes in the Transcriptional and Chromatin Landscape Affecting Development and Progression of Invasive Breast Cancer
    Florida International University FIU Digital Commons FIU Electronic Theses and Dissertations University Graduate School 11-7-2018 Decipher Mechanisms by which Nuclear Respiratory Factor One (NRF1) Coordinates Changes in the Transcriptional and Chromatin Landscape Affecting Development and Progression of Invasive Breast Cancer Jairo Ramos [email protected] Follow this and additional works at: https://digitalcommons.fiu.edu/etd Part of the Clinical Epidemiology Commons Recommended Citation Ramos, Jairo, "Decipher Mechanisms by which Nuclear Respiratory Factor One (NRF1) Coordinates Changes in the Transcriptional and Chromatin Landscape Affecting Development and Progression of Invasive Breast Cancer" (2018). FIU Electronic Theses and Dissertations. 3872. https://digitalcommons.fiu.edu/etd/3872 This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact [email protected]. FLORIDA INTERNATIONAL UNIVERSITY Miami, Florida DECIPHER MECHANISMS BY WHICH NUCLEAR RESPIRATORY FACTOR ONE (NRF1) COORDINATES CHANGES IN THE TRANSCRIPTIONAL AND CHROMATIN LANDSCAPE AFFECTING DEVELOPMENT AND PROGRESSION OF INVASIVE BREAST CANCER A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in PUBLIC HEALTH by Jairo Ramos 2018 To: Dean Tomás R. Guilarte Robert Stempel College of Public Health and Social Work This dissertation, Written by Jairo Ramos, and entitled Decipher Mechanisms by Which Nuclear Respiratory Factor One (NRF1) Coordinates Changes in the Transcriptional and Chromatin Landscape Affecting Development and Progression of Invasive Breast Cancer, having been approved in respect to style and intellectual content, is referred to you for judgment.
    [Show full text]
  • Than a Corepressor: the Role of Corest Proteins in Neurodevelopment
    Review Development More than a Corepressor: The Role of CoREST Proteins in Neurodevelopment Simon Maksour,1,2 Lezanne Ooi,1,3 and Mirella Dottori1,2 https://doi.org/10.1523/ENEURO.0337-19.2020 1Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia, 2School of Medicine, University of Wollongong, Wollongong, New South Wales 2522, Australia, and 3School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia Abstract The molecular mechanisms governing normal neurodevelopment are tightly regulated by the action of tran- scription factors. Repressor element 1 (RE1) silencing transcription factor (REST) is widely documented as a regulator of neurogenesis that acts by recruiting corepressor proteins and repressing neuronal gene expres- sion in non-neuronal cells. The REST corepressor 1 (CoREST1), CoREST2, and CoREST3 are best described for their role as part of the REST complex. However, recent evidence has shown the proteins have the ability to repress expression of distinct target genes in a REST-independent manner. These findings indicate that each CoREST paralogue may have distinct and critical roles in regulating neurodevelopment and are more than simply “REST corepressors,” whereby they act as independent repressors orchestrating biological proc- esses during neurodevelopment. Key words: CoREST; differentiation; gene expression; neurodevelopment; REST; transcription factor Significance Statement The molecular mechanisms governing normal development of the brain are yet to be fully elucidated. The regulation of gene expression by transcription factors plays a significant role in the specification and matu- ration of neurons and glia. Repressor element 1 (RE1) silencing transcription factor (REST) has been well characterized as a transcriptional regulator of neurogenesis through the formation of a complex with the REST corepressor (CoREST) proteins.
    [Show full text]