Molecular Functions of Multi-SUMO- Binding Protein Complexes

Total Page:16

File Type:pdf, Size:1020Kb

Molecular Functions of Multi-SUMO- Binding Protein Complexes Molecular Functions of Multi-SUMO- Binding Protein Complexes A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy in the Faculty of Biology, Medicine and Health 2019 Rotem Salmi-Leshem Division of Molecular and Cellular Function Table of contents Table of contents ........................................................................................................ 2 List of figures .............................................................................................................. 6 List of tables ............................................................................................................... 7 List of supplementary data ......................................................................................... 7 Abbreviations ............................................................................................................. 8 Abstract.................................................................................................................... 11 Declaration ............................................................................................................... 12 Copyright statement ................................................................................................. 12 Acknowledgments .................................................................................................... 13 1 Introduction ...................................................................................................... 14 1.1 Chromatin and gene regulation ............................................................................ 14 1.2 Transcription factors and coregulators .................................................................. 19 1.3 SUMO - Small ubiquitin-like modifier .................................................................... 21 1.3.1 Introduction to SUMO ........................................................................................................... 21 1.3.2 Genome wide SUMOylation .................................................................................................. 22 1.3.3 SUMO Structure and functionality: ....................................................................................... 22 1.3.4 Reversible SUMOylation ........................................................................................................ 25 1.3.5 SUMO consensus binding sites .............................................................................................. 27 1.3.6 SUMO interacting motifs (SIMs) ............................................................................................ 27 1.3.7 Poly-SUMO chains ................................................................................................................. 28 1.3.8 Multi-SUMOylation ............................................................................................................... 29 1.3.9 Consequences of SUMOylation ............................................................................................. 31 1.4 The Five Friends of Methylated CHTOP ................................................................. 32 1.4.1 The 5FMC complex is recruited to multi-SUMOylated targets ............................................. 32 1.4.2 The 5FMC complex members ................................................................................................ 33 1.4.3 5FMC complex members involvement in other complexes .................................................. 34 1.4.4 5FMC complex and transcription regulation ......................................................................... 35 1.5 Aims .................................................................................................................... 38 1.5.1 Aim 1: Identify and characterise proteins recruited to different multi-SUMOylated targets. .. ............................................................................................................................................... 38 1.5.2 Aim 2: How does the 5FMC complex affect transcription? ................................................... 39 1.5.3 Aim 3: What is the interplay between the 5FMC complex and SUMO on chromatin? ......... 39 2 Materials and methods ..................................................................................... 40 2.1 Bacterial cloning methods .................................................................................... 40 2.1.1 Bacterial transformation ....................................................................................................... 40 2.1.2 Glycerol stock preparation .................................................................................................... 40 2.1.3 Plasmid DNA purification ...................................................................................................... 42 2.1.4 Restriction digests ................................................................................................................. 42 2 2.1.5 Ligation reactions .................................................................................................................. 42 2.1.6 Plasmid DNA mutagenesis ..................................................................................................... 42 2.1.7 Plasmid sequencing ............................................................................................................... 44 2.2 Protein expression methods ................................................................................. 44 2.2.1 Bacterial protein expression .................................................................................................. 44 2.2.2 Bacterial protein purification ................................................................................................ 45 2.2.3 In-Vitro protein production ................................................................................................... 45 2.3 Mammalian cell extraction methods ..................................................................... 45 2.3.1 Total cell protein lysates........................................................................................................ 45 2.3.2 Nuclear extracts .................................................................................................................... 45 2.3.3 DNA extraction ...................................................................................................................... 46 2.3.4 RNA extraction ...................................................................................................................... 47 2.4 GST pull down assays ........................................................................................... 47 2.5 Mass-spectrometry .............................................................................................. 47 2.6 Immunoblotting ................................................................................................... 48 2.7 Polymerase chain reaction (PCR) .......................................................................... 50 2.7.1 Amplification of DNA fragments for cloning ......................................................................... 50 2.7.2 Whole plasmid PCR for site directed mutagenesis................................................................ 50 2.7.3 Colony PCR ............................................................................................................................ 51 2.7.4 qPCR ...................................................................................................................................... 51 2.7.5 RT-qPCR ................................................................................................................................. 52 2.8 Immunoprecipitation ........................................................................................... 54 2.9 Chromatin immunoprecipitation .......................................................................... 55 2.9.1 Sonication efficiency test ...................................................................................................... 55 2.9.2 SUMO2/3 ChIP with protein A beads .................................................................................... 55 2.10 RNA-seq ............................................................................................................... 56 2.11 Mammalian cell culture methods ......................................................................... 56 2.11.1 Sub-culturing cell lines ...................................................................................................... 56 2.11.2 Freezing and thawing cells ................................................................................................ 57 2.11.3 Cell transfection ................................................................................................................ 57 2.11.4 EGF stimulation of cells .................................................................................................... 59 2.12 Clustered, regularly interspaced, short palindromic repeats (CRISPR) .................... 59 2.12.1 Construct and homology arm design ................................................................................ 59 2.12.2 Cell culture and nucleofection .......................................................................................... 62 2.12.3 Homologous recombination validation ...........................................................................
Recommended publications
  • Analysis of Trans Esnps Infers Regulatory Network Architecture
    Analysis of trans eSNPs infers regulatory network architecture Anat Kreimer Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2014 © 2014 Anat Kreimer All rights reserved ABSTRACT Analysis of trans eSNPs infers regulatory network architecture Anat Kreimer eSNPs are genetic variants associated with transcript expression levels. The characteristics of such variants highlight their importance and present a unique opportunity for studying gene regulation. eSNPs affect most genes and their cell type specificity can shed light on different processes that are activated in each cell. They can identify functional variants by connecting SNPs that are implicated in disease to a molecular mechanism. Examining eSNPs that are associated with distal genes can provide insights regarding the inference of regulatory networks but also presents challenges due to the high statistical burden of multiple testing. Such association studies allow: simultaneous investigation of many gene expression phenotypes without assuming any prior knowledge and identification of unknown regulators of gene expression while uncovering directionality. This thesis will focus on such distal eSNPs to map regulatory interactions between different loci and expose the architecture of the regulatory network defined by such interactions. We develop novel computational approaches and apply them to genetics-genomics data in human. We go beyond pairwise interactions to define network motifs, including regulatory modules and bi-fan structures, showing them to be prevalent in real data and exposing distinct attributes of such arrangements. We project eSNP associations onto a protein-protein interaction network to expose topological properties of eSNPs and their targets and highlight different modes of distal regulation.
    [Show full text]
  • Isoform-Specific Monobody Inhibitors of Small Ubiquitin-Related Modifiers Engineered Using Structure-Guided Library Design
    Isoform-specific monobody inhibitors of small ubiquitin-related modifiers engineered using structure-guided library design Ryan N. Gilbretha, Khue Truongb, Ikenna Madub, Akiko Koidea, John B. Wojcika, Nan-Sheng Lia, Joseph A. Piccirillia,c, Yuan Chenb, and Shohei Koidea,1 aDepartment of Biochemistry and Molecular Biology, and cDepartment of Chemistry, University of Chicago, 929 East 57th Street, Chicago, IL 60637; and bDepartment of Molecular Medicine, Beckman Research Institute of the City of Hope, 1450 East Duarte Road, Duarte, CA 91010 Edited by David Baker, University of Washington, Seattle, WA, and approved March 16, 2011 (received for review February 10, 2011) Discriminating closely related molecules remains a major challenge which SUMOylation alters protein function appears to be in the engineering of binding proteins and inhibitors. Here we through SUMO-mediated interactions with other proteins con- report the development of highly selective inhibitors of small ubi- taining a short peptide motif known as a SUMO-interacting motif quitin-related modifier (SUMO) family proteins. SUMOylation is (SIM) (4, 7, 8). involved in the regulation of diverse cellular processes. Functional There are few inhibitors of SUMO/SIM interactions, a defi- differences between two major SUMO isoforms in humans, SUMO1 ciency that limits our ability to finely dissect SUMO biology. In and SUMO2∕3, are thought to arise from distinct interactions the only reported example of such an inhibitor, a SIM-containing mediated by each isoform with other proteins containing SUMO- linear peptide was used to inhibit SUMO/SIM interactions, estab- interacting motifs (SIMs). However, the roles of such isoform- lishing their importance in coordinating DNA repair by nonho- specific interactions are largely uncharacterized due in part to the mologous end joining (9).
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Supplemental Information
    Supplemental information Dissection of the genomic structure of the miR-183/96/182 gene. Previously, we showed that the miR-183/96/182 cluster is an intergenic miRNA cluster, located in a ~60-kb interval between the genes encoding nuclear respiratory factor-1 (Nrf1) and ubiquitin-conjugating enzyme E2H (Ube2h) on mouse chr6qA3.3 (1). To start to uncover the genomic structure of the miR- 183/96/182 gene, we first studied genomic features around miR-183/96/182 in the UCSC genome browser (http://genome.UCSC.edu/), and identified two CpG islands 3.4-6.5 kb 5’ of pre-miR-183, the most 5’ miRNA of the cluster (Fig. 1A; Fig. S1 and Seq. S1). A cDNA clone, AK044220, located at 3.2-4.6 kb 5’ to pre-miR-183, encompasses the second CpG island (Fig. 1A; Fig. S1). We hypothesized that this cDNA clone was derived from 5’ exon(s) of the primary transcript of the miR-183/96/182 gene, as CpG islands are often associated with promoters (2). Supporting this hypothesis, multiple expressed sequences detected by gene-trap clones, including clone D016D06 (3, 4), were co-localized with the cDNA clone AK044220 (Fig. 1A; Fig. S1). Clone D016D06, deposited by the German GeneTrap Consortium (GGTC) (http://tikus.gsf.de) (3, 4), was derived from insertion of a retroviral construct, rFlpROSAβgeo in 129S2 ES cells (Fig. 1A and C). The rFlpROSAβgeo construct carries a promoterless reporter gene, the β−geo cassette - an in-frame fusion of the β-galactosidase and neomycin resistance (Neor) gene (5), with a splicing acceptor (SA) immediately upstream, and a polyA signal downstream of the β−geo cassette (Fig.
    [Show full text]
  • Análise Integrativa De Perfis Transcricionais De Pacientes Com
    UNIVERSIDADE DE SÃO PAULO FACULDADE DE MEDICINA DE RIBEIRÃO PRETO PROGRAMA DE PÓS-GRADUAÇÃO EM GENÉTICA ADRIANE FEIJÓ EVANGELISTA Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas Ribeirão Preto – 2012 ADRIANE FEIJÓ EVANGELISTA Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas Tese apresentada à Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo para obtenção do título de Doutor em Ciências. Área de Concentração: Genética Orientador: Prof. Dr. Eduardo Antonio Donadi Co-orientador: Prof. Dr. Geraldo A. S. Passos Ribeirão Preto – 2012 AUTORIZO A REPRODUÇÃO E DIVULGAÇÃO TOTAL OU PARCIAL DESTE TRABALHO, POR QUALQUER MEIO CONVENCIONAL OU ELETRÔNICO, PARA FINS DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE. FICHA CATALOGRÁFICA Evangelista, Adriane Feijó Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas. Ribeirão Preto, 2012 192p. Tese de Doutorado apresentada à Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo. Área de Concentração: Genética. Orientador: Donadi, Eduardo Antonio Co-orientador: Passos, Geraldo A. 1. Expressão gênica – microarrays 2. Análise bioinformática por module maps 3. Diabetes mellitus tipo 1 4. Diabetes mellitus tipo 2 5. Diabetes mellitus gestacional FOLHA DE APROVAÇÃO ADRIANE FEIJÓ EVANGELISTA Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas.
    [Show full text]
  • WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT (51) International Patent Classification: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, C12Q 1/68 (2018.01) A61P 31/18 (2006.01) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, C12Q 1/70 (2006.01) HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, (21) International Application Number: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, PCT/US2018/056167 OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (22) International Filing Date: SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 16 October 2018 (16. 10.2018) TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, (30) Priority Data: UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, 62/573,025 16 October 2017 (16. 10.2017) US TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, ΓΕ , IS, IT, LT, LU, LV, (71) Applicant: MASSACHUSETTS INSTITUTE OF MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TECHNOLOGY [US/US]; 77 Massachusetts Avenue, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, Cambridge, Massachusetts 02139 (US).
    [Show full text]
  • Supporting Information
    Supporting Information The deubiquitinase USP38 promotes NHEJ repair through regulation of HDAC1 activity and regulates cancer cell response to genotoxic insults Yongfeng Yang1,2, Chuanzhen Yang1,2, Tingting Li3, Shuyu Yu1,2,Tingting Gan4, Jiazhi Hu4, Jun Cui5,6, and Xiaofeng Zheng1,2,* 1 State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China. 2Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, China. 3State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Institute of Basic Medical Sciences, Beijing, China. 4Department of Cell Biology, School of Life Sciences, Peking University, Beijing, China. 5Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China. 6Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University, Guangzhou, China. *To whom correspondence should be addressed. Xiaofeng Zheng, School of Life Sciences, Peking University, Beijing 100871, China. Tel: +86 10-6275-5712; Email: [email protected] Supplementary Materials and Methods: Antibodies and reagents Mouse monoclonal anti-Flag (F3165, RRID: AB_259529) antibodies, anti-HA (H9658, RRID: AB_260092) antibodies, and etoposide (E1383) were purchased from Sigma-Aldrich. Mouse monoclonal anti-Myc (M047-3, RRID: AB_591112), anti-histidine (D291–3, RRID: AB_10597733), and rabbit polyclonal anti-β-actin (PM053, RRID: AB_10598196) antibodies were purchased from MBL. Mouse monoclonal anti-H3 (BE3015) antibodies were purchased from EASYBIO. Mouse monoclonal anti-γH2AX (05–636, RRID: AB_309864) antibodies and MG132 (2772605) were purchased from Millipore. Mouse monoclonal anti-HDAC1 (sc-81598, RRID: AB_2118083) antibodies were purchased from Santa Cruz Biotechnology.
    [Show full text]
  • Supplementary Materials
    Supplementary materials Supplementary Table S1: MGNC compound library Ingredien Molecule Caco- Mol ID MW AlogP OB (%) BBB DL FASA- HL t Name Name 2 shengdi MOL012254 campesterol 400.8 7.63 37.58 1.34 0.98 0.7 0.21 20.2 shengdi MOL000519 coniferin 314.4 3.16 31.11 0.42 -0.2 0.3 0.27 74.6 beta- shengdi MOL000359 414.8 8.08 36.91 1.32 0.99 0.8 0.23 20.2 sitosterol pachymic shengdi MOL000289 528.9 6.54 33.63 0.1 -0.6 0.8 0 9.27 acid Poricoic acid shengdi MOL000291 484.7 5.64 30.52 -0.08 -0.9 0.8 0 8.67 B Chrysanthem shengdi MOL004492 585 8.24 38.72 0.51 -1 0.6 0.3 17.5 axanthin 20- shengdi MOL011455 Hexadecano 418.6 1.91 32.7 -0.24 -0.4 0.7 0.29 104 ylingenol huanglian MOL001454 berberine 336.4 3.45 36.86 1.24 0.57 0.8 0.19 6.57 huanglian MOL013352 Obacunone 454.6 2.68 43.29 0.01 -0.4 0.8 0.31 -13 huanglian MOL002894 berberrubine 322.4 3.2 35.74 1.07 0.17 0.7 0.24 6.46 huanglian MOL002897 epiberberine 336.4 3.45 43.09 1.17 0.4 0.8 0.19 6.1 huanglian MOL002903 (R)-Canadine 339.4 3.4 55.37 1.04 0.57 0.8 0.2 6.41 huanglian MOL002904 Berlambine 351.4 2.49 36.68 0.97 0.17 0.8 0.28 7.33 Corchorosid huanglian MOL002907 404.6 1.34 105 -0.91 -1.3 0.8 0.29 6.68 e A_qt Magnogrand huanglian MOL000622 266.4 1.18 63.71 0.02 -0.2 0.2 0.3 3.17 iolide huanglian MOL000762 Palmidin A 510.5 4.52 35.36 -0.38 -1.5 0.7 0.39 33.2 huanglian MOL000785 palmatine 352.4 3.65 64.6 1.33 0.37 0.7 0.13 2.25 huanglian MOL000098 quercetin 302.3 1.5 46.43 0.05 -0.8 0.3 0.38 14.4 huanglian MOL001458 coptisine 320.3 3.25 30.67 1.21 0.32 0.9 0.26 9.33 huanglian MOL002668 Worenine
    [Show full text]
  • Progress in the Discovery of Small Molecule Modulators of Desumoylation
    Curr. Issues Mol. Biol. (2020) 35: 17-34. Progress in the Discovery of Small Molecule Modulators of DeSUMOylation Shiyao Chen, Duoling Dong, Weixiang Xin and Huchen Zhou* School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China. *Correspondence: [email protected] htps://doi.org/10.21775/cimb.035.017 Abstract protein–protein interactions, gene transcription, SUMOylation and DeSUMOylation are reversible genome integrity, and DNA replication and repair protein post-translational modifcation (PTM) (Wilkinson and Henley, 2010; Vierstra, 2012; processes involving small ubiquitin-like modifer Bailey et al., 2016). In 1995, Meluh and Koshland (SUMO) proteins. Tese processes have indis- (1995) identifed Smt3 in Saccharomyces cerevi- pensable roles in various cellular processes, such siae, which is the earliest report within this fled. as subcellular localization, gene transcription, and Two years later, based on the sequence similarity DNA replication and repair. Over the past decade, between ubiquitin and a new 11.5-kDa protein, increasing atention has been given to SUMO- ubiquitin/SMT3, the name SUMO was formally related pathways as potential therapeutic targets. proposed for the frst time (Mahajan et al., 1997). Te Sentrin/SUMO-specifc protease (SENP), Although SUMO modifcation is closely which is responsible for deSUMOylation, has related to the progression of various diseases, such been proposed as a potential therapeutic target as cancers and cardiac disorders, it has aroused in the treatment of cancers and cardiac disorders. increasing atention as a potential therapeutic target Unfortunately, no SENP inhibitor has yet reached in recent years, especially concerning the Sentrin/ clinical trials. In this review, we focus on advances SUMO-specifc protease (SENP), which is the key in the development of SENP inhibitors in the past regulator of deSUMOylation.
    [Show full text]
  • Analysis of the Indacaterol-Regulated Transcriptome in Human Airway
    Supplemental material to this article can be found at: http://jpet.aspetjournals.org/content/suppl/2018/04/13/jpet.118.249292.DC1 1521-0103/366/1/220–236$35.00 https://doi.org/10.1124/jpet.118.249292 THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS J Pharmacol Exp Ther 366:220–236, July 2018 Copyright ª 2018 by The American Society for Pharmacology and Experimental Therapeutics Analysis of the Indacaterol-Regulated Transcriptome in Human Airway Epithelial Cells Implicates Gene Expression Changes in the s Adverse and Therapeutic Effects of b2-Adrenoceptor Agonists Dong Yan, Omar Hamed, Taruna Joshi,1 Mahmoud M. Mostafa, Kyla C. Jamieson, Radhika Joshi, Robert Newton, and Mark A. Giembycz Departments of Physiology and Pharmacology (D.Y., O.H., T.J., K.C.J., R.J., M.A.G.) and Cell Biology and Anatomy (M.M.M., R.N.), Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada Received March 22, 2018; accepted April 11, 2018 Downloaded from ABSTRACT The contribution of gene expression changes to the adverse and activity, and positive regulation of neutrophil chemotaxis. The therapeutic effects of b2-adrenoceptor agonists in asthma was general enriched GO term extracellular space was also associ- investigated using human airway epithelial cells as a therapeu- ated with indacaterol-induced genes, and many of those, in- tically relevant target. Operational model-fitting established that cluding CRISPLD2, DMBT1, GAS1, and SOCS3, have putative jpet.aspetjournals.org the long-acting b2-adrenoceptor agonists (LABA) indacaterol, anti-inflammatory, antibacterial, and/or antiviral activity. Numer- salmeterol, formoterol, and picumeterol were full agonists on ous indacaterol-regulated genes were also induced or repressed BEAS-2B cells transfected with a cAMP-response element in BEAS-2B cells and human primary bronchial epithelial cells by reporter but differed in efficacy (indacaterol $ formoterol .
    [Show full text]
  • The Function and Evolution of C2H2 Zinc Finger Proteins and Transposons
    The function and evolution of C2H2 zinc finger proteins and transposons by Laura Francesca Campitelli A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Department of Molecular Genetics University of Toronto © Copyright by Laura Francesca Campitelli 2020 The function and evolution of C2H2 zinc finger proteins and transposons Laura Francesca Campitelli Doctor of Philosophy Department of Molecular Genetics University of Toronto 2020 Abstract Transcription factors (TFs) confer specificity to transcriptional regulation by binding specific DNA sequences and ultimately affecting the ability of RNA polymerase to transcribe a locus. The C2H2 zinc finger proteins (C2H2 ZFPs) are a TF class with the unique ability to diversify their DNA-binding specificities in a short evolutionary time. C2H2 ZFPs comprise the largest class of TFs in Mammalian genomes, including nearly half of all Human TFs (747/1,639). Positive selection on the DNA-binding specificities of C2H2 ZFPs is explained by an evolutionary arms race with endogenous retroelements (EREs; copy-and-paste transposable elements), where the C2H2 ZFPs containing a KRAB repressor domain (KZFPs; 344/747 Human C2H2 ZFPs) are thought to diversify to bind new EREs and repress deleterious transposition events. However, evidence of the gain and loss of KZFP binding sites on the ERE sequence is sparse due to poor resolution of ERE sequence evolution, despite the recent publication of binding preferences for 242/344 Human KZFPs. The goal of my doctoral work has been to characterize the Human C2H2 ZFPs, with specific interest in their evolutionary history, functional diversity, and coevolution with LINE EREs.
    [Show full text]
  • Screen for Multi-SUMO–Binding Proteins Reveals a Multi-SIM–Binding Mechanism for Recruitment of the Transcriptional Regulator ZMYM2 to Chromatin
    Screen for multi-SUMO–binding proteins reveals a multi-SIM–binding mechanism for recruitment of the transcriptional regulator ZMYM2 to chromatin Elisa Aguilar-Martineza, Xi Chena, Aaron Webbera, A. Paul Moulda, Anne Seifertb, Ronald T. Hayb, and Andrew D. Sharrocksa,1 aFaculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom; and bCentre for Gene Regulation and Expression, University of Dundee, Dundee DD1 5EH, United Kingdom Edited by James L. Manley, Columbia University, New York, NY, and approved July 17, 2015 (received for review May 20, 2015) Protein SUMOylation has emerged as an important regulatory human proteins containing two or more motifs corresponding event, particularly in nuclear processes such as transcriptional to the extended negatively charged amino acid-dependent control and DNA repair. In this context, small ubiquitin-like modifier SUMOylation motif (NDSM) (13) Thus, there is a huge poten- (SUMO) often provides a binding platform for the recruitment of tial for widespread multi-SUMOylation of proteins to occur. proteins via their SUMO-interacting motifs (SIMs). Recent discoveries Indeed, several of these proteins have been shown to be point to an important role for multivalent SUMO binding through SUMOylated on multiple sites, including megakaryoblastic leu- multiple SIMs in the binding partner as exemplified by poly- kemia (translocation) 1 (MKL1) (14), CREB-binding protein SUMOylation acting as a binding platform for ubiquitin E3 ligases (CBP) (15), and PEA3/ETV4 (16). Furthermore, two recent such as ring finger protein 4. Here, we have investigated whether proteomic studies emphasize the potential for more widespread other types of protein are recruited through multivalent SUMO multi-SUMOylation as they found that a large proportion of all interactions.
    [Show full text]