Than a Corepressor: the Role of Corest Proteins in Neurodevelopment
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
Heat Shock Factor 1 Mediates Latent HIV Reactivation
www.nature.com/scientificreports OPEN Heat Shock Factor 1 Mediates Latent HIV Reactivation Xiao-Yan Pan1,*, Wei Zhao1,2,*, Xiao-Yun Zeng1, Jian Lin1, Min-Min Li3, Xin-Tian Shen1 & Shu-Wen Liu1,2 Received: 19 October 2015 HSF1, a conserved heat shock factor, has emerged as a key regulator of mammalian transcription Accepted: 29 April 2016 in response to cellular metabolic status and stress. To our knowledge, it is not known whether Published: 18 May 2016 HSF1 regulates viral transcription, particularly HIV-1 and its latent form. Here we reveal that HSF1 extensively participates in HIV transcription and is critical for HIV latent reactivation. Mode of action studies demonstrated that HSF1 binds to the HIV 5′-LTR to reactivate viral transcription and recruits a family of closely related multi-subunit complexes, including p300 and p-TEFb. And HSF1 recruits p300 for self-acetylation is also a committed step. The knockout of HSF1 impaired HIV transcription, whereas the conditional over-expression of HSF1 improved that. These findings demonstrate that HSF1 positively regulates the transcription of latent HIV, suggesting that it might be an important target for different therapeutic strategies aimed at a cure for HIV/AIDS. The long-lived latent viral reservoir of HIV-1 prevents its eradication and the development of a cure1. The recent combination antiretroviral therapy (cART) aimed at inhibiting viral enzymatic activities prevents HIV-1 repli- cation and halts the viral destruction of the host immune system2. However, proviruses in the latent reservoir persist in a transcriptionally inactive state, are insuppressible by cART and undetectable by the immune system3. -
HSF1-Mediated Control of Cellular Energy Metabolism and Mtorc1 Activation
Author Manuscript Published OnlineFirst on November 19, 2019; DOI: 10.1158/1541-7786.MCR-19-0217 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. HSF1-mediated Control of Cellular Energy Metabolism and mTORC1 Activation Drive Acute T Cell Lymphoblastic Leukemia Progression Binnur Eroglu1, Junfeng Pang1, Xiongjie Jin1, Caixia Xi1, Demetrius Moskophidis1,2 Nahid F. Mivechi1,2, 3 1Molecular Chaperone Biology, Medical College of Georgia, Georgia Cancer Center, 2Department of Medicine, and 3Department of Radiation Oncology, Augusta University, Augusta, Georgia, USA. B. Eroglu and J. Pang contributed equally to this article. Running Title: Increased susceptibility of T-ALL to HSF1 depletion Corresponding Authors: Nahid F. Mivechi, Augusta University, Augusta, 1120 15th St., CN-3153, Augusta, Georgia, 30912; Phone: 706-721-8759; E-mail: [email protected]; and Demetrius Moskophidis, Augusta University, Augusta, 1120 15th St., CN-3143, Augusta, Georgia, 30912; Phone: 706-721-8738; E- mail: [email protected]. Disclosure of potential conflicts of interest: Authors declare no potential conflict of interest. 1 Downloaded from mcr.aacrjournals.org on October 3, 2021. © 2019 American Association for Cancer Research. Author Manuscript Published OnlineFirst on November 19, 2019; DOI: 10.1158/1541-7786.MCR-19-0217 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Abstract Deregulated oncogenic signaling linked to PI3K/AKT and mTORC1 pathway activation is a hallmark of human T cell acute leukemia (T-ALL) pathogenesis and contributes to leukemic cell resistance and adverse prognosis. Notably, although the multi-agent chemotherapy of leukemia leads to a high rate of complete remission, options for salvage therapy for relapsed/refractory disease are limited due to the serious side effects of augmenting cytotoxic chemotherapy. -
Supplemental Information
Supplemental information Dissection of the genomic structure of the miR-183/96/182 gene. Previously, we showed that the miR-183/96/182 cluster is an intergenic miRNA cluster, located in a ~60-kb interval between the genes encoding nuclear respiratory factor-1 (Nrf1) and ubiquitin-conjugating enzyme E2H (Ube2h) on mouse chr6qA3.3 (1). To start to uncover the genomic structure of the miR- 183/96/182 gene, we first studied genomic features around miR-183/96/182 in the UCSC genome browser (http://genome.UCSC.edu/), and identified two CpG islands 3.4-6.5 kb 5’ of pre-miR-183, the most 5’ miRNA of the cluster (Fig. 1A; Fig. S1 and Seq. S1). A cDNA clone, AK044220, located at 3.2-4.6 kb 5’ to pre-miR-183, encompasses the second CpG island (Fig. 1A; Fig. S1). We hypothesized that this cDNA clone was derived from 5’ exon(s) of the primary transcript of the miR-183/96/182 gene, as CpG islands are often associated with promoters (2). Supporting this hypothesis, multiple expressed sequences detected by gene-trap clones, including clone D016D06 (3, 4), were co-localized with the cDNA clone AK044220 (Fig. 1A; Fig. S1). Clone D016D06, deposited by the German GeneTrap Consortium (GGTC) (http://tikus.gsf.de) (3, 4), was derived from insertion of a retroviral construct, rFlpROSAβgeo in 129S2 ES cells (Fig. 1A and C). The rFlpROSAβgeo construct carries a promoterless reporter gene, the β−geo cassette - an in-frame fusion of the β-galactosidase and neomycin resistance (Neor) gene (5), with a splicing acceptor (SA) immediately upstream, and a polyA signal downstream of the β−geo cassette (Fig. -
WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT (51) International Patent Classification: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, C12Q 1/68 (2018.01) A61P 31/18 (2006.01) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, C12Q 1/70 (2006.01) HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, (21) International Application Number: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, PCT/US2018/056167 OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (22) International Filing Date: SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 16 October 2018 (16. 10.2018) TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, (30) Priority Data: UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, 62/573,025 16 October 2017 (16. 10.2017) US TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, ΓΕ , IS, IT, LT, LU, LV, (71) Applicant: MASSACHUSETTS INSTITUTE OF MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TECHNOLOGY [US/US]; 77 Massachusetts Avenue, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, Cambridge, Massachusetts 02139 (US). -
HSF1 in the Yeast Saccharomyces Cerevisiaeã
Mol Gen Genet (1997) 255:322±331 Ó Springer-Verlag 1997 ORIGINAL PAPER O. Boscheinen á R. Lyck á C. Queitsch á E. Treuter V. Zimarino á K.-D. Scharf Heat stress transcription factors from tomato can functionally replace HSF1 in the yeast Saccharomyces cerevisiaeà Received: 1 October 1996 / Accepted: 6 December 1996 Abstract The fact that yeast HSF1 is essential for sur- nomeric Hsf has a markedly reduced anity for DNA, as vival under nonstress conditions can be used to test shown by lacZ reporter and band-shift assays. heterologous Hsfs for the ability to substitute for the endogenous protein. Our results demonstrate that like Key words Tomato á Yeast á Heat stress á Transcription Hsf of Drosophila, tomato Hsfs A1 and A2 can func- factor á Thermotolerance tionally replace the corresponding yeast protein, but Hsf B1 cannot. In addition to survival at 28° C, we checked the transformed yeast strains for temperature sensitivity Introduction of growth, induced thermotolerance and activator func- tion using two dierent lacZ reporter constructs. Tests The striking conservation of essential elements of the with full-length Hsfs were supplemented by assays using heat stress response is well documented by the 11 heat mutant Hsfs lacking parts of their C-terminal activator stress protein (Hsp) families, with representatives found region or oligomerization domain, or containing amino in all organisms investigated so far. As molecular acid substitutions in the DNA-binding domain. Re- chaperones, they form part of a homeostatic network markably, results with the yeast system are basically responsible for the proper folding, assembly, intracellu- similar to those obtained by the analysis of the same Hsfs lar distribution and degradation of proteins (see sum- as transcriptional activators in a tobacco protoplast as- maries by Nover 1991; Buchner 1996; Hartl 1996; say. -
Supporting Information
Supporting Information The deubiquitinase USP38 promotes NHEJ repair through regulation of HDAC1 activity and regulates cancer cell response to genotoxic insults Yongfeng Yang1,2, Chuanzhen Yang1,2, Tingting Li3, Shuyu Yu1,2,Tingting Gan4, Jiazhi Hu4, Jun Cui5,6, and Xiaofeng Zheng1,2,* 1 State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China. 2Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, China. 3State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Institute of Basic Medical Sciences, Beijing, China. 4Department of Cell Biology, School of Life Sciences, Peking University, Beijing, China. 5Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China. 6Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University, Guangzhou, China. *To whom correspondence should be addressed. Xiaofeng Zheng, School of Life Sciences, Peking University, Beijing 100871, China. Tel: +86 10-6275-5712; Email: [email protected] Supplementary Materials and Methods: Antibodies and reagents Mouse monoclonal anti-Flag (F3165, RRID: AB_259529) antibodies, anti-HA (H9658, RRID: AB_260092) antibodies, and etoposide (E1383) were purchased from Sigma-Aldrich. Mouse monoclonal anti-Myc (M047-3, RRID: AB_591112), anti-histidine (D291–3, RRID: AB_10597733), and rabbit polyclonal anti-β-actin (PM053, RRID: AB_10598196) antibodies were purchased from MBL. Mouse monoclonal anti-H3 (BE3015) antibodies were purchased from EASYBIO. Mouse monoclonal anti-γH2AX (05–636, RRID: AB_309864) antibodies and MG132 (2772605) were purchased from Millipore. Mouse monoclonal anti-HDAC1 (sc-81598, RRID: AB_2118083) antibodies were purchased from Santa Cruz Biotechnology. -
Single-Cell RNA Sequencing Analysis of Human Neural Grafts Revealed Unexpected Cell Type Underlying the Genetic Risk of Parkinson’S Disease
Single-cell RNA Sequencing Analysis of Human Neural Grafts Revealed Unexpected Cell Type Underlying the Genetic Risk of Parkinson’s Disease Yingshan Wang1, Gang Wu2 1 Episcopal High School, 1200 N Quaker Ln, Alexandria, VA, USA, 22302 2 Fujian Sanbo Funeng Brain Hospital; Sanbo Brain Hospital Capital Medical University Abstract Parkinson’s disease (PD) is the second most common neurodegenerative disorder, affecting more than 6 million patients globally. Though previous studies have proposed several disease-related molecular pathways, how cell-type specific mechanisms contribute to the pathogenesis of PD is still mostly unknown. In this study, we analyzed single-cell RNA sequencing data of human neural grafts transplanted to the midbrains of rat PD models. Specifically, we performed cell-type identification, risk gene screening, and co-expression analysis. Our results revealed the unexpected genetic risk of oligodendrocytes as well as important pathways and transcription factors in PD pathology. The study may provide an overarching framework for understanding the cell non- autonomous effects in PD, inspiring new research hypotheses and therapeutic strategies. Keywords Parkinson’s Disease; Single-cell RNA Sequencing; Oligodendrocytes; Cell Non-autonomous; Co- expression Analysis; Transcription Factors 1 Table of Contents 1. Introduction ................................................................................................................................. 3 2. Methods...................................................................................................................................... -
HSF1) During Macrophage Differentiation of Monocytes
Leukemia (2014) 28, 1676–1686 & 2014 Macmillan Publishers Limited All rights reserved 0887-6924/14 www.nature.com/leu ORIGINAL ARTICLE Dual regulation of SPI1/PU.1 transcription factor by heat shock factor 1 (HSF1) during macrophage differentiation of monocytes G Jego1,2, D Lanneau1,2, A De Thonel1,2, K Berthenet1,2, A Hazoume´ 1,2, N Droin3,4, A Hamman1,2, F Girodon1,2, P-S Bellaye1,2, G Wettstein1,2, A Jacquel1,2,5, L Duplomb6,7, A Le Moue¨l8,9, C Papanayotou10, E Christians11, P Bonniaud1,2, V Lallemand-Mezger8,9, E Solary3,4 and C Garrido1,2,12 In addition to their cytoprotective role in stressful conditions, heat shock proteins (HSPs) are involved in specific differentiation pathways, for example, we have identified a role for HSP90 in macrophage differentiation of human peripheral blood monocytes that are exposed to macrophage colony-stimulating factor (M-CSF). Here, we show that deletion of the main transcription factor involved in heat shock gene regulation, heat shock factor 1 (HSF1), affects M-CSF-driven differentiation of mouse bone marrow cells. HSF1 transiently accumulates in the nucleus of human monocytes undergoing macrophage differentiation, including M-CSF- treated peripheral blood monocytes and phorbol ester-treated THP1 cells. We demonstrate that HSF1 has a dual effect on SPI1/ PU.1, a transcription factor essential for macrophage differentiation and whose deregulation can lead to the development of leukemias and lymphomas. Firstly, HSF1 regulates SPI1/PU.1 gene expression through its binding to a heat shock element within the intron 2 of this gene. -
Screen for Multi-SUMO–Binding Proteins Reveals a Multi-SIM–Binding Mechanism for Recruitment of the Transcriptional Regulator ZMYM2 to Chromatin
Screen for multi-SUMO–binding proteins reveals a multi-SIM–binding mechanism for recruitment of the transcriptional regulator ZMYM2 to chromatin Elisa Aguilar-Martineza, Xi Chena, Aaron Webbera, A. Paul Moulda, Anne Seifertb, Ronald T. Hayb, and Andrew D. Sharrocksa,1 aFaculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom; and bCentre for Gene Regulation and Expression, University of Dundee, Dundee DD1 5EH, United Kingdom Edited by James L. Manley, Columbia University, New York, NY, and approved July 17, 2015 (received for review May 20, 2015) Protein SUMOylation has emerged as an important regulatory human proteins containing two or more motifs corresponding event, particularly in nuclear processes such as transcriptional to the extended negatively charged amino acid-dependent control and DNA repair. In this context, small ubiquitin-like modifier SUMOylation motif (NDSM) (13) Thus, there is a huge poten- (SUMO) often provides a binding platform for the recruitment of tial for widespread multi-SUMOylation of proteins to occur. proteins via their SUMO-interacting motifs (SIMs). Recent discoveries Indeed, several of these proteins have been shown to be point to an important role for multivalent SUMO binding through SUMOylated on multiple sites, including megakaryoblastic leu- multiple SIMs in the binding partner as exemplified by poly- kemia (translocation) 1 (MKL1) (14), CREB-binding protein SUMOylation acting as a binding platform for ubiquitin E3 ligases (CBP) (15), and PEA3/ETV4 (16). Furthermore, two recent such as ring finger protein 4. Here, we have investigated whether proteomic studies emphasize the potential for more widespread other types of protein are recruited through multivalent SUMO multi-SUMOylation as they found that a large proportion of all interactions. -
Expression Profiling of RE1-Silencing Transcription Factor (REST), REST
JBUON 2016; 21(4): 964-972 ISSN: 1107-0625, online ISSN: 2241-6293 • www.jbuon.com E-mail: [email protected] ORIGINAL ARTICLE Expression profiling of RE1-silencing transcription factor (REST), REST corepressor 1 (RCOR1), and Synapsin 1 (SYN1) genes in human gliomas Musteyde Yucebas1, Sunde Yilmaz Susluer1, Hasan Onur Caglar2, Tugce Balci1, Z. Ozlem Dogan Sigva1, Taner Akalin3, Nezih Oktar4, Tayfun Dalbasti4, Cigir Biray Avci1, Cumhur Gunduz1 1Ege University Medical Faculty, Department of Medical Biology, Bornova, Izmir; 2Ege University, Health Science Institute, Department of Stem Cell, Bornova, Izmir; 3Ege University Medical Faculty, Department of Pathology, Bornova, Izmir; 4Ege University, Medical Faculty, Department of Neurosurgery, Bornova, Izmir, Turkey Summary Purpose: The repressor element 1 (RE-1) silencing tran- Results: Means of relative expression for REST were as scription factor (REST) is a transcription factor which re- follows: 0.7898, 0.7606, and 0.7318 in DA, AO, and GBM presses the expression of neuronal differentiation-related groups, respectively. For RCOR1, expression means in DA, genes including SYN1 gene. CoREST, encoded by RCOR1 AO, and GBM groups were 0.7203, 0.7334, and 0.7230, re- gene, binds to the REST protein for remodeling of chroma- spectively. SYN1 expression means were as follows: 0.3936, tin structure. Although there is a relation among REST, 0.3192, and 0.3197 in DA, AO, and GBM groups, respective- RCOR1, and SYN1 genes, the role of these genes in glioma ly. Neither gain nor loss of copy numbers were detected for tumors is still unclear. In this study, expressions of REST, REST and RCOR1 genes in all groups. -
What Your Genome Doesn't Tell
UC San Diego UC San Diego Electronic Theses and Dissertations Title Multi-layered epigenetic control of T cell fate decisions Permalink https://escholarship.org/uc/item/8rs7c7b3 Author Yu, Bingfei Publication Date 2018 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA SAN DIEGO Multi-layered epigenetic control of T cell fate decisions A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Biology by Bingfei Yu Committee in charge: Professor Ananda Goldrath, Chair Professor John Chang Professor Stephen Hedrick Professor Cornelis Murre Professor Wei Wang 2018 Copyright Bingfei Yu, 2018 All rights reserved. The dissertation of Bingfei Yu is approved, and it is ac- ceptable in quality and form for publication on microfilm and electronically: Chair University of California San Diego 2018 iii DEDICATION To my parents who have been giving me countless love, trust and support to make me who I am. iv EPIGRAPH Stay hungary. Stay foolish. | Steve Jobs quoted from the back cover of the 1974 edition of the Whole Earth Catalog v TABLE OF CONTENTS Signature Page.................................. iii Dedication..................................... iv Epigraph.....................................v Table of Contents................................. vi List of Figures.................................. ix Acknowledgements................................x Vita........................................ xii Abstract of