A Stronger Conclusion to the Classical Ham Sandwich Theorem John H
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Measure-Theoretic Probability I
Measure-Theoretic Probability I Steven P.Lalley Winter 2017 1 1 Measure Theory 1.1 Why Measure Theory? There are two different views – not necessarily exclusive – on what “probability” means: the subjectivist view and the frequentist view. To the subjectivist, probability is a system of laws that should govern a rational person’s behavior in situations where a bet must be placed (not necessarily just in a casino, but in situations where a decision must be made about how to proceed when only imperfect information about the outcome of the decision is available, for instance, should I allow Dr. Scissorhands to replace my arthritic knee by a plastic joint?). To the frequentist, the laws of probability describe the long- run relative frequencies of different events in “experiments” that can be repeated under roughly identical conditions, for instance, rolling a pair of dice. For the frequentist inter- pretation, it is imperative that probability spaces be large enough to allow a description of an experiment, like dice-rolling, that is repeated infinitely many times, and that the mathematical laws should permit easy handling of limits, so that one can make sense of things like “the probability that the long-run fraction of dice rolls where the two dice sum to 7 is 1/6”. But even for the subjectivist, the laws of probability should allow for description of situations where there might be a continuum of possible outcomes, or pos- sible actions to be taken. Once one is reconciled to the need for such flexibility, it soon becomes apparent that measure theory (the theory of countably additive, as opposed to merely finitely additive measures) is the only way to go. -
Geodesic Ham-Sandwich Cuts∗
GEODESIC HAM-SANDWICH CUTS∗ Prosenjit Bose† Erik D. Demaine‡ Ferran Hurtado§ John Iacono¶ Stefan Langermank Pat Morin∗∗ ABSTRACT. Let P be a simple polygon with m vertices, k of which are reflex, and which contains r red points and b blue points in its interior. Let n = m + r + b.A ham-sandwich geodesic is a shortest path in P between two points on the boundary of P that simultaneously bisects the red points and the blue points. We present an O(n log k)-time algorithm for finding a ham-sandwich geodesic. We also show that this algorithm is optimal in the algebraic computation tree model when parameterizing the running time with respect to n and k. 1 Introduction Let R, B ⊆ R2 be two finite point sets of sizes r and b, respectively. We call the elements of R the red points and the elements of B the blue points. The (2-dimensional) ham-sandwich theorem (for point sets) states that there always exists a line L such that each of the two open halfplanes bounded by L contains at most r/2 red points and at most b/2 blue points.1 We call such a line a ham-sandwich cut. Megiddo [17] showed that, if the sets R and B are linearly separable (there exists a line that sepa- rates R from B) then a ham-sandwich cut can be found in O(n) time. Edelsbrunner and Waupotitisch [8] modified Meggido’s method and obtained an O(n log n) time algorithm for the general case. -
Thieves Can Make Sandwiches
Submitted exclusively to the London Mathematical Society doi:10.1112/0000/000000 Thieves can make sandwiches Pavle V. M. Blagojevi´cand Pablo Sober´on Dedicated to Imre B´ar´any on the occasion of his 70th birthday Abstract We prove a common generalization of the Ham Sandwich theorem and Alon's Necklace Splitting theorem. Our main results show the existence of fair distributions of m measures in Rd among r thieves using roughly mr=d convex pieces, even in the cases when m is larger than the dimension. The main proof relies on a construction of a geometric realization of the topological join of two spaces of partitions of Rd into convex parts, and the computation of the Fadell-Husseini ideal valued index of the resulting spaces. 1. Introduction Measure partition problems are classical, significant and challenging questions of Discrete Geometry. Typically easy to state, they hide a connection to various advanced methods of Algebraic Topology. In the usual setting, we are presented with a family of measures in a geometric space and a set of rules to partition the space into subsets, and we are asked if there is a partition of this type which splits each measure evenly. In this paper we consider convex partitions of the Euclidean space Rd. More precisely, an ordered d d d collection of n closed subsets K = (K1;:::;Kn) of R is a partition of R if it is a covering R = K1 [···[ Kn, all the interiors int(K1);:::; int(Kn) are non-empty, and int(Ki) \ int(Kj) = ; for all d 1 ≤ i < j ≤ n. -
Algorithms for Ham-Sandwich Cuts*
Discrete Comput Geom 11:433~52 (1994) GeometryDiscrete & Computatioeat 1994 Springer-Verlag New York Inc. Algorithms for Ham-Sandwich Cuts* Chi-Yuan Lo, 1 J. Matougek, 2 and W. Steiger 3 1 AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974, USA 2 Charles University, Malostransk6 nfim, 25, 118 00 Praha 1, Czech Republic and Free University Berlin, Arnimallee 2-6, D-14195 Berlin, Germany matousek@cspguk 11.bitnet a Rutgers University, Piscataway, NJ 08903, USA [email protected] Abstract. Given disjoint sets PI, P2 ..... Pd in R a with n points in total, a ham- sandwich cut is a hyperplane that simultaneously bisects the Pi. We present algorithms for finding ham-sandwich cuts in every dimension d > 1. When d = 2, the algorithm is optimal, having complexity O(n). For dimension d > 2, the bound on the running time is proportional to the worst-case time needed for constructing a level in an arrangement of n hyperplanes in dimension d - 1. This, in turn, is related to the number of k-sets in R d- ~. With the current estimates, we get complexity close to O(n 3/2) for d = 3, roughly O(n s/3) for d = 4, and O(nd- 1 -atd~) for some a(d) > 0 (going to zero as d increases) for larger d. We also give a linear-time algorithm for ham-sandwich cuts in R 3 when the three sets are suitably separated. 1. Introduction and Summary A hyperplane h is said to bisect a set P of n points in R d if no more than n/2 points of P lie in either of the open half-spaces defined by h. -
Ham Sandwich with Mayo
1 Ham Sandwich with Mayo: A Stronger Conclusion to the Classical Ham Sandwich Theorem By John H. Elton and Theodore P. Hill School of Mathematics, Georgia Institute of Technology Atlanta GA 30332-0160 USA [email protected], [email protected] Summary The conclusion of the classical ham sandwich theorem of Banach and Steinhaus may be strengthened: there always exists a common bisecting hyperplane that touches each of the sets, that is, intersects the closure of each set. Hence, if the knife is smeared with mayonnaise, a cut can always be made so that it will not only simultaneously bisect each of the ingredients, but it will also spread mayonnaise on each. A discrete analog of this theorem says that n finite nonempty sets in n-dimensional Euclidean space can always be simultaneously bisected by a single hyperplane that contains at least one point in each set. More generally, for n compactly- supported positive finite Borel measures in Euclidean n-space, there is always a hyperplane that bisects each of the measures and intersects the support of each measure. 1. Introduction. The classical ham sandwich theorem [BZ, S, ST] says that every collection of n bounded Borel sets in n can be simultaneously bisected in Lebesgue measure by a single hyperplane. Many generalizations of this theorem are well known (e.g., [H], [M], [ST]), and the purpose of this note is to show that the conclusion of the classical ham sandwich theorem (and the conclusions of some of its well known extensions and generalizations) may be strengthened, without additional hypotheses. -
Measure Theory and Probability
Measure theory and probability Alexander Grigoryan University of Bielefeld Lecture Notes, October 2007 - February 2008 Contents 1 Construction of measures 3 1.1Introductionandexamples........................... 3 1.2 σ-additive measures ............................... 5 1.3 An example of using probability theory . .................. 7 1.4Extensionofmeasurefromsemi-ringtoaring................ 8 1.5 Extension of measure to a σ-algebra...................... 11 1.5.1 σ-rings and σ-algebras......................... 11 1.5.2 Outermeasure............................. 13 1.5.3 Symmetric difference.......................... 14 1.5.4 Measurable sets . ............................ 16 1.6 σ-finitemeasures................................ 20 1.7Nullsets..................................... 23 1.8 Lebesgue measure in Rn ............................ 25 1.8.1 Productmeasure............................ 25 1.8.2 Construction of measure in Rn. .................... 26 1.9 Probability spaces ................................ 28 1.10 Independence . ................................. 29 2 Integration 38 2.1 Measurable functions.............................. 38 2.2Sequencesofmeasurablefunctions....................... 42 2.3 The Lebesgue integral for finitemeasures................... 47 2.3.1 Simplefunctions............................ 47 2.3.2 Positivemeasurablefunctions..................... 49 2.3.3 Integrablefunctions........................... 52 2.4Integrationoversubsets............................ 56 2.5 The Lebesgue integral for σ-finitemeasure................. -
Consensus-Halving Via Theorems of Borsuk-Ulam and Tucker
A Service of Leibniz-Informationszentrum econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible. zbw for Economics Simmons, Forest W.; Su, Francis Working Paper Consensus-halving via Theorems of Borsuk-Ulam and Tucker Claremont Colleges Working Papers in Economics, No. 2001-03 Provided in Cooperation with: Department of Economics, Claremont McKenna College Suggested Citation: Simmons, Forest W.; Su, Francis (2001) : Consensus-halving via Theorems of Borsuk-Ulam and Tucker, Claremont Colleges Working Papers in Economics, No. 2001-03, Claremont McKenna College, Department of Economics, Claremont, CA This Version is available at: http://hdl.handle.net/10419/94656 Standard-Nutzungsbedingungen: Terms of use: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your Zwecken und zum Privatgebrauch gespeichert und kopiert werden. personal and scholarly purposes. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle You are not to copy documents for public or commercial Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich purposes, to exhibit the documents publicly, to make them machen, vertreiben oder anderweitig nutzen. publicly available on the internet, or to distribute or otherwise use the documents in public. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, If the documents have been made available under an Open gelten abweichend von diesen Nutzungsbedingungen die in der dort Content Licence (especially Creative Commons Licences), you genannten Lizenz gewährten Nutzungsrechte. may exercise further usage rights as specified in the indicated licence. www.econstor.eu Claremont Colleges working paper 2001-03 Economics papers by faculty at Claremont Graduate University, Claremont Institute for Economic Policy Studies, Claremont McKenna College, Drucker School of Management, Harvey Mudd College, Lowe Institute, Pitzer College, Pomona College, and Scripps College. -
Computational Complexity of the Α-Ham-Sandwich Problem∗
Computational Complexity of the α-Ham-Sandwich Problem∗ Man-Kwun Chiu1, Aruni Choudhary1, and Wolfgang Mulzer1 1 Institut für Informatik, Freie Universität Berlin, Berlin, Germany [chiumk,arunich,mulzer]@inf.fu-berlin.de Abstract A variant of the Ham-Sandwich Theorem by Bárány, Hubard, and Jerónimo [DCG 2008] states that given any d measurable sets in Rd that are convex and well-separated, and any given α1, . , αd ∈ [0, 1], there is a unique oriented hyperplane that cuts off a respective fraction α1, . , αd from each set. Steiger and Zhao [DCG 2010] proved a discrete analogue, which we call the α-Ham-Sandwich theorem. They gave an algorithm to find the hyperplane in time O(n(log n)d−3), where n is the total number of input points. The computational complexity of this search problem in high dimensions is open, unlike that of the Ham-Sandwich problem, which is now known to be PPA-complete (Filos-Ratsikas and Goldberg [STOC 2019]). Recently, Fearley, Gordon, Mehta, and Savani [ICALP 2019] introduced a new sub-class of CLS (Continuous Local Search) called Unique End-of-Potential Line (UEOPL). This class captures problems in CLS that have unique solutions. We show that for the α-Ham-Sandwich theorem, the search problem of finding the dividing hyperplane lies in UEOPL. This gives the first non-trivial containment of the problem in a complexity class and places it in the company of several classic search problems. 1 Introduction and preliminaries The classic Ham-Sandwich theorem [7, 8, 12] states that for any d measurable sets in Rd, there is a hyperplane that bisects them simultaneously. -
Ham Sandwich Is Equivalent to Borsuk-Ulam
Ham Sandwich is Equivalent to Borsuk-Ulam Karthik C. S.∗1 and Arpan Saha†2 1 Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Israel [email protected] 2 Department of Mathematics, University of Hamburg, Germany [email protected] Abstract The Borsuk-Ulam theorem is a fundamental result in algebraic topology, with applications to various areas of Mathematics. A classical application of the Borsuk-Ulam theorem is the Ham Sandwich theorem: The volumes of any n compact sets in Rn can always be simultaneously bisected by an (n − 1)-dimensional hyperplane. In this paper, we demonstrate the equivalence between the Borsuk-Ulam theorem and the Ham Sandwich theorem. The main technical result we show towards establishing the equivalence is the following: For every odd polynomial restricted to the hypersphere f : Sn → R, there exists a compact set A ⊆ Rn+1, such that for every x ∈ Sn we have f(x) = vol(A ∩ H+) − vol(A ∩ H−), where H is the oriented hyperplane containing the origin with ~x as the normal. A noteworthy aspect of the proof of the above result is the use of hyperspherical harmonics. Finally, using the above√ result we prove that there exist constants n0, ε0 > 0 such that for every n ≥ n0 and ε ≤ ε0/ 48n, any query algorithm to find an ε-bisecting (n − 1)-dimensional hyperplane of n compact sets in [−n4.51, n4.51]n, even with success probability 2−Ω(n), requires 2Ω(n) queries. 1998 ACM Subject Classification F.2.2 Computations on discrete structures, Geometrical prob- lems and computations Keywords and phrases Ham Sandwich theorem, Borsuk-Ulam theorem, Query Complexity, Hy- perspherical Harmonics Digital Object Identifier 10.4230/LIPIcs.SoCG.2017.24 1 Introduction The Borsuk-Ulam theorem states that every continuous function from an n-sphere into Euclidean n-space maps some pair of antipodal points to the same point [6]. -
An Approximate Logic for Measures
AN APPROXIMATE LOGIC FOR MEASURES ISAAC GOLDBRING AND HENRY TOWSNER Abstract. We present a logical framework for formalizing connections be- tween finitary combinatorics and measure theory or ergodic theory that have appeared in various places throughout the literature. We develop the basic syntax and semantics of this logic and give applications, showing that the method can express the classic Furstenberg correspondence as well as provide short proofs of the Szemer´edi Regularity Lemma and the hypergraph removal lemma. We also derive some connections between the model-theoretic notion of stability and the Gowers uniformity norms from combinatorics. 1. Introduction Since the 1970’s, diagonalization arguments (and their generalization to ul- trafilters) have been used to connect results in finitary combinatorics with results in measure theory or ergodic theory [14]. Although it has long been known that this connection can be described with first-order logic, a recent striking paper by Hrushovski [22] demonstrated that modern developments in model theory can be used to give new substantive results in this area as well. Papers on various aspects of this interaction have been published from a va- riety of perspectives, with almost as wide a variety of terminology [30, 10, 9, 1, 32, 13, 4]. Our goal in this paper is to present an assortment of these techniques in a common framework. We hope this will make the entire area more accessible. We are typically concerned with the situation where we wish to prove a state- ment 1) about sufficiently large finite structures which 2) concerns the finite analogs of measure-theoretic notions such as density or integrals. -
Ham Sandwich” Theorems
ARCHIVUM MATHEMATICUM (BRNO) Tomus 42 (2006), 25 – 30 ON GENERALIZED “HAM SANDWICH” THEOREMS MAREK GOLASINSKI´ Abstract. In this short note we utilize the Borsuk-Ulam Anitpodal Theorem to present a simple proof of the following generalization of the “Ham Sandwich Theorem”: n Let A1,...,Am ⊆ R be subsets with finite Lebesgue measure. Then, for any sequence f0,...,fm of R-linearly independent polynomials in the polynomial ring R[X1,...,Xn] there are real numbers λ0,...,λm, not all n zero, such that the real affine variety {x ∈ R ; λ0f0(x)+···+λmfm(x) = 0} simultaneously bisects each of subsets Ak, k = 1,...,m. Then some its applications are studied. The Borsuk-Ulam Antipodal Theorem (see e.g. [2, 12]) is the first really strik- ing fact discovered in topology after the initial contributions of Poincar´eand its fundamental role shows an enormous influence on mathematical research. A deep theory evolved from this result, including a large number of applications and a broad variety of diverse generalizations. In particular, as it was shown in [9], an interrelation between topology and geometry can be established by means of an appropriate version of the famous “Ham Sandwich” Theorem deduced from the Borsuk-Ulam Antipodal Theorem. It was pointed out in [6] that an existence of common hyperplane medians for random vectors can be proved from the “Ham Sandwich” Theorem as well. The presented main result is probably known to some experts but its proof is much simpler than others in the literature and some consequences are easily deduced. Our paper grew up to answer the question posed in [6]; that is of which curves or manifolds other than straight lines or hyperplanes can serve as common medians for random vectors. -
Dynamic Ham-Sandwich Cuts in the Plane∗
Dynamic Ham-Sandwich Cuts in the Plane∗ Timothy G. Abbott† Michael A. Burr‡ Timothy M. Chan§ Erik D. Demaine† Martin L. Demaine† John Hugg¶ Daniel Kanek Stefan Langerman∗∗ Jelani Nelson† Eynat Rafalin†† Kathryn Seyboth¶ Vincent Yeung† Abstract We design efficient data structures for dynamically maintaining a ham-sandwich cut of two point sets in the plane subject to insertions and deletions of points in either set. A ham- sandwich cut is a line that simultaneously bisects the cardinality of both point sets. For general point sets, our first data structure supports each operation in O(n1/3+ε) amortized time and O(n4/3+ε) space. Our second data structure performs faster when each point set decomposes into a small number k of subsets in convex position: it supports insertions and deletions in O(log n) time and ham-sandwich queries in O(k log4 n) time. In addition, if each point set has convex peeling depth k, then we can maintain the decomposition automatically using O(k log n) time per insertion and deletion. Alternatively, we can view each convex point set as a convex polygon, and we show how to find a ham-sandwich cut that bisects the total areas or total perimeters of these polygons in O(k log4 n) time plus the O((kb) polylog(kb)) time required to approximate the root of a polynomial of degree O(k) up to b bits of precision. We also show how to maintain a partition of the plane by two lines into four regions each containing a quarter of the total point count, area, or perimeter in polylogarithmic time.